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Abstract: With the depletion of surface resources, mining will develop toward the deep surface in the
future, the objective conditions such as the mining environment will be more complex and dangerous
than now, and the requirements for personnel and equipment will be higher and higher. The efficient
mining of deep space is inseparable from movable and flexible production and transportation
equipment such as scrapers. In the new era, intelligence is leading to the development trend of
scraper (LHD), path tracking control is the key to the intelligent scraper (LHD), and it is also an
urgent problem to be solved for unmanned driving. This paper describes the realization of the
automatic operation of articulating the scraper (LHD) from two aspects, a mathematical model
and trajectory tracking control method, and it focuses on the research of the path tracking control
scheme in the field of unmanned driving, that is, an LQR controller. On this basis, combined with
different intelligent clustering algorithms, the parameters of the LQR controller are optimized to
find the optimal solution of the LQR controller. Then, the path tracking control of an intelligent
LHD unmanned driving technology is studied, focusing on the optimization of linear quadratic
optimal control (LQR) and the intelligent cluster algorithms AGA, QPSO, and ACA; this research has
great significance for the development of the intelligent scraper (LHD). As mining engineers, we not
only need to conduct research for practical engineering projects but also need to produce theoretical
designs for advanced mining technology; therefore, the area of intelligent mining is the one we need
to explore at present and in the future. Finally, this paper serves as a guide to starting a conversation,
and it has implications for the development and the future of underground transportation.

Keywords: scraper (LHD); artificial intelligence; path tracking; mining engineering

1. Introduction
1.1. Retrospective: Development of Underground Driver-Less Technology

With the gradual rise of driver-less technology and artificial intelligence, driver-less
electric vehicles have been significantly applied in all walks of life.

The earliest driver-less technology was envisioned for life driving: one of the earliest
cases of driver-less technology was the CMU (Carnegie Mellon University) system [1,2],
in which a system based on artificial intelligence computing and the computer control
was developed by CMU (Carnegie Mellon University). Subsequently, quite a few scholars
have developed more and more control systems based on the CMU system, providing
favorable technical support for the realization of unmanned driving [3,4]. After the 2010s,
Google [5,6], Uber [7], Baidu [8], Huawei [9], and other giant enterprises have all partici-
pated in the development of self-driving cars, which undoubtedly drives the development
of self-driving technology. At the same time, the impact of driver-less technology on indus-
trial transportation is also significant, and mining transportation is no exception. In mining
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operations, especially in underground mining and transportation operations, it is difficult
to optimize the route planning and scheduling of transport vehicles, but in recent years,
the introduction of unmanned driving technology had made mining and transportation
full of new “spring”.

The track-less Applied Automatic Guidance vehicles (AGVs) are the most widely used
driver-less vehicles in the field of industrial transportation. In 2011, Bellamy and Prav-
ica [10] explored the importance of introducing driver-less technology to the Australian
open-pit mining industry for transportation; here, unmanned (driver-less) rail transporta-
tion technology in underground mines is the earliest and fastest developing direction, and
many researchers have made great achievements in this direction. Around the year 2020,
H. Yu, S. Li, and J. Yu [11,12] first proposed the application of the Communication-Based
Train Control (CBTC) system in the intelligent monitoring system of underground mine
rail transportation. Their proposals and ideas have been widely recognized, so more and
more researchers who are doing research on mining transportation began to explore the
application of CBTC systems in underground mines [13–15].

Rail transportation is convenient, but there are many inconveniences for loading
and unloading equipment, especially for the underground scraper, which is also called
load–haul–dump (LHD). For loading and unloading equipment, flexibility is the most
important matter taken into account, as shown in Figure 1.
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1.2. Retrospective: Development of Driver-Less Scraper (LHD) in the Underground Mine

With the development of industry, the global demand for mineral resources continues
to soar. At the same time, when surface resources are increasingly exhausted, the mines
will develop in the direction of deep sea, deep ground, and deep space in the future. As a
kind of large trackless equipment, the scraper plays an important role in the production of
underground metal mines and directly reflects the technical level and production capacity
of modern underground mining. For example, the scraper can replace manual work in
the deep underground space and other harsh environments, which greatly improves the
efficiency of mining.

In recent years, due to the development of excavating equipment and the construction
of intelligent mines, the development of scrapers is rapid; most mines have begun to
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apply more advanced remote control scrapers and have achieved favorable practical
results [16,17]. A scraper with remote control enables not only simple manipulation, it is
also safe, and the advent of the era of 5G, the rapid development of artificial intelligence
technology, and the application of robot control technique have made scrapers again an
innovation. enabling further development on the basis of the remote control scraper
humanization service sector. Soon, scrapers will include artificial intelligence, so as to
realize self-driving technology. As one of the core problems in the field of unmanned
intelligent LHD, the path tracking control technology of the LHD is proposed.

In 2017, Y. Jiang et al. [18] proposed a particle swarm optimization-based underground
intelligent scraper (LHD) motion trajectory control method. They established a simulation
model of the entire system in Simulink according to the autonomous navigation dual-
variable PID control algorithm and the scraper motion control model. Subsequently, in 2018,
J. Li and K. Zhan [19] analyzed the research status and development trend of intelligent
technology in underground metal mines in China, and they especially systematically
reviewed the development status and trend of intelligent scrapers (LHD). As early as
2008, C. Yin et al. [20] proposed an intelligent optimization method of LHD path tracking
for underground mining; in the same year, 2008, T. Hu et al. [21] proposed an intelligent
shovel control strategy for LHD used in underground mining. These are early studies on
intelligent LHD.

Recently, Q. Gu et al. [22] proposed an autonomous scraper (LHD) trajectory planning
method based on numerical optimization according to the most common transport and
loading scenes of underground mines, providing a safe and feasible space–time trajectory
for efficient production. Y. Meng et al. [23] also studied the path tracking control of an
intelligent scraper (LHD), and their research also provided some enlightenment to us. In
2021, it was reported that [24] Sandvik developed intelligent scrapers (LHD) with a color
screen that should be in production within the next five years. Additionally, a control
strategy of the LHD is proposed to replace the human control with the computer control;
that is, the LHD can accurately operate according to the instruction when receiving the
instruction. This not only ensures the normal operation of underground production and
transportation operation, but also the intelligent underground transportation system will
greatly improve the production capacity of mine [25].

Nevertheless, in order to further promote the development of LHD, the research of
path following control still needs a certain theoretical and practical basis [26]. In addition,
to make the intelligent scraper more widely used in the future, problems such as the
influence of high depth, high temperature, and high stress on the operation of the scraper
in deep mining require being solved urgently.

Now, green mining has become the theme of mining in the new era, and the develop-
ment of green mining is inseparable from the research of intelligent mining, including the
continuous innovation of scrapers [27]. On the whole, the development of the intelligent
scraper is the indispensable result of the development of mining equipment. At the same
time, continuous innovation and development of intelligent scrapers will also make grand
contributions to the construction of green mines.

Therefore, based on previous research [18–23], we, mining researchers on the front
lines, focusing on the path tracking control of the driver-less technology of the intelli-
gent scraper (LHD), mainly studied the optimization of linear quadratic optimal control
(LQR) and intelligent cluster algorithms AGA, QPSO, and ACA. This research has great
significance for the development of the intelligent scraper (LHD).

2. Materials and Methods
2.1. Mathematical Model of Underground Articulated LHD (Scraper)

In terms of mathematical modeling, the kinematics model of the underground articu-
lated scraper has been widely used in the field of path tracking due to its simple motion
mechanism and the ability to obtain an accurate model [28].
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2.1.1. Kinematics Model of Articulated Scraper

The underground intelligent scraper belongs to the articulated car [29]. The car body
is divided into front and rear ends, the front end and the rear end are connected by the
hinge point [30]. In the deep tunnel environment, the car body has a small steering radius;
thus, it is more flexible.

To determine the geometric relationship between the real-time position change infor-
mation and the motion variables of the LHD, it is essential to analyze the kinematics of
the underground articulated LHD and establish the kinematics equation [31]. The body
structure of the underground articulated scraper is shown in Figure 2 above and below.
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Figure 2. The rotating model of an articulated scraper.

In the coordinate system, the front part of the car body is P1(X1,Y1), the rear part of
the car body is P2(X2,Y2); the center of mass velocity of the front body is v1, and the center
of mass velocity of the rear body is v2; the length of the front body is L1, and the length of
the rear body is L2; the slip angle of the front body is α1, and the slip angle of the rear body
is α2; the heading angle of the front body is

.
θ1 and the heading angle of the rear body is

.
θ2;

the heading angular velocity of the front body is expressed as
.
θ1, and the heading angular

velocity of the rear body is expressed as
.
θ2.

Define the course angular velocity:

.
γ =

.
θ1 −

.
θ2. (1)

Under normal circumstances, the operation speed of the underground scraper is slow
and generally will not be over 30 km/h [32]. Provided that the influence of tire deformation
and vehicle body slip is ignored, that is, α1 = α2, then the motion state model of the
underground articulated scraper is [33]:

− .
x1sinθ1 +

.
y1cosθ1 = 0

− .
x2 sin(θ2 + γ) +

.
y2 cos(θ2 + γ)

.
θ2(L1 + L2cosγ) +

.
γL1 = 0

−v1 + v2cosγ +
.
θ2L2sinγ = 0

. (2)

Note:
.
γ is the articulated angular velocity.
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By selecting the midpoint of the front axle as the reference point of the vehicle state,
the kinematics model of the underground articulated scraper can be obtained as:


.
x
.
y
.
θ1.
γ

 =


cosθ1
sinθ1
sinθ1

L1cosγ+L1
0

0
0
L1

L1cosγ+L1
1


[

v1.
γ

]
. (3)

According to Equation (3), the motion state of the whole vehicle body can be controlled
by the articulated angular velocity of the front car body of the underground articulated
scraper [34].

2.1.2. Location Prediction Model

Using prediction location of the current state of movement to solve the motion state
of the next moment, the control strategy introduced in predicting the location can be
appropriate to control the amount of compensation in advance, reduce the error of the
controller in the future and thus enable more reasonable control output, avoid overcontrol
and excessive control, and ensure the quality of underground articulated scarper (LHD)
path tracking control [35].

An articulated vehicle running curve and the parameter definition are shown in
Figure 3. Curve A is the ideal path of the underground articulated scraper.
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Regarding the ideal path of track curve A and the actual path of track curve B, vi is the
ideal speed of the articulated scraper, and v is the actual running speed of the articulated
scraper; θi is the ideal heading angle of articulated scraper, and θ is the actual heading angle
of articulated scraper; Pi(x, y) is the ideal reference point of the articulated scraper, and
P(x, y) is the actual reference point of the articulated scraper; Oi is the ideal steering center
of the articulated scraper, and O is the actual steering center of the articulated scraper [36].

In addition, the center of the front car body of the underground articulated scraper is
P, and the predicted position point of the scraper is Pi; the steering center of the front car
body is θ1, and the steering center of the rear car body is θ2; the steering radius of the front
body is R1, and the steering radius of the rear body is R2.
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According to the motion equation of the articulated vehicle, the change rate of the
front steering angle of the vehicle is:

.
θ2 =

v1sinγ + L2
.
γ

L1cosγ + L2
. (4)

Set the sampling interval as4t, and the predicted heading angle of the front end of
the vehicle is:

θ1
′ = θ1 +

v1sinγ + L2
.
γ

L1cosγ + L2
4 t. (5)

Assuming that the clockwise rotation direction of the vehicle body is the opposite
direction, the solution can be obtained:

R1 =
v1(L1cosγ + L2)

v1sinγ + L2
.
γ

. (6)

To distinguish the rotating motion state of the front car body from the linear motion
state of the rear car body, the steering state is set as t0, and the following conditions
are satisfied:

t0 =


1 (r > ε)
−1 (r < −ε)

0 (−ε < r < ε)
(7)

where the threshold value is selected to be small. When the degree of steering angle γ of
the underground articulated LHD falls within the range of the threshold value, it can be
assumed that the LHD does not rotate [37]. When the underground articulated scraper
moves from P(x, y) to P′(x′, y′), the time taken is4t, and the change rate of the steering
angle of the front segment of the vehicle is w1; then, the angle of the front segment of the
vehicle turn is:

γ′ = |w1| 4 t. (8)

According to the geometric relation, the forward distance of the vehicle can be calcu-
lated:

l = 2R1sin
γ′

2
. (9)

It can be deduced that the midpoint P′(x′, y′) of the front end of the car body in the
next period is:

δ =



0
(

θ f = θ f

)
θ1 + t0(γ

′/2) (0 < θ f < π/2)

π − θ1 − t0(γ
′/2)

(
π/2 ≤ θ f ≤ π

)
−θ1 − t0(γ

′/2)
(
−π/2 ≤ θ f ≤ 0

)
π + θ1 + t0(γ

′/2)
(
−π ≤ θ f ≤ −π/2

)
(10)

y′ =



y + v14 tsinθ1
y + lsinδ (0 < θ f < π/2)

y + lsinδ
(

π/2 ≤ θ f ≤ π
)

y− lsinδ
(
−π/2 ≤ θ f ≤ 0

)
y− lsinδ

(
−π ≤ θ f ≤ −π/2

)
(11)



Sensors 2021, 21, 7839 7 of 31

x′ =



x + v14 tcosθ1
x + lcosδ (0 < θ f < π/2)

x− lcosδ
(

π/2 ≤ θ f ≤ π
)

x + lcosδ
(
−π/2 ≤ θ f ≤ 0

)
x− lcosδ

(
−π ≤ θ f ≤ −π/2

)
. (12)

Note: δ is the deviation between the predicted heading angle and the heading angle
of the current position.

2.1.3. Deviation Dynamics Model

The core of Part I is to take the speed and hinge angle of the underground articulated
scraper in the current control scheme as the main control variables, so as to realize the
control of the state of the hinge angle [38]. Based on the predicted heading angle and the
current predicted heading deviation, the control system can effectively improve the control
accuracy of reaction path tracking [39]. The average moving speed of the vehicle body is v,
and the kinematic equation can be calculated according to the error obtained by comparing
the actual path of the underground articulated scraper with the ideal path. The error model
of the underground articulated scraper is shown in Figure 4.
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Position deviation δ1 is the lateral position error between the reference point P of the
underground articulated scraper and the relative point P on the planned path:

.
δ1 = vδ2. (13)

Driving direction deviation δ0 is the difference between the direction angle of the
reference location point P of the underground articulated scraper and the direction angle
of the reference location point P on the ideal motion trajectory:

.
δ2 = vδ3 +

.
r

L2

L2 + L1cosr
. (14)
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Curvature deviation is the curvature error between the reference locus P of the under-
ground articulated scraper and the reference locus P of the locus:

.
δ3 =

v(L1 + Lrcosr)
.
r + L2(L2 + L1cosr)

..
r + (L1L2sinr)

.
r2

v(L2 + L1cosγ)2 . (15)

According to Equations (13)–(15) and L = L1 + L2, it can be obtained:
.

ε1.
ε2.
ε3

 =

 0 v 0
0 0 v
0 0 0


ε1
ε2
ε3

+


0
0
( 1

L )

 .
γ +


0
0

( L1
vL )

 ..
γ. (16)

Since the underground roadway is narrow, the underground scraper can only run at
a low speed when the two sides of the roadway are close to each other [40]. Therefore,
the real-time control of the hinged steering angle of the underground scraper is the key
and difficult point during the path tracking. To realize the path tracking of the LHD in the
roadway, the steering angular velocity and speed of the articulated angle were selected as
the control variables, and the error dynamics model was established based on the actual
path and expected path of the LHD [41]. The speed of the articulated vehicles is slow,
the change of the articulated angle is small, and the articulated angular acceleration is
generally negligible. Therefore, the deviation equation in the above equation is simplified,
and the deviation dynamic equation of the underground articulated scraper is obtained as
following [42]: 

.
ε1.
ε2.
ε3

 =

 0 v 0
0 0 v
0 0 0


ε1
ε2
ε3

+


0

( L2
L )

( 1
L )

 .
γ. (17)

The difference between homeopathic heading angle θ f and expected heading angle θi
was defined as heading angle deviation εθ . The distance between the reference location
point P and the expected reference location point Pi of the underground scraper is taken
as the transverse deviation εd (positive when the reference location point P is on the right
side of the expected path): the curvature deviation between the reference location point P
and the expected reference location point Pi is εc.

Under the condition of uniform speed, the dynamic model of the deviation of the
articulated scraper is a linear time-invariant system model, and the articulated angle can
be controlled by controlling the error variable.

2.2. Path Tracking of Underground Articulated LHD Based on LQR Controller

The control object of LQR optimal controller is a linear system expressed by state
space and other basic structures in modern control theory, and all state variables of the
system are required to be fully controllable and observable [43]. The core concept of LQR
control is to achieve the maximum control effect with the minimum control variable, that
is, the minimum energy consumption [44]. The optimal state design stage of LQR refers
to the K design of diverse state feedback microcontrollers required in the optimization
stage, which requires that we can simultaneously make the two objective vector functions
of quadratic type Q and R take the lowest value. The state feedback matrix K of the target
is the unique determination of Q and R matrices in LQR control, and both Q and R matrices
are positive definite matrices [45].

According to the LQR control theory, the state-space equation of the controlled object
requires being determined first. The state equation of the underground articulated scraper
can be set as the following equations [46]:{ .

X(t) = A1X(t) + B1u(t)
Y(t) = C1X(t) + D1u(t)

. (18)
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Note: A1 is the system state space, A1 ∈ Rn×n, and R is the n-dimensional real matrix.
B1 is the input vector of the system, B1 ∈ Rn×1, and R is the n-dimensional vector. C1 is the
system output matrix, C1 ∈ Rn×n, and R is the n-dimensional real matrix. D1 is the state
feedback vector, D1 ∈ Rn×1, and R is the n-dimensional real vector. X(t), u(t), Y(t) are
system input variables, state variables, and outputs.

According to the above mathematical model of the scraper and vehicle parameters
of the articulated scraper in Table 1, the parameters of the state-space equation of the
underground articulated scraper can be determined as following [47]:

A1 =

 0 3.5 0
0 0 3.5
0 0 0

·B1 =

 0
3.44
5.12

1
5.12

·C1 =

 1 0 0
0 1 0
0 0 1

. (19)

Table 1. Articulated shovel vehicle body parameters.

Parameter Name Numerical Value

Distance from front bridge to the articulation point (L1/m) 1.766
Rear bridge distance to articulation point distance (L2/m) 1.866

Tire diameter (d/m) 1.32
Body width (W/m) 2.27

Articulated steering angle change range (γ/rad) 0.30π
Maximum speed Vmax (m/s) 7.2

Maximum steering angle speed change range (γmax/rad× s−1) 0.17

According to the above matrix parameters, the energy control and visual analysis of
the system are: {

rank
[

B AB A2B
]
= 3

rank
[

C CA CA2 ] = 3
. (20)

From the above equation, it can be seen that the observability and the controllability
matrix of the system are full rank, which means that the underground articulated scraper
system is fully controllable and observable, meeting the basic conditions of LQR control [48].
The state space equation model of the system can be determined by the deviation dynamics
model and parameters of the underground articulated LHD:{ .

ε(t) = Aε(t) + B
.
γ(t)

Y(t) = ε(t)
. (21)

Through the output deviation matrix ε(t) =
[

ε1 ε2 ε3
]

of the control system, the
ideal articulation angle input of the car body can be obtained, and the optimal control
performance index can be established [49].

J
( .
γ
)
= J0(t) + J1(t) =

∫ ∞

0

[
εT(t)qε(t) +

.
γ

T
(t)r

.
γ(t)

]
dt (22)

Note: J0 is the time domain integral of the deviation of the underground articulated
scraper is the error performance index. J1 represents the time domain integral of control
quantity, namely the energy consumption index.

The core of LQR control is to achieve the best control effect with the minimum error
performance index and the minimum energy consumption index, establish the feedback
control rate u = −KX(t) to achieve K = R−1BT P, and establish the Riccati equation:

AT P + PA + Q− PBR−1BT P = 0. (23)

Note: P is some definite positive matrix, and let P = E, E is the identity matrix.
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To achieve the best input of the control system, it is necessary to reasonably config-
ure the Q and R matrices to achieve the ideal output of the control quantity [50]. The
configuration process of Q and R parameters is shown in Figure 5.
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The input of the LQR controller is composed of three parts. One is the acquisition
of the position and posture information of the scraper related to the current position and
the input of the LQR controller [51]. Secondly, the acquisition of ideal path information
means that the input of LQR controller is related to the position information of the ideal
path. The third is the collection of predictive position information, which is solved by
using the deviation dynamics model [52]. Therefore, the controller input of LQR should
be a linear superposition of the above three variables. In order to prevent overcontrol and
under-control of the underground articulated LHD, different weights should be given to
the three variables after comprehensive consideration. The strategy adopted in Part I is to
obtain the difference between the current position information and the ideal path, and the
predicted position information is to obtain the error by calculating the deviation dynamics
model. The final input of the LQR controller is the weighted superposition of the two, as
shown in Equation (24). 

ε(t) = aεa(t) + bεb(t)
εa(t) =

[
ε1 ε2 ε3

]
εb(t) =

[
ε1
′ ε2

′ ε3
′ ] (24)

Note: ε1(t) is the Current Tracking Deviation Matrix; ε2(t) is the Prediction Informa-
tion Deviation Matrix; a and b are the weight factors, a + b = 1; ε(t) is the final input for the
LQR controller.

2.3. Algorithms

The state variable weight matrix Q in the LQR control can control the amount of
weight matrix R and then use that to determine the state feedback vector. The selection
of matrix Q and R parameters will directly relate to the effects of control. According to
the parameter-setting problem in the classical control theory, the selection of two positive
matrices Q and R are prone to rely on a grand amount of engineering experience, which
takes longer [53]. Moreover, the optimal parameter configuration of Q and R cannot be
obtained. The selection of the weight matrix Q of the state variable and the weight matrix
R of the control quantity can be simply regarded as the Travel Salesperson Problem. It is
difficult to obtain the optimal solution for such problems with general methods, so we
require solving them with the help of some enlightening intelligent clustering algorithms,
such as genetic algorithm (GA), Ant Colony Algorithm (ACA), and Micro Particle Swarm
Optimization (PSO) [54].
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2.3.1. Adaptive GA Algorithm Optimization

(1) Disadvantages of simple genetic algorithms

The simple genetic algorithm (SGA) is of great significance in practical engineering
applications, but nowadays, many defects of the classical simple genetic algorithm are
exposed in the process of engineering practice, such as “population precocity”, population
differentiation and various groups still do not show the identity after various choices, and
so on [55]. The unreasonable structure of natural selection, crossover, and the mutation
algorithm is the fundamental reason for the precocity problem of the population. The
precocity problem cannot be avoided, which is also a major feature of an intelligent
clustering algorithm. Therefore, it is necessary to improve the crossover operator and
mutation operator of the classical genetic algorithm to solve the problem of population
precocity to some extent [56].

(2) Improved adaptive genetic algorithm LQR control (LQR–AGA)

In LQR control, the improved adaptive genetic algorithm, as an improved intelligent
clustering algorithm, conquers the shortcomings of traditional LQR control. The parameter
selection of Q and R is optimized by the population, and the crossover mutation operator
of the improved genetic algorithm has a strong global optimization ability, and it can find
the best state feedback matrix in the selected space [57].

The improved adaptive genetic algorithm process is shown in Figure 6, whose main
function is to optimize the Q, R two matrices in the LQR controller, that is, to determine

the parameters of the optimal Q =

 q1 0 0
0 q2 0
0 0 q3

 and R matrix.
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Encoding

The improved adaptive genetic algorithm can encode chromosomes and genes by
using the real encoding method because the real encoding method is intuitive, simple, and
easy to calculate [58]. This method is suitable for the calculation of genetic algorithms
with complex fitness function and can greatly diminish the calculation amount of genetic
algorithms, so as to speed up the running efficiency of the genetic algorithm [59].

For example, the chromosome is assumed to be Q =

 q1 0 0
0 q2 0
0 0 q3

; of these, q1, q2,

and q3 are genes on the chromosome, while Q is the operation of selection, crossover, and
mutation operators after the participation of chromosomes and individuals.

Group Value Range

Chromosome Q is generated according to the MATLAB random number matrix; that
is, the initial trial of the population has a strong randomness, which expands the global
optimization ability of the improved adaptive genetic algorithm.

Q =

 q1 0 0
0 q2 0
0 0 q3

 =

 50 ∗ rand 0 0
0 50 ∗ rand 0
0 0 50 ∗ rand

 (25)

It can be seen from Equation (25) that q1 ∈ [0, 50], q2 ∈ [0, 50], q3 ∈ [0, 50], the stability
of the whole system and the state feedback matrix must exist, which can be guaranteed by
such a value [60].

Interleaved Mode

The improved crossover operator is used to select the parent generation for crossover
change to produce the offspring with strong search ability. y(1)i = a

(
x(1)i − x(2)i

)
+ bx(1)i + cx(2)i

y(2)i = a
(

x(1)i − x(2)i

)
+ bx(2)i + cx(1)i

(26)

{
y(1)i = bx(1)i + cx(2)i
y(2)i = bx(2)i + cx(1)i

(27)

Note: x(n)i is the n gene above the parent line i chromosome; y(n)i is the n gene above
the offspring clause i chromosome; a, b, and c represent the cross variants.

The two crossover modes are selected according to whether the children cross the
boundary or not. If the children cross the boundary, they cross according to Equation (26);
otherwise, they cross in accordance with Equation (27) [61].

Variation

According to the adaptive mutation operator, the random gene location on the chro-
mosome was mutated to ensure the diversity of the population and enhance its global
optimization ability. Meanwhile, it also ensured that the population could have the identity
and converge to the optimal solution in the later iteration period.

Ω = {xk − s(t)× (xk − Lk), xk + s(t)× (Uk − xk)} (28)

Note: s(t) = 1− C[1−( 1
G )]

k
; Ω represents size range of the variation action; xk repre-

sents genes; Lk represents the minimum range of variation of the previous generation; Uk
represents the maximum range of variation of the previous generation; s(t) represents
algebraic variants.
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When the number of iterations is small, the gene probability is large, and the global
optimization ability of the population is strong. When the number of iterations is high, the
mutation probability is small, the computational speed of the genetic algorithm is high,
and the required time is short [62].

Parameter Selection

The number of initialized population individuals was set to be 30, and 50 generations
were bred. The probability of crossover between two chromosomes was 0.2, the variation
action constant b = 3, and the range of population living space was [0, 50].

Through J
( .
γ
)

discretization of LQR, the fitness equation can be obtained as follows:

F(i) =
T

∑
t=1

q1ε1
2(t) + q2ε2

2(t) + q2ε3
2(t) +

.
γ

2
(t). (29)

Note: T represents the total sampling time length; q1, q2, and q3 represent the Q matrix
diagonal elements.

To sum up, the block diagram of the LQR-AGA control system can be drawn, as
shown in Figure 7 [63].
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(3) Simulation experiment of LQR-AGA control algorithm

For the simulation of the path, Figure 8 shows the wavy roadway and the halfway
point of the cross-section of the roadway in the attachment for the ideal scraper run path,
which controls the target path. This path has continuous turning and other complex road
conditions, so the controller detection needs to have strict conditions to embody the scraper
movement in actual operation [64]. In addition, in order to ensure the safe operation of
the scraper, the maximum lateral deviation, namely, the safe distance, should be set within
0.6 m [65].
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For example, it is presumed that the population size N is set to 30 and the number of
iterations G can be set to 50 generations. The probability of crossover is about 0.2, which can
ensure that the population has strong adaptability and can have a better global optimization
ability and algorithm iteration speed. The adaptive variation constant 0.2 can ensure that
the population has a relatively good global optimization ability and avoid falling into local
optimization in the iteration. The variation action constant b = 3 guarantees the global
capability at the initial stage of variation and ensures that the local optimum will not fall
into at the end of variation. The survival range of the population [0, 50] ensures the positive
nature of the control matrix and the stability of the whole control system [66].

In summary, all the parameters of LQR-AGA are set as shown in Table 2 below.

Table 2. AGA parameter configuration.

Parameter Name Numerical Value

Population size: N 30
Iterations: G 50

Cross-crossing probability 0.2
Adaptive variation constant 0.2

Variation constant b 3
Population survival range 0–50

The initial test coordinate of the articulated scraper is set as [0.00, 6.50], the initial test
heading angle is set as 0π, the hinged steering angle is returned to zero, and the driving
speed is constant at 3.5 m/s. The AGA algorithm is used to optimize the weighted matrix
in the path tracking controller of the articulated scraper. After repeated experiments, we
found that in the first 20 iterations of the AGA algorithm, the population has already
had strong spatial distribution and global search ability. The spatial distribution and
variation are wide. In the last 20 generations, the population shows strong convergence
and quickly converges to the optimal solution of the living space. The adaptations of whole
populations to humans and other creatures in nature are the same as the adaptations of
humans to populations [67]. Table 3 shows the results of parameter optimization. The
results reveal that other parameters have the optimal adaptability in the iterative time
environment. In the 50 iterations, the fitness of the AGA algorithm showed monotonically
soaring, indicating that both the individuals and the population were evolving toward the
position of the optimal solution, and the fitness of the population remained stable at the
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end of the iteration, indicating that the entire population had converged to the optimal
solution [68].

As can be seen from Figures 9–11, the population has a strong global optimization
ability at the beginning, the convergence rate is fast at the later stages of iteration, and the
average fitness of the population is high at the end of the iteration. From the perspective
of the simulation environment, the lateral error of the LHD on the simulated path is less
than 0.1 m, so it can be seen that the weighted matrix Q optimized by the AGA algorithm
makes the actual route of the articulated LHD coincide with the ideal path [69].

Table 3. AGA algorithm searching for optimal results.

Algorithm Weighted Matrix Q Linear Feedback Matrix K Suitability
q1 q2 q3 k1 k2 k3

AGA 1.4685 33.5161 33.8515 1.0605 6.3752 6.5008 18,220Sensors 2021, 21, x FOR PEER REVIEW 16 of 32 
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2.3.2. Optimization of QPSO Algorithm

(1) Disadvantages of simple PSO algorithm

The model of the simple PSO algorithm is the BOID (bird-oid) model of birds’ pre-
dation behavior, which simulates the predation characteristics of gregarious creatures.
Due to its low requirement for the objective function, simple programming, and easy pro-
gramming, this model algorithm plays an important role in data scheduling, optimization
processing, function optimization analysis, intelligent training and neural network, and
other emerging disciplines. However, the BOID model also has obvious disadvantages,
such as the severe precocity problem of the population, the strong randomness of the
optimization results, and that the global optimal advantage can only be found when the
number of iterations approaches infinity. These reasons will result in that the PSO algo-
rithm of the BOID model cannot satisfy the parameter optimization function of the LQR
controller, because the objective function of the LQR is a complex multi-peak function,
the randomness of solving it by the BOID model is too large, and it cannot guarantee
that the optimization results can meet the path tracking requirements of the underground
articulated scraper. Therefore, it is necessary to improve the simple PSO algorithm to
achieve the optimization ability of an LQR objective function [70].

(2) Quantum Behavior PSO Algorithm (QPSO)

This particle swarm optimization algorithm strengthens the global optimization ability
of each individual in the population. Combined with the linear weight reduction strategy,
the inertia of the individual group can be reduced at the end of the iteration to accelerate
its convergence rate and accelerate the group searching efficiency. The optimized particle
swarm speed iterative algorithm is shown in Equation (30):

Vi = wVi + a1rand()(Pbest− Xi) + a2rand()(Gbest− Xi)
Xi = Xi + Vi

W = (Wini −Wend)×
Gk−g

Gk
+ Wend

. (30)

Note: Vi represents the velocity of the i-th particle; Xi represents the location of the i-th
particle; Pbest represents the historical optimal position of the particle; and Gbest represents
the historical optimal location of the population.

In view of the particle swarm optimization algorithm (PSO), in the late iteration of
high dimension, it is easy to fall into local optimum and other problems. Therefore, the
concept of the hand velocity factor needs to be introduced to increase the velocity of
particles at the end of the iteration. Its formula is shown in Equation (31):

Vi = K [Vi + a1rand( )× (Pi −Vi) + a2Rand()×
(

Pg − Xi
)
. (31)

In the early stage of the algorithm iteration, because the particle distribution is rela-
tively scattered and the particle has a large inertia weight at this time, it will explore the
space globally according to its initial velocity, and the particle at this time has a strong
global exploration ability. Therefore, the K values should be large initially. In the late itera-
tion of the algorithm, the population needs to have strong convergence characteristics, so
as to speed up the operation speed of the algorithm, and the population requires changing
in a small spatial range. To sum up, K values should show a monotonically decreasing
characteristic with the increase in the number of iterations, so we can set the function of K
values changing with the number of iterations as shown in Equation (32).

K =
cos(

(
T

max_Gen

)
T) + 2.5

4
(32)

Note: T represents number of current iterations; Max_Gen represents the maximum
number of iterations.
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QPSO adjusts the position update strategy in the simple PSO algorithm by canceling
the attribute of speed and replacing it with the probability distribution function, which
means that particles are distributed according to probability rather than velocity. Therefore,
the spatial attribute of each particle in the population needs to be determined by every
observation. The formula for calculating the average value of the historical optimal fitness
of a single particle is as follows:

m =
1
N ∑N

i pesti. (33)

Note: N is the sum of the number of particles; Pesti represents the optimal fitness of a
single particle in the i-th iteration.

The position update of particles is based on the probability distribution function, as
shown in Equation (34): {

Pi = ξ × pesti + (1− ξ)× gesti

Xi = Pi ± a|m− Xi| × ln
(

1
b

) . (34)

Note: ξ represents the probability function obeying the uniform distribution on
(0,1); ±α represents the expansion coefficient, the probability of positive is 50%, and the
probability of negative is 50%.

The particle swarm optimization analysis algorithm directly uses a particle group;
each particle in the individual information is used to group the comprehensive analysis
and information sharing of the information to directly promote the coordinated motion
of particle groups, so that it will directly produce the evolution process from disorder to
order in space in the process of solving a population problem. Thus, we can directly obtain
the optimization and understanding of a group problem whose basic flow A and block
diagram B of the LQR-QPSO system are shown in Figures 12 and 13.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 32 
 

 

The particle swarm optimization analysis algorithm directly uses a particle group; 
each particle in the individual information is used to group the comprehensive analysis 
and information sharing of the information to directly promote the coordinated motion of 
particle groups, so that it will directly produce the evolution process from disorder to 
order in space in the process of solving a population problem. Thus, we can directly obtain 
the optimization and understanding of a group problem whose basic flow A and block 
diagram B of the LQR-QPSO system are shown in Figures 12 and 13. 

 
Figure 12. Particle group algorithm flow. Figure 12. Particle group algorithm flow.



Sensors 2021, 21, 7839 19 of 31Sensors 2021, 21, x FOR PEER REVIEW 20 of 32 
 

 

 
Figure 13. Particle group algorithm flow. 

(3) LQR-QPSO control algorithm simulation experiment 
The simulation environment is shown in Figure 8; see Table 1 for the body parame-

ters of the underground articulated scraper; the QPSO parameter configuration is shown 
in Table 4. The maximum lateral deviation is required to be less than 0.6 m [71]. 

Table 4. QPSO configuration of quantum behavior particle group algorithm parameters. 

Parameter Name Numerical Value 
Iterations: G 80 

Population size: N 30 
Termination of the inertia weight w  0.4 

Initial inertia weight w  0.9 
Learning factor a  1.5 
Learning factor a  1.5 

Particle taking value limit q  400 
Maximum speed v  1.0 

Initial shrinkage factor of expansion α  1.0 
Termination shrinkage—expansion factor α  0.5 

The initial test coordinate of the articulated scraper is set as [0.00, 6.50], and the head-
ing angle of the initial test is set as zero angle, namely, 0°. In addition, the steering angle 
of the front and rear car bodies of the articulated scraper is set to zero, which means that 
the body keeps moving forward, and the traveling speed is 3.5 m/s, so it is inconvenient 
to maintain the speed constant. After repeated trial and simulation tests, it is found that 
in all experiments, the population convergence rate of the QPSO algorithm is slow. In the 
first 30 generations, each particle varies greatly in the global scope, showing obvious di-
vergence, but after 60 generations, particle swarm gradually converges to the optimal 
value. The controller parameters obtained in the 80 generations can make errors in the 
operation process of the articulated scraper within a reasonable range [72], as shown in 
Figure 14. 

Besides, the optimization results of the QPSO algorithm are shown in Table 5, the 
simulation results of QPSO are shown in Figure 15, and the deviation range of QPSO is 
shown in Figure 16. 

  

Figure 13. Particle group algorithm flow.

(3) LQR-QPSO control algorithm simulation experiment

The simulation environment is shown in Figure 8; see Table 1 for the body parameters
of the underground articulated scraper; the QPSO parameter configuration is shown in
Table 4. The maximum lateral deviation is required to be less than 0.6 m [71].

Table 4. QPSO configuration of quantum behavior particle group algorithm parameters.

Parameter Name Numerical Value

Iterations: G 80
Population size: N 30

Termination of the inertia weight wend 0.4
Initial inertia weight wini 0.9

Learning factor a1 1.5
Learning factor a2 1.5

Particle taking value limit qmax 400
Maximum speed vmax 1.0

Initial shrinkage factor of expansion αb 1.0
Termination shrinkage—expansion factor αe 0.5

The initial test coordinate of the articulated scraper is set as [0.00, 6.50], and the heading
angle of the initial test is set as zero angle, namely, 0◦. In addition, the steering angle of
the front and rear car bodies of the articulated scraper is set to zero, which means that
the body keeps moving forward, and the traveling speed is 3.5 m/s, so it is inconvenient
to maintain the speed constant. After repeated trial and simulation tests, it is found that
in all experiments, the population convergence rate of the QPSO algorithm is slow. In
the first 30 generations, each particle varies greatly in the global scope, showing obvious
divergence, but after 60 generations, particle swarm gradually converges to the optimal
value. The controller parameters obtained in the 80 generations can make errors in the
operation process of the articulated scraper within a reasonable range [72], as shown in
Figure 14.

Besides, the optimization results of the QPSO algorithm are shown in Table 5, the
simulation results of QPSO are shown in Figure 15, and the deviation range of QPSO is
shown in Figure 16.
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Table 5. Optimization results of the QPSO algorithm.

Algorithm Weighted Matrix Q Linear Feedback Matrix K Suitability
q1 q2 q3 k1 k2 k3

QPSO 40.8844 49.0588 43.0995 5.2700 10.6900 6.7451 17,330
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(1) Ant Colony Algorithm LQR Controller (LQR-ACA)

An LQR-ACA path tracking controller can be established as shown in Figure 17 [73].
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(2) LQR-ACA control algorithm simulation experiment

The validity and reliability of the LQR-ACA path traceability controller were tested
and verified by MATLAB simulation [74]. To make this ant group have better search ability
and code iteration speed, the ant number is set as 30, and the search time G is set as 50
generations. The hormone play factor is set to 0.4, and the search range is set to (0, 50), [75].
The ACA parameter configuration is shown in Table 6.

Table 6. ACA parameter configuration.

Parameter Name Numerical Value

Ant number: ant 30
Search times: G 100

Hormone play factor wini 0.4
Transfer probability P0 0.2

The initial coordinate of the articulated scraper is set as [0.00, 6.50], the heading angle
of the initial test is set as 0 π, the hinged steering angle is returned to zero, and the driving
speed is constant at 3.5 m/s. The ant colony algorithm is used to configure the parameters
of the LQR controller of the articulated scraper. After testing repeatedly, it is found that the
ant colony algorithm of an ant colony in 100 iterations will converge to different extreme
value points, and the position of most of the ants in the number of iterations is more than 20.
Since it no longer changes generations, the fitness function of the LQR controller is a more
extreme value point function, and there were many equal fitness points in the solution
space [76], as shown in Figure 18.

Besides, ACA algorithm optimization results are shown in Table 7.

Table 7. ACA algorithm optimization results.

Algorithm Weighted Matrix Q Linear Feedback Matrix K Suitability
q1 q2 q3 k1 k2 k3

ACA 0.8419 7.0752 40.6476 0.8288 4.1523 6.5550 15,333

The parameter optimization results are brought into the simulation environment of
the articulated scraper to complete the path tracking simulation, and the results as shown
in Figure 19 can be obtained. The weighted matrix Q obtained by the ACA algorithm
makes the actual route of the articulated scraper coincide with the ideal path [77]. Besides,
the deviation range of ACA is shown in Figure 20.
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3. Results
3.1. Comparison of Algorithm Parameter Configuration

The population size of AGA, QPSO, and ACA was 30. Both the AGA and QPSO
populations converge to a certain extreme point, but the AGA population converges faster
than QPSO, while the ACA population converges to multiple extreme points, and the
calculation time is longer. The parameter configuration comparison is shown in Table 8.

Table 8. Parameter configuration comparison.

Algorithm Name Population Size Number of Convergence Iterations Operation Time

Adaptive genetic algorithm (AGA) 30 50 15 min
Quantum behavior particle swarm

algorithm (QPSO) 30 80 25 min

Ant colony algorithm (ACA) 30 No convergence 30 min

3.2. Comparison of Algorithm Results

The parameter configuration of the Q matrix obtained by the three intelligent cluster-
ing algorithms is intensely different, but they all have high fitness. AGA had the highest
fitness, while ACA had the lowest fitness. The comparison of algorithm optimization
results is shown in Table 9.
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Table 9. Comparison of algorithm optimization results.

Algorithm Weighted Matrix Q Linear Feedback Matrix K Suitability
q1 q2 q3 k1 k2 k3

AGA 1.4685 33.5161 33.8515 1.0605 6.3752 6.5008 18,220

QPSO 40.8844 49.0588 43.0995 5.2700 10.6900 6.7451 17,330

ACA 0.8419 7.0752 40.6476 0.8288 4.1523 6.5550 15,333

3.3. Comparison of Simulation Results

In the simulation environment, the ideal path of the articulated scraper is a circular
trajectory with (0, 0) as the center of the circle and a radius of 5, as shown in Figure 21. It
can be seen from Figure 22 that the optimization results of the three clustering algorithms
can all meet the error requirements. In the simulation, the initial error of the optimization
results obtained by the AGA algorithm and the ACA algorithm is large. After about a
quarter of a semicircular trajectory, the optimization controllers obtained by the AGA and
ACA intelligent clustering algorithms can reduce the deviation degree between the LHD
and the ideal path in the subsequent operation through the control effect. The optimization
results obtained by the QPSO algorithm are always less deviated from the ideal path.
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4. Discussion

In our study, AGA, QPSO, and ACA are intelligent cluster algorithms that can all seek
optimal results for LQR parameter configuration problems. We did not clearly indicate
which algorithm (AGA, OPSO, or ACA) is better, because each of them has its own
advantages and disadvantages and will have different performance in specific different
situations. Through the simulation, we found the advantages and disadvantages of these
three algorithms (AGA, OPSO, or ACA), and our study can definitely provide a reference
for the future researchers:

(1) The QPSO algorithm has slow operation speed and slow group convergence speed,
but it can find the optimal solution;

(2) The AGA algorithm has fast operation speed and fast group convergence, but the
optimization result is poor compared with the QPSO algorithm;

(3) The ACA algorithm has slow operation speed and slow population convergence
speed, but it can converge to multiple extreme points and has a large space foropti-
mization.

However, there are some problems that are reflected in our research:

(1) Firstly, the biggest characteristic of the intelligent cluster algorithms is the problem of
premature data; in order to solve the problem, the development direction of this kind
of algorithm is to improve the intelligent cluster algorithm;
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(2) Secondly, in terms of LQR parameter configuration, the fitness function is the main
reason for the slow operation speed of the intelligent cluster algorithm; to solve
the problem of operation speed, it is necessary to simplify and redefine the fitness
function of LQR to reduce the operation time.

Therefore, in order to completely realize the unmanned driving of LHD, our re-
searchers need to continue efforts from the following two points:

(1) Optimize the controller itself.

As early as in 2010, C. W. Tao, J. S. Taur, and Y. C. Chen [78] compared the advantages
and disadvantages of Fuzzy controller and LQR controller. They thought that Fuzzy con-
troller and LQR controller may be suitable for different situations, but they still discussed
the possibility of combining LQR controller and Fuzzy controller.

In 2019, Y. I. Kudinov et al. [79] proposed that the Fuzzy FLC+LQR controller has a
much higher speed than the LQR controller, and in 2020, Z. B. Hazem, M. J. Fotuhi, and Z.
Bingül [80] developed F-LQR (Fuzzy LQR) controller and F-LQG (Fuzzy LQG) controller
and applied them to the stability control of a two-link rotary inverted pendulum.

Thus, in our future work, we will do the further research to investigate the applicability
of other controllers, such as Fuzzy LQR, for a driver-less scraper (LHD).

(2) Algorithm optimization.

Although in our study we only compared the simulation effects of the AGA, QPSO,
and ACA algorithms, F. Amini, N. K. Hazaveh, and A. A. Rad [81] used the discrete wavelet
transform (DWT) algorithm and H. Wang et al. [82] used the artificial bee colony (ABC)
algorithm to do similar research around 2014.

Thus, in the future, we will try to compare the advantages and disadvantages of more
algorithms and then optimize the algorithm according to the different situations.

5. Conclusions

This paper studies the path tracking control of a driver-less scraper in the underground
mine, concentrating on the linear quadratic optimal control (LQR) and the parameter
optimization of three intelligent clustering algorithms: AGA, QPSO, and ACA. The main
work is summarized as the following:

(1) For articulated LHD path tracking control problems, we studied the kinematics
model of the articulated LHD body through the analysis of the kinematics modeling,
determining the articulated LHD vehicle reference speed of the anchor point, course
angular velocity, turning angular velocity, and the mathematical relationship between
the scraper speed and steering angular velocity;

(2) For the selection of control scheme, based on the kinematics model of the articulated
LHD lateral error identifying the scraper and heading angle error, the error between
the steering angle and the curvature of state space, according to the state space, is
put forward to the steering angle control to control the amount of articulated LHD
vehicle location of LQR controller, linear quadratic linear optimal control;

(3) Aiming at the problem of the difficult parameter selection of the LQR controller,
we propose the LQR controller scheme optimized by the intelligent cluster algo-
rithm, compare the advantages and disadvantages of different clustering algorithms,
and put forward a feasible implementation scheme for path tracking control of the
intelligent scraper.

(4) This paper serves as a guide to starting a conversation; we did not clearly indicate
which algorithm (AGA, OPSO, or ACA) is better, because each of them has its own
advantages and disadvantages. We will continue research in this direction and hope
more and more researchers will be interested in this direction as well.
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44. Neacşu, D.O.; Sîrbu, A. Design of a LQR-based boost converter controller for energy savings. IEEE Trans. Ind. Electron.

2019, 67, 5379–5388. [CrossRef]
45. Kumar, E.V.; Jerome, J. Robust LQR controller design for stabilizing and trajectory tracking of inverted pendulum. Procedia Eng.

2013, 64, 169–178. [CrossRef]
46. Hinrichsen, D.; Pritchard, A.J. Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2011.
47. Feng, C.; Dong, S.; Lundeen, K.M.; Xiao, Y.; Kamat, V.R. Vision-based articulated machine pose estimation for excavation

monitoring and guidance. In Proceedings of the International Symposium on Automation and Robotics in Construction, Oulu,
Finland, 15–18 June 2015; Volume 32, p. 1.

48. Dai, Y.; Song, J.; Yu, L. Vehicle Stability Control on Tire Burst Steering and Braking Condition with Active Steering System.
In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018; American Society of Mechanical Engineers Digital
Collection: New York, NY, USA, 2018.

49. Rane, A.K.; Kumar, S.; Maheshwari, S. Literature Review on Analysis of Wheel Loader and Its Various Components. Mater. Today
Proc. 2018, 5, 19049–19055. [CrossRef]

50. Kilmer, M.E.; Braman, K.; Hao, N.; Hoover, R.C. Third-order tensors as operators on matrices: A theoretical and computational
framework with applications in imaging. SIAM J. Matrix Anal. Appl. 2013, 34, 148–172. [CrossRef]

51. Shekhar, R.C.; Maciejowski, J.M. Surface excavation with model predictive control. In Proceedings of the 49th IEEE Conference
on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5239–5244.

http://doi.org/10.1016/j.ijmst.2018.06.005
http://doi.org/10.1080/19236026.2020.1734407
http://doi.org/10.1016/j.envres.2016.05.052
http://doi.org/10.1016/j.robot.2020.103570
http://doi.org/10.1080/00423110701422434
http://doi.org/10.1177/1464419312445426
http://doi.org/10.1016/j.tust.2018.03.032
http://doi.org/10.1109/TITS.2014.2312720
http://doi.org/10.1177/0278364905058239
http://doi.org/10.1016/j.ssci.2018.04.020
http://doi.org/10.1109/TCST.2007.899719
http://doi.org/10.1080/03081079.2011.634807
http://doi.org/10.1088/1742-6596/1871/1/012061
http://doi.org/10.1109/TIE.2019.2934062
http://doi.org/10.1016/j.proeng.2013.09.088
http://doi.org/10.1016/j.matpr.2018.06.257
http://doi.org/10.1137/110837711


Sensors 2021, 21, 7839 30 of 31

52. Atanasov, N.; Le Ny, J.; Daniilidis, K.; Pappas, G.J. Decentralized active information acquisition: Theory and application to
multi-robot SLAM. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington,
DC, USA, 26–30 May 2015; pp. 4775–4782.

53. Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear
models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2011, 73, 3–36. [CrossRef]

54. Kuo, R.J.; Han, Y.S. A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming
problem—A case study on supply chain model. Appl. Math. Model. 2011, 35, 3905–3917. [CrossRef]

55. Kamrani, A.K. Genetic-algorithm-based solution for combinatorial optimization problems. In Systems Engineering Tools and
Methods; CRC Press: Boca Raton, FL, USA, 2011.

56. Garg, P. A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption
Standard algorithm. arXiv 2010, arXiv:1004.0574.

57. Jiang, F.G.; Wang, Z.Q. The truss structural optimization design based on improved hybrid genetic algorithm. In Advanced
Materials Research; Trans. Tech. Publications Ltd.: Zurich, Switzerland, 2011; Volume 163, pp. 2304–2308.

58. De Macêdo Braz, H.D.; de Souza, B.A. Distribution network reconfiguration using genetic algorithms with sequential encoding:
Subtractive and additive approaches. IEEE Trans. Power Syst. 2010, 26, 582–593. [CrossRef]

59. Roberge, V.; Tarbouchi, M.; Okou, F. Strategies to accelerate harmonic minimization in multilevel inverters using a parallel genetic
algorithm on graphical processing unit. IEEE Trans. Power Electron. 2014, 29, 5087–5090. [CrossRef]

60. Wang, J.; Liang, K.; Huang, X.; Wang, Z.; Shen, H. Dissipative fault-tolerant control for nonlinear singular perturbed systems with
Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 2018, 328, 247–262. [CrossRef]

61. Arqub, O.A.; Abo-Hammour, Z. Numerical solution of systems of second-order boundary value problems using continuous
genetic algorithm. Inf. Sci. 2014, 279, 396–415. [CrossRef]

62. Oberle, W. Monte Carlo Simulations: Number of Iterations and Accuracy; Army Research Lab Aberdeen Proving Ground MD Weapons
and Materials Research Directorate: Aberdeen Proving Ground, MD, USA, 2015.

63. Li, B.; Tian, H.; Jing, Q.; Wang, Y.; Li, X. Innovative LQR Control Method for Vessel Rudder Control. In Proceedings of the 2019
Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3559–3563.

64. Zhou, J.; Chen, C.; Wang, M.; Khandelwal, M. Proposing a novel comprehensive evaluation model for the coal burst liability in
underground coal mines considering uncertainty factors. Int. J. Min. Sci. Technol. 2021, 31, 799–812. [CrossRef]

65. Shariati, H.; Yeraliyev, A.; Terai, B.; Tafazoli, S.; Ramezani, M. Towards autonomous mining via intelligent excavators. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17
June 2019; pp. 26–32.

66. Modares, H.; Alfi, A.; Fateh, M.M. Parameter identification of chaotic dynamic systems through an improved particle swarm
optimization. Expert Syst. Appl. 2010, 37, 3714–3720. [CrossRef]

67. Lee, C.P.; Lin, W.S.; Chen, Y.M.; Kuo, B.J. Gene selection and sample classification on microarray data based on adaptive genetic
algorithm/k-nearest neighbor method. Expert Syst. Appl. 2011, 38, 4661–4667. [CrossRef]

68. Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and
engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [CrossRef]

69. Klidbary, S.H.; Shouraki, S.B.; Kourabbaslou, S.S. Path planning of modular robots on various terrains using Q-learning versus
optimization algorithms. Intell. Serv. Robot. 2017, 10, 121–136.

70. Fang, J. The LQR controller design of two-wheeled self-balancing robot based on the particle swarm optimization algorithm.
Math. Probl. Eng. 2014, 2014, 729095. [CrossRef]

71. Sun, J.; Fang, W.; Wu, X.; Palade, V.; Xu, W. Quantum-behaved particle swarm optimization: Analysis of individual particle
behavior and parameter selection. Evol. Comput. 2012, 20, 349–393. [CrossRef] [PubMed]

72. Yi, L. Study on an improved PSO algorithm and its application for solving function problem. Int. J. Smart Home 2016, 10, 51–62.
73. Ghimatgar, H.; Kazemi, K.; Helfroush, M.S.; Aarabi, A. An improved feature selection algorithm based on graph clustering and

ant colony optimization. Knowl.-Based Syst. 2018, 159, 270–285. [CrossRef]
74. Zhang, Y.; Wang, S.; Ji, G. A rule-based model for bankruptcy prediction based on an improved genetic ant colony algorithm.

Math. Probl. Eng. 2013, 2013, 753251. [CrossRef]
75. Lawhern, V.; Hairston, W.D.; Robbins, K. DETECT: A MATLAB Toolbox for Event Detection and Identification in Time Series,

with Applications to Artifact Detection in EEG Signals. PLoS ONE 2013, 8, e62944. [CrossRef]
76. Duan, P.; Yong, A.I. Research on an improved ant colony optimization algorithm and its application. Int. J. Hybrid. Inf. Technol.

2016, 9, 223–234. [CrossRef]
77. Saidi-Mehrabad, M.; Dehnavi-Arani, S.; Evazabadian, F.; Mahmoodian, V. An Ant Colony Algorithm (ACA) for solving the new

integrated model of job shop scheduling and conflict-free routing of AGVs. Comput. Ind. Eng. 2015, 86, 2–13. [CrossRef]
78. Tao, C.; Taur, J.; Chen, Y. Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system.

Fuzzy Sets Syst. 2010, 161, 2081–2103. [CrossRef]
79. Kudinov, Y.; Pashchenko, F.; Kelina, A.; Vasutin, D.; Duvanov, E. Analysis of Control System Models with Conventional LQR and

Fuzzy LQR Controller. Procedia Comput. Sci. 2019, 150, 737–742. [CrossRef]
80. Ben Hazem, Z.; Fotuhi, M.J.; Bingül, Z. Development of a Fuzzy-LQR and Fuzzy-LQG stability control for a double link rotary

inverted pendulum. J. Frankl. Inst. 2020, 357, 10529–10556. [CrossRef]

http://doi.org/10.1111/j.1467-9868.2010.00749.x
http://doi.org/10.1016/j.apm.2011.02.008
http://doi.org/10.1109/TPWRS.2010.2059051
http://doi.org/10.1109/TPEL.2014.2311737
http://doi.org/10.1016/j.amc.2018.01.049
http://doi.org/10.1016/j.ins.2014.03.128
http://doi.org/10.1016/j.ijmst.2021.07.011
http://doi.org/10.1016/j.eswa.2009.11.054
http://doi.org/10.1016/j.eswa.2010.07.053
http://doi.org/10.1016/j.asoc.2009.08.031
http://doi.org/10.1155/2014/729095
http://doi.org/10.1162/EVCO_a_00049
http://www.ncbi.nlm.nih.gov/pubmed/21905841
http://doi.org/10.1016/j.knosys.2018.06.025
http://doi.org/10.1155/2013/753251
http://doi.org/10.1371/journal.pone.0062944
http://doi.org/10.14257/ijhit.2016.9.4.20
http://doi.org/10.1016/j.cie.2015.01.003
http://doi.org/10.1016/j.fss.2009.12.007
http://doi.org/10.1016/j.procs.2019.02.007
http://doi.org/10.1016/j.jfranklin.2020.08.030


Sensors 2021, 21, 7839 31 of 31

81. Amini, F.; Hazaveh, N.K.; Rad, A.A. Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned
Mass Dampers. Comput. Civ. Infrastruct. Eng. 2013, 28, 542–557. [CrossRef]

82. Wang, H.; Liao, L.; Wang, D.; Wen, S.; Deng, M. Improved Artificial Bee Colony Algorithm and Its Application in LQR Controller
Optimization. Math. Probl. Eng. 2014, 2014, 1–8. [CrossRef]

http://doi.org/10.1111/mice.12017
http://doi.org/10.1155/2014/695637

	Introduction 
	Retrospective: Development of Underground Driver-Less Technology 
	Retrospective: Development of Driver-Less Scraper (LHD) in the Underground Mine 

	Materials and Methods 
	Mathematical Model of Underground Articulated LHD (Scraper) 
	Kinematics Model of Articulated Scraper 
	Location Prediction Model 
	Deviation Dynamics Model 

	Path Tracking of Underground Articulated LHD Based on LQR Controller 
	Algorithms 
	Adaptive GA Algorithm Optimization 
	Optimization of QPSO Algorithm 
	ACA Optimization of Ant Colony Algorithm 


	Results 
	Comparison of Algorithm Parameter Configuration 
	Comparison of Algorithm Results 
	Comparison of Simulation Results 

	Discussion 
	Conclusions 
	References

