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Abstract: The purpose of this paper is to propose a novel noise removal method based on deep
neural networks that can remove various types of noise without paired noisy and clean data. Because
this type of filter generally has relatively poor performance, the proposed noise-to-blur-estimated
clean (N2BeC) model introduces a stage-dependent loss function and a recursive learning stage for
improved denoised image quality. The proposed loss function regularizes the existing loss function
so that the proposed model can better learn image details. Moreover, the recursive learning stage
provides the proposed model with an additional opportunity to learn image details. The overall
deep neural network consists of three learning stages and three corresponding loss functions. We
determine the essential hyperparameters via several simulations. Consequently, the proposed model
showed more than 1 dB superior performance compared with the existing noise-to-blur model.

Keywords: denoising filter; deep neural network; self-supervised learning; recursive training;
raindrop removal

1. Introduction

Recently, cameras and sensors in autonomous vehicles and outdoor vision systems,
such as closed-circuit televisions and dashboard cameras, are rapidly becoming important.
Information obtained from visual and miscellaneous sensors should be as accurate as pos-
sible, because erroneous information can compromise both safety and property. However,
the internal process of obtaining an image from a real scene using a camera is very compli-
cated and is always accompanied by noise for various reasons. Since the shape and pattern
of noise are random and unpredictable, it is difficult to design an appropriate denoising
filter. Sometimes noise is caused by the external environment rather than the camera itself,
including raindrops, snowflakes and even captions in images. So, various deep neural
network approaches [1–5] have been proposed to remove such environmental noises.

There are two noise removal approaches, hand-crafted and deep neural network
approaches. First, hand-crafted approaches use various image features to remove noise.
Buades et al. [6] utilized the fact that natural images often exhibit repetitive local patterns
and many similar regions throughout the image. Therefore, similarity can be calculated by
calculating the L2 distance between the kernel region and any region of an image. Then,
the filtered value is obtained by computing the weighted average of similar regions, where
the weights are determined based on the similarity. Some transform-based methods have
been proposed by assuming that a clean image is sparsely represented in a transform
domain [7–9]. However, various types of images cannot be guaranteed to be well sparsely
represented with a single transformation. Elad et al. [7] proposed a dictionary learning
method. In this context, the dictionary is a collection of basic elements that can represent
an image as their linear combination. The dictionary is updated and improved using
the k-singular value decomposition (K-SVD) method for more appropriate sparse repre-
sentations. Therefore, a denoised image can be estimated from the sparse representation
using the final updated dictionary. However, this method consumes lots of computation
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to obtain the final updated dictionary. Inspired by the similarity concept used in the lit-
erature [6], Dabov et al. [8] proposed an advanced sparse representation method. Sparse
representations are extracted from high similarity image regions instead of the entire image
region, achieving approximately 0.3 dB higher denoised image quality than the method
in [7]. Gu et al. [9] suggested weighted singular values to improve the SVD method and
showed 0.3 dB better performance than the method in [8]. These methods typically require
a high computational load to obtain denoised images and have performance limitations
for unknown or variable noises, leading to the following deep neural network approaches.
Second, some deep neural network methods have been proposed using state-of-the-art
artificial intelligence technologies [10–14]. Zhang et al. [10] proposed a supervised learn-
ing model that can effectively remove Gaussian noise of various noise levels. A 20-layer
convolution neural network (CNN) model is used with residual learning [15] and batch
normalization [16]. Zhao et al. [17] improved the network model designed in [10] by com-
bining temporary noises extracted from the last few network layers with the ground-truth
noise. Usually, these supervised methods have a relatively good noise-filtering ability but
require a dataset of noisy and clean image pairs, which is considerably difficult to obtain in
the real-world. Thus, in most cases, such paired datasets are generated synthetically by
adding synthetic noise to clean images.

On the other hand, self-supervised learning methods do not explicitly require the
corresponding clean images, unlike supervised ones. Self-supervised methods use the
ground-truth data created by slightly modifying or transforming the filter input data,
which is not always easy and practical. Lehtinen et al. [12] proposed a noise-to-noise
(N2N) learning method, where the ground-truth is a number of noisy images with noise
exhibiting the same statistical characteristics as the original noise. The noise is supposed to
be additive random noise with zero mean. If the L2 loss function is used, the deep neural
network can learn a denoising ability even when multiple noisy images are used as ground-
truth instead of a single clean image. The performance of the N2N method is somewhat
inferior to those of the supervised learning methods. Additionally, creating target noisy
images is occasionally difficult because the original and target noisy images have the
same clean image, which is frequently impossible. To avoid this impractical situation,
Krull et al. [13] designed a noise-to-void (N2V) technique, where ground-truth images
are created by replacing pixels in the original noisy image with adjacent pixels. Since this
method attempts to imitate the N2N, its performance is approximately 1.1 dB lower than
that. For enhanced performance, a clever pixel replacement technique was suggested by
Batson et al. [18], where ground-truth images are created by replacing pixel values with
random numbers. This technique achieved a slightly better noise removal performance
than the N2V [13]. Niu et al. [19] suggested another N2V model that creates ground-truth
images by replacing pixels with the center pixel in a region with high similarity based on
the concept defined in [6]. This method shows approximately a 0.5 dB better performance
than the N2V [13]. Xu et al. [20] proposed a practical version of the N2N method using a
doubly noisy image as the input image. A doubly noisy image is created by adding noise,
which is statistically similar to the original noise, to the original noisy image. This approach
achieved a performance similar to that of the N2N method at low noise levels but showed
deteriorated performance when the noise increased above a certain level. Another method
that does not require paired noisy and clean datasets was proposed by Lin et al. [14],
called noise-to-blur (N2B) method. In this method, the target image is a blurred image
filtered with a strong low-pass filter; the method almost eliminates the noise as well as the
image details from the original noisy image. In this process, many types of noise, such as
raindrops, snowflakes and dust, can be successfully removed along with image details,
which means that the N2B method can remove various types of noise, unlike the N2N and
N2V. However, it shows lower performance than the N2N method.

Generally, the deep neural network-based approaches can handle more diverse and
complex types of noise than hand-crafted ones owing to their learning ability. However,
supervised deep neural networks require a hard-to-generate dataset, despite their good
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noise removal ability. The N2V and N2B methods are not limited by dataset issues but
show relatively low performance. In this paper, we propose a high-performance and
self-supervised method without dataset problems by introducing a recursive learning stage
and a stage-dependent objective function. The rest of the paper is structured as follows.
In Section 2, the basic structure and concept of the N2B model are depicted. Section 3
describes the details of the proposed model. Section 4 describes dataset, experimental
setup and simulation results. Finally, Section 5 concludes this paper.

2. Related Work

The proposed method is based on the N2B model [14] because it has less noise-type
dependency and does not require paired noisy and clean datasets. But this model shows
approximately 1.38 dB lower performance than the N2N method [12], which has both
paired dataset and noise-type limitations. The N2B model consists of two concatenated
subnetworks, the denoising and noise extraction subnetworks. In addition, the learning
process consists of two stages, the initial and convergence stages.

2.1. Initial Stage

At this stage, the network roughly learns how to blur an image so that it can excessively
remove noise and even some image details. An example of a blurred image is shown in
Figure 2c. It is assumed that the noisy image X is the sum of a clean image Y and additive
noise n, as expressed in Equation (1):

X = Y + n (1)

The relation between the denoising subnetwork fD and noise extraction subnetwork
fN is expressed using Equation (2):

fD(X) = Ŷ, fN(X− fD(X)) = ñ (2)

where Ŷ is an estimated clean image of Y and ñ is an estimated noise of n. The entire
network is trained with the initial objective function in Equation (3):

LI =
1
M

M

∑
i=1
|Ỹi −Yb

i|, Ỹ = X− ñ (3)

where M is the number of input noisy images and Yb represents the corresponding blurred
image using a strong low-pass filter.

2.2. Convergence Stage

In the convergence stage, fD and fN explicitly start learning different roles, denoising
and noise extraction, respectively. First, the synthesized noisy image d = c + ñ and its
corresponding target, clean image c, are used to further train the fD subnetwork with the
following convergence objective function in Equation (4):

LC =
1
M

M

∑
i=1
|ĉi − ci|, fD(d) = ĉ (4)

where ĉ is the estimate of c denoised by fD. Second, the fN subnetwork learns its noise
extraction ability using Equation (3), which is the same loss function used in the initial
stage. These two objective functions use the L1 distance metric because it is more effective
for image restoration problems [21].

3. Proposed Noise-to-Blur-Estimated Clean (N2BeC) Model

The main aim of the proposed method is to improve denoising performance compara-
ble to those of the N2N and supervised learning methods, while retaining the advantages of
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the N2B model. To achieve this goal, we propose a recursive learning method and a stage-
dependent loss function. The overall diagram consists of initial, convergence and recursive
learning stages, including three loss functions, as illustrated in Figure 1.
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(c) The recursive stage

Figure 1. Block diagram of the proposed N2BeC method. (a) Initial, (b) convergence and (c) recursive
learning stages.

3.1. Recursive Learning Method

Since supervised learning methods usually show better performance due to the perfect
ground-truth, the blurred image Yb can be replaced with the denoised image f 1

D(X) after
the completion of the initial and convergence stages. An important difference between the
two ground-truth values Yb and f 1

D(X) is whether the image details are retained. In Yb,
the noise is removed excessively, even including some image details, but some noise
remains in f 1

D(X) and most of the image details are retained. Both types of target images
are easy to generate and complementary when used in time-series to train the network.
Therefore, the N2B model can be enhanced if trained one more time using the denoised
image of X. For this training, the recursive objective function is expressed by Equation (5).
Hence, the recursive learning stage should be concatenated to the N2B model; this model
is termed the N2B-estimated clean (N2BeC) model.
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LR =
1
M

M

∑
i=1
|Ỹi − f 1

D(X)
i| (5)

3.2. Stage-Dependent Loss Function

In fact, a blurred image is unsuitable for ground truth, mainly because it lacks image
details or high-frequency components. It effects the ability of a deep neural network to
learn about image details, especially in the initial stage guided by Equation (3). This
phenomenon continues in the convergence stage even though the effect is limited by the
loss function, Equation (4). To compensate for the network’s ability to preserve image
details while filtering noise, we use the input noisy image X as a supplementary target
image in the initial and convergence stages, as shown in Figure 1a,b. The corresponding
auxiliary objective function is expressed by Equation (6):

LN =
1
M

M

∑
i=1
|X̂i − Xi|, X̂ = Ŷ + ñ (6)

This regularization is not helpful in the recursive learning stage, because the estimated
clean image f 1

D(X) that contains considerable image details is used as the target image.
Finally, we propose novel objective functions by combining Equations (3)–(5) as follows:

LNI = LI + λ · LN (in the initial stage) (7)

LNC = LC + LI + λ · LN (in the convergence stage) (8)

LNR = LC + LR (in the recursive stage) (9)

4. Experimental Results

This section describes the dataset used in the experiments and compares the perfor-
mance of the N2BeC model with hand-crafted, supervised and self-supervised methods.

4.1. Dataset Setup

The noisy image data X are generated by adding Gaussian noise n with various noise
levels σ ranging from 0 to 50 to clean image data Y. We collected 4744 clean images from the
Waterloo database [22] and used them to generate noisy images for training and validating
the proposed network. In addition, the blurred image data Yb are created from X using a
Gaussian filter with a kernel size of 31 to remove the noise added excessively. The actual
noisy and blurred data for training and validation consisted of 10,000 non-overlapping
patches with 128× 128 size cropped from the original sized data, respectively. Some images
were randomly obtained from the Internet and cropped to 128× 128 sized patches. A total
of 10,000 patches generated in this way were used for training as clean images c. Some
examples are shown in Figure 2. For testing, 300 images from the BSD300 dataset [23] were
used without resizing to reflect the real-world situation. The same dataset was used for
simulating the N2N, N2B and the proposed methods in Table 1.

(a) A clean patch Y. (b) A noisy patch X. (c) A blurred patch Yb. (d) A clean patch c.

Figure 2. Example data: (a) a clean patch to generate noisy and blurred patches; (b) a noisy patch
with Gaussian noise; (c) a blurred patch by a Gaussian filter with kernel size of 31; (d) a clean patch
collected from the Internet.
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Table 1. Comparison of denoising performance for noisy image with fixed-level noise.

Methods
Noise Level (σ) 10 15 20 25 30 40 50

Noisy Image Quality 28.25 24.80 22.37 20.50 19.00 16.69 14.97

BM3D [8] 33.15 30.91 29.38 28.21 27.27 25.77 24.56
DnCNN [10] 35.65 33.51 32.04 30.91 30.02 28.62 27.48

N2N [12] 33.76 32.13 30.89 29.91 29.09 27.76 26.69
N2B [14] 33.45 31.43 29.86 28.58 27.51 25.33 23.36
Recursive 33.59 31.55 29.98 28.70 27.58 25.09 22.92

LossFunction 34.32 31.98 30.31 29.03 27.94 26.11 24.57
Proposed 34.39 32.21 30.59 29.26 28.12 26.17 24.54

4.2. Network Structure and Training Period

The simple U-Net suggested in [14] was used as fD. The network structure of fN
had two 3× 3 convolution layers with 32 feature maps, ReLU activation functions and
the batch normalization method. The simple U-Net is a less-complexed version of the
U-Net proposed in [24]. The batch size was set to 16 and the Adam optimizer [25] was
applied. The network structure of the N2N is originally RED30 [26], but it was replaced
by the simple U-Net for a fair comparison in these experiments. The N2B [14] and the
proposed methods were trained for 50 and 950 epochs at the initial and convergence
stages, respectively. The recursive learning stage was additionally trained for 100 epochs.
The network was trained for 1100 epochs in total.

4.3. Performance Comparison

To evaluate the performance of the proposed method, we performed experiments
using synthetic noisy images generated by adding different levels of Gaussian noise to the
BSD300 dataset [23]. We conducted two experiments, one with fixed-level noise (Experi-
ment I) and another with various level noise (Experiment II). The results of Experiment I are
listed in Table 1 and Figure 3. The test results of the hand-crated method, BM3D [8] and the
supervised deep neural network method, DnCNN [10], are provided to demonstrate the
performance difference between substantially different methods, which are incomparable
with the N2BeC. Since the recursive learning stage and the new loss function are introduced
to improve the performance of the N2B model, we performed Recursive and LossFunction
experiments to see how much each propose contributes to the overall performance improve-
ment. The Recursive experiment consisted of three learning stages with Equations (3)–(5)
in the initial, convergence and recursive stages, respectively; this way, it was possible to
tell the effect of adding only the recursive learning stage to the N2B model. As a result,
the Recursive experiment showed slightly better performance than the N2B at lower noise
levels. The reason is that the target image f 1

D(X) in the recursive learning stage contained
little noise, which is a similar characteristic to Yb, so that the network can consistently
learn similar objectives in the entire stages. In contrast, the network performed slightly
worse at high noise levels because the target image contained relatively much noise this
time. Therefore, the training was inconsistent when switching the target image from the
relatively noiseless Yb to the relatively noisy f 1

D(X). Though, the overall performance was
slightly better than that of the N2B model [14]. The LossFunction experiment consisted
of the initial and convergence stages with the new loss functions, Equations (7) and (8),
respectively. The simulation results indicate that the new loss function was effective at all
noise levels, especially at high noise levels. The proposed N2BeC method is a combination
of the Recursive and LossFunction experiments and shows synergistic performance. Some
example images of denoising results at the noise level σ = 25 are shown in Figure 4. Com-
pared with the result of the N2B method, it can be seen that more image details remained
in the proposed method. Compared with the N2N model, the proposed method had better
performance at low noise levels, but the overall performance was low. However, it should
be noted that the performance of N2N model was close to that of supervised methods in
most cases.
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Figure 3. Comparison of denoising performance among N2N, N2B and proposed methods. (a) Noise
levels from 10 to 20. (b) Noise levels from 25 to 50.

(a) Clean image | PSNR (b) Noisy image | 20.26 dB (c) BM3D | 28.06 dB (d) DnCNN | 30.71 dB

(e) Noise2Blur | 28.66 dB (f) Recursive | 29.19 dB (g) LossFunction | 29.39 dB (h) Proposed | 29.51 dB

Figure 4. Example images of Gaussian denoising at σ = 25: (a) a clean image; (b) a Gaussian noisy
image; (c–h) example images of Gaussian denoising using various noise removal methods.

Experiment II tested the denoising ability of the N2BeC method with noisy images
at random noise levels between 0 and 50. The simulation results are listed in Table 2 and
show a more than 1.05 dB better performance than the N2B model [14]. Figure 5 shows
other example images for subjective quality comparison.

Table 2. Comparison of denoising performance for noisy image with various noise levels.

Noise Level BM3D [8] DnCNN [10] N2N [12] N2B [14] Recur. LossF. Proposed

σ ∈ [0, 50] 25.95 32.08 30.48 29.10 29.14 30.01 30.15

(a) Clean image | PSNR (b) Noisy image | 24.56 dB (c) BM3D | 26.81 dB (d) DnCNN | 33.15 dB

Figure 5. Cont.
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(e) Noise2Blur | 31.27 dB (f) Recursive | 31.41 dB (g) LossFunction | 31.63 dB (h) Proposed | 32.04 dB

Figure 5. Example images of Gaussian denoising: (a) a clean image; (b) a Gaussian noisy image;
(c–h) example images of Gaussian denoising using various noise removal methods.

4.4. Ablation Study

Optimal number of recursive learning stages. An experiment was conducted to
check if the performance could be continuously improved by repeating the recursive
learning stage. It was assumed that the recursive learning stage was applied once in
the N2BeC model, but not in the N2B model. When a second recursive learning stage
was connected to the N2BeC network, the denoised f 2

D(X) served as the target image.
Similarly, f 3

D(X) was the target image for a third one. The loss functions are expressed as
Equations (10) and (11), respectively.

LR2 =
1
M

M

∑
i=1
|Ỹi − f 2

D(X)
i| (10)

LR3 =
1
M

M

∑
i=1
|Ỹi − f 3

D(X)
i| (11)

In this experiment, up to three recursive learning stages were repeated after the
initial and convergence stages had finished using the Experiment II method in Section 4.3.
The results are shown in Table 3. The optimal number of recursive learning stages was
1, which corresponds to the N2BeC model. This is because the trained denoising filter
not only removes noise but also distorts the original content. If the noise removal filter is
repeatedly applied over a certain number of times, the performance degradation due to
content distortion is greater than the performance improvement by noise removal.

Table 3. Effects of successive recursive learning stages.

No. of Recursive Stages 0 (=N2B) 1 (=N2BeC) 2 3

quality (PSNR) 29.10 29.14 28.64 28.40

Regularization factor of the new objective function. We need to determine the
regularization factor λ in Equations (7) and (8). Since LN is an auxiliary loss function,
this hyperparameter should be greater than 0 and less than 1. Several simulations were
performed using the Experiment II methodology in Section 4.3 to search for a proper value
and the results are shown in Table 4. We found that the denoising performance was best at
λ = 0.1.

Table 4. Effects of regularization factor of the proposed objective function.

λ 0.01 0.05 0.1 0.2 0.5 1.0

quality (PSNR) 29.80 29.87 30.01 28.96 25.01 23.99

Effect of LN in learning stages. To investigate the effect of the new loss function
in each stage, several combinations were tested. For example, LN was applied only to
the initial stage using Equation (7) and not to the convergence and recursive learning
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stages using Equations (4) and (5), respectively. Another example is that LN was applied
to all stages, even to the recursive learning stage, using Equations (7)–(9), respectively.
The tested combination and the corresponding performances are listed in Table 5. Notably,
the previous Recursive experiment is equivalent to the case where LN is not applied to any
stage. According to the result, using LN only in the convergence step resulted in a slight
performance decrease compared with the result obtained in the Recursive experiment.
The initial stage’s only case improved the performance by 0.34 dB. However, the proposed
case increased the performance by more than 1 dB, creating a synergy effect between the
initial and convergence stages. Applying LN to the recursive learning stage degraded the
denoising ability of the network.

Table 5. Performance comparison according to the use of the proposed objective function.

Learning Stage
Image Quality (PSNR)

Initial Convergence Recursive

× × × 29.14
◦ × × 29.48
× ◦ × 29.11
× × ◦ 28.56
◦ ◦ × 30.15
◦ ◦ ◦ 29.92

Recursive stage training. The loss function of the recursive learning stage changed
from LNC to LNR, which is not smooth. In such a case, training the network more than an
appropriate amount can, in turn, degrade the performance. Therefore, we investigated
the proper amount of training in the recursive learning stage and the results are shown
in Table 6. As a result of the search, it can be seen that the performance rather degraded
after 100 epochs. Generally, if the loss function is not changed in the middle, the longer the
training, the better or maintained the performance.

Table 6. Performance comparison by training amount of the recursive learning stage.

no. of epoch 100 200 300 950

image quality (PSNR) 30.15 29.80 30.01 29.54

Effectiveness for removing speckle, and salt and pepper noise. In this auxiliary
experiment, the Gaussian noise was replaced by salt and pepper noise and speckle noise,
respectively. We used the same blur image generation method as in Section 4.1. For salt and
pepper noise, the proposed network was trained with various noise probabilities ranging
from p = 0 to p = 0.3 and tested with fixed noise probability p = 0.15 and variable ones
p ∈ [0, 0.3]. For speckle noise, various noise variances v ranging from 0 to 0.2 were used
for training and fixed, while varying noise variances were used for testing, as shown in
Table 7. Some denoising examples are illustrated in Figures 6 and 7. The proposed methods
achieved higher performance in removing various types of noise than the N2B method, as
shown in Table 7.

Table 7. Comparison of denoising performance according to speckle, and salt and pepper noise.

Noise Type Noise Level
Methods

N2B Recursive Loss Function Proposed

speckle v = 0.1 21.85 22.89 24.03 24.33
v ∈ [0, 0.2] 23.20 24.41 25.16 25.56

salt and pepper p = 0.15 23.30 23.46 23.50 23.71
p ∈ [0, 0.3] 24.29 24.51 24.56 24.71
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(a) Clean image | PSNR (b) Noisy image | 18.03 dB (c) Noise2Blur | 24.04 dB

(d) Recursive | 24.26 dB (e) LossFunction | 25.39 dB (f) Proposed | 25.56 dB

Figure 6. Example images of speckle denoising at v = 0.1: (a) a clean image; (b) a speckle noisy
image; (c–f) example images of speckle denoising using various noise removal methods.

(a) Clean image | PSNR (b) Noisy image | 13.80 dB (c) Noise2Blur | 25.75 dB

(d) Recursive | 25.95 dB (e) LossFunction | 26.19 dB (f) Proposed | 26.72 dB

Figure 7. Example images of salt and pepper denoising at p = 0.15: (a) a clean image; (b) a salt
and pepper noisy image; (c–f) example images of salt and pepper denoising using various noise
removal methods.

Effectiveness for removing raindrops. In this auxiliary experiment, the Gaussian
noise was replaced by raindrops, which can be considered as a sort of noise. Since the
raindrops were not removed enough with the Gaussian low pass filter, a median filter
with a kernel size of 31 was used to make blur images. A total of 200 images from the
Rain100L dataset [27] was used for training and 100 images for testing. Some examples of
raindrop removal are displayed in Figure 8. Again, the proposed methods achieved higher
performance in removing raindrops than the N2B method, as shown in Table 8.
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(a) Clean image | PSNR (b) Noisy image | 25.96 dB (c) Noise2Blur | 33.12 dB

(d) Recursive | 34.61 dB (e) LossFunction | 32.65 dB (f) Proposed | 34.09 dB

Figure 8. Example images of raindrops removal: (a) a clean image; (b) a raindrop noisy image;
(c–f) example images of raindrops removal using various noise removal methods.

Table 8. Performance comparison for removing raindrops.

Methods N2B Recursive Loss Function Proposed

image quality (PSNR) 32.14 33.19 31.90 32.47

5. Conclusions

Collecting only noisy data is easy and cheap. In this work, we suggest a novel
denoising deep neural network model that does not require a noisy and clean data pair for
ensuring the practicality of the proposed method. In addition, since the proposed N2BeC
model is based on the N2B model, it can be extended to remove environmental noises such
as raindrops, snowflakes and dust. Importantly, the noise removal performance is superior
to those of the N2V and N2B models, which are real supervised methods. Therefore,
the N2BeC model is not only practical and extendable but also has good performance due
to the introduced recursive learning stage and stage-dependent loss functions. The multi-
stage learning method using deep neural networks approaches the correct answer by
giving more accurate hints as the stages progress. In this paper, the number of recursive
stages is limited to two, but if the number can be increased in the future, it is expected that
the performance can be further improved. In addition, it is possible to find an adaptive
method that can be applied to more various types of noise.
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