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Abstract: There exist many types of intelligent security sensors in the environment of the Internet 

of Things (IoT) and cloud computing. Among them, the sensor for biometrics is one of the most 

important types. Biometric sensors capture the physiological or behavioral features of a person, 

which can be further processed with cloud computing to verify or identify the user. However, a 

low-resolution (LR) biometrics image causes the loss of feature details and reduces the recognition 

rate hugely. Moreover, the lack of resolution negatively affects the performance of image-based 

biometric technology. From a practical perspective, most of the IoT devices suffer from hardware 

constraints and the low-cost equipment may not be able to meet various requirements, particularly 

for image resolution, because it asks for additional storage to store high-resolution (HR) images, 

and a high bandwidth to transmit the HR image. Therefore, how to achieve high accuracy for the 

biometric system without using expensive and high-cost image sensors is an interesting and valua-

ble issue in the field of intelligent security sensors. In this paper, we proposed DDA-SRGAN, which 

is a generative adversarial network (GAN)-based super-resolution (SR) framework using the dual-

dimension attention mechanism. The proposed model can be trained to discover the regions of in-

terest (ROI) automatically in the LR images without any given prior knowledge. The experiments 

were performed on the CASIA-Thousand-v4 and the CelebA datasets. The experimental results 

show that the proposed method is able to learn the details of features in crucial regions and achieve 

better performance in most cases. 

Keywords: super-resolution; attention mechanism; generative adversarial network; biometric 

recognition 

 

1. Introduction 

The number of IoT devices worldwide is estimated to almost triple from 8.74 billion 

in 2020 to more than 25.4 billion IoT devices in 2030 [1]. It can be foreseen that a large 

amount of data will be collected and the computational power required by cloud compu-

ting will rise accordingly. Considering the applications envisioned for IoT (smart cities, 

homes, retail, etc.), the security issues must be handled with great care. Since the sensors 

will be the primary device to accept the data from the environment in the cloud compu-

ting framework, they may become the first targets to be attacked. As the technology ad-

vances, the traditional password authentication is expected to be gradually replaced by 

the biometric recognition system. Recently, various biometric systems have been built on 

IoT devices [2–5], which may enhance the security of the loT network as well as decrease 
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the probability of the sensor node being compromised, and present the advantage of bio-

metric-based IoT (BiometricIoT). Moreover, existing research shows that applying multi-

ple biometrics for authentication helps increase recognition accuracy, making biometric 

approaches a more reliable choice for securing the IoT. 

However, one factor that is crucial to the biometric accuracy is the resolution of the 

input image. It heavily depends on several factors of the optical factors of the sensor, such 

as the focal length, field of view, depth of focus, and the combination of them. Due to the 

hardware constraints of IoT devices, the acquired LR image by low-cost IoT sensors will 

highly downgrade the recognition accuracy and negatively affect the reliability of authen-

tication. So, the aforementioned BiometricIoT technique may encounter physical limita-

tions in practical situations. 

In the field of computer vision, the aforementioned issues of reproducing accurate 

HR images from the corresponding LR counterpart are referred to as SR [6]. SR is one of 

the most popular research areas and has received extensive consideration in the computer 

vision research community, which also has a broad range of applications for different bi-

ometric modalities. The SR method is generally classified into two categories based on the 

number of input images: single-image resolution (SISR) and multi-image super-resolution 

(MISR) [7]. According to the SISR framework, we can super-resolve the corresponding HR 

image from the given LR input; hence, it is able to mitigate the problem caused by the 

hardware constraint of BiometricIoT and further enhance the accuracy of biometric au-

thentication and identification in the cloud computing environment. 

In recent years, methods based on deep learning have made significant progress over 

the traditional SR methods. In particular, the SR technique based on GAN [8] (SR-GANs), 

which is one of the most famous frameworks of the deep learning method, has demon-

strated outstanding performance for the tasks of computer vision. The SR-GAN enhances 

the quality of LR images via the various loss functions, which have been proposed to im-

prove the image quality from various perspectives. Currently, several existing SR works 

proposed the attention mechanism in order to enhance the performance [9,10]. In partic-

ular, a few works have proposed the mask attention to generate the accurate SR image for 

the downstream task [11–13], such as medical segmentation or biometric recognition. 

However, most of the work still request the additional information to manually label the 

ROI region to denote the ground truth attention region. Such an attention technique may 

need human intervention to give the ground truth for every image, which increases the 

cost of dataset pre-processing. It also slows down the inference process because the atten-

tion regions need to be estimated before the model starts the SR process. 

In this work, we proposed the dual-dimension attention approach to enable the 

model to learn the corresponding ROI automatically by inspecting the interdependence 

relationship between different channels of feature maps and force GAN to focus on the 

appearance difference of ROI between the super-resolved image and the corresponding 

HR image. According to the feedback of discriminator, the generator will be trained to 

discover ROI by itself and learns the structure and texture correspondence between LR 

and HR images. We named the proposed model dual-dimension attention SRGAN(DDA-

SRGAN), which is a GAN-based framework employing the attention mechanism. 

In summary, the main contribution of this paper is as follows: 

1. We propose DDA-SRGAN, a GAN-based SR framework using a dual-dimension at-

tention mechanism for image SR. It will automatically locate the ROI region without 

given prior knowledge and further enhance the feature details inside the correspond-

ing region. 

2. Our proposed attention module will capture the ROI features in the LR image by 

considering the interdependence of feature maps with respect to the spatial dimen-

sion and the channel dimensions. Furthermore, the DDA mechanism forces the gen-

erator in GAN to generate more informative SR images and enhance the performance 

of the downstream tasks. 
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3. We have built an SR framework for enhancing the existing authentication system of 

BiometricIoT, and further decrease the possibility of compromising sensor. 

We obtained a series of comparable results with a higher verification rate (VR) in 

most cases. On the dataset Celeb-Attribute, it is able to achieve 84.24% VR with a 5% false-

accept rate (FAR), and the equal error rate (EER) is 6.84%. On the dataset CASIA-Thou-

sand-v4, it is able to achieve 92.7% VR with 1% FAR and attains comparable performance 

with 2.24% EER. Such an error rate is lower than the state-of-art (SOTA) in the GAN-based 

SR model. 

2. Literature Review 

Among the recently proposed SR approaches, most of the GAN-based methods gen-

erate SR images with high quality. Moreover, we found that the attention mechanism is 

also play a big role in such methods. So, we mainly concentrate on the previous work 

associated with the GAN-based approaches as well as the attention mechanism in this 

section. 

The seminal work based on the deep-learning carried out by SRCNN [14], which de-

termine the mapping from LR to HR image in an end-to-end (E2E) manner and obtained 

outstanding performance that is superior to the traditional works. After that, various net-

work architectures have been proposed, such as residual blocks [15], residual-dense net-

works [16], Laplacian pyramid structure [17], densely connected network [18], recursive 

learning [19,20], and deep back-projection [21]. Specifically, Kim et al., proposed VDSR 

[15], which introduced the residual learning to stabilize the training procedure of the 

deeper model. With the competitive performance, DRCN [19] utilized deep recursive net-

work to saving the memory usage by consolidating intermediate outcomes, and DRRN 

[20] was makes use of the residual learning to further stabilize the training procedure. 

EDSR and MDSR (its multiple-scale factor versions) [22] is the latest technology based on 

PSNR metric. Tong et al., introduced the SRDenseNet [23], which uses the residual-dense 

networks with the skip connection to enhance the combination of features on different 

levels. Based on the backbone of DenseNet [18], Yulun Zhang et al., further proposed RDN 

[16], which merges densely connected convolutional networks with residual connections, 

and then combine the hierarchical features from different convolutional layers to present 

the generated image. 

In order to pay more attention to the visual quality of the generated images, a per-

ception-driven method is proposed to improve the visual quality of SR results. As a pio-

neer of the GAN-based framework to solve SR, Christian Ledig et al. [24] proposed 

SRGAN employing perceptual loss [25,26] along with an adversarial loss to generate the 

photorealistic images. In the GAN-based framework, the perceptual loss makes the gen-

erated image more proper for the human visual system. Despite having a low score on 

standard quantitative measures such as PSNR and SSIM, these images are more visually 

convincing. EnhanceNet [27] is also based on GAN but uses a different architecture. As 

the name suggests, ESRGAN enhances SRGAN. It proposes a new block with a larger 

capacity called RRDB. In addition to removing the BN layer, residual scaling and smaller 

initialization are also employed to facilitate the training of very deep networks. The dis-

criminator uses relativistic average GAN, which determines “whether one image is more 

accurate than the other” instead of whether one image is original or fake. Moreover, in the 

perceptual loss, the VGG [28] characteristics are practiced before activation rather than 

later as in SRGAN. 

Even though SRGAN and Enhancenet can reduce blur and excessive smoothing arti-

facts to some extent, their predicted outcomes may not be conscientiously reconstructed 

and may generate unpleasant artifacts. By removing undesirable modules from conven-

tional residues networks, Lin et al. [22] suggested EDSR and MDSR, and they have made 

notable progress. However, most of these methods have a limited network depth, which 

has proven to be very important in visual recognition tasks [29] and can reach about 1000 
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layers. Only stacking residual blocks in MDSR [22], deep networks can barely achieve 

improvements. Furthermore, most of these approaches employ the channel-wise features 

uniformly, preventing the better discriminative capacity for different traits. Additionally, 

Nathanael Carraz Rakotonirina et al. [30] proposed ESRGAN+, an enhancement of 

ESRGAN by putting RRDB into RRDRB through further adding cascading paths in inter-

nal dense blocks, which will improve the network capability. The technique of providing 

finer details at a high level requires adding Gaussian noise to the main path of the RRDRB 

structure. 

Recently, tentative investigation has been focused on deep neural networks [31–33], 

ranging from image localization and perception in images [34,35] to sequence-based net-

works [36,37]. It is customarily used in conjunction with a gating function (such as sig-

moid) to rescale the feature map. Wang et al. [32] introduced a residual attention network 

for image classification through trunk-and-mask attention mechanisms. Hu et al. [31] in-

troduced a squeeze and excitation (SE) block to model the channel-wise relationship to 

gain significant image classification performance advancement. Nevertheless, few re-

searchers have proposed to study the impact of attention on low-level visual tasks (such 

as image SR). Zhang et al. [9] proposed the very deep residual channel attention networks 

(RCANs), which use the residual-in-residual (RIR) backbone and channel attention mech-

anism to adaptively rescale channel-wise features by considering interdependencies be-

tween channels. However, the channel attention does not fully investigate the contextual 

information in each feature map, so the details of the spatial feature may not be able to be 

recovered. Sanghyun Woo et al. [38] further proposed the convolutional block attention 

module (CBAM) framework, which includes two attention modules in the residual block 

to utilize significant features from the spatial and channel dimensions, in order to solve 

the mentioned issue. However, the inner structure of the attention module is relatively 

primitive, and we further improve the network structure in our work. 

On the other hand, there exists some work using the meta information to control the 

attention region to further enhance the downstream task performance. Kim et al. [11] pro-

posed a novel facial attention loss, focusing on recovering facial features with more detail, 

and also introduced a FAN network to extract heat map values to manifest the ROI of 

facial landmarks. Qingyun Li et al. [12] proposed a novel framework called tumor GAN, 

which generates the tumor mask by merging the lesion area and the contour area, and 

then introduced a regional perceptual loss to enhance the performance of the discrimina-

tor by the given tumor mask. Recently, Huang et al. [13] proposed MA-SRGAN to enhance 

the ROI feature for the biometric recognition. In such work, the relationship between the 

SR framework and downstream task has been inspected systematically, and the corre-

sponding mask has been developed according to the domain knowledge of the down-

stream task. However, the human intervention for labeling the meta information is still 

inevitable during the training phase. 

3. Materials and Methods 

3.1. Proposed Network Architecture for SR 

In this study, we propose a dual-dimension attention super-resolution (DDA-

SRGAN) model. The proposed kernel module in the overall network is dual-dimension 

attention block (DDAB), which is able to automatically learn to locate the ROI region by 

inspecting the interdependent relationship between feature maps in the channel dimen-

sion as well as the spatial dimension and then extract the discriminative feature inside the 

ROI for reconstructing the detail information of SR image. Moreover, the DDAB can be 

the fundamental component of any network backbone for extracting the ROI feature, and 

the proposed module does not rely on any prior domain knowledge of the downstream 

task to indicate the ROI region. The flowchart of the proposed method is shown in Figure 

1. 
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Figure 1. DDA-SRGAN architecture. DDA-SRGAN is a GAN-based approach, which is composed 

of the generator and the discriminator. In the generator, the ROI feature will be extracted from the 

LR images by the high-capacity block RIRB, and the informative embedding will be used to generate 

the accurate SR images by the bicubic-convolution upsampling [14]. On the other hand, the frame-

work is similar to the previous work [30]. 

3.1.1. Overall Network Architecture 

The proposed DDA-SRGAN makes use of the nESRGAN+ [31] as the network back-

bone due to its high capacity of network, which allows the network to learn stable feature 

representation by fusing the extracted feature on different levels. In this way, the multi-

level network generator can fit the complex pixel distribution and produce high-quality 

SR images. The generator of DDA-SRGAN mainly consists of residual-in-residual blocks 

(RIRB), and each RIRB is further composed of dual-dimension attention blocks (DDAB). 

Suppose the low-resolution image is 𝐼𝑚𝐿𝑅 ∈ ℝ𝐻×𝑊×𝐶  and the corresponding height, 

weight, and channel denote 𝐻, 𝑊, and C, respectively. The formal definition of the over-

all network architecture is given by Equation (1): 

𝑠𝑟𝑒𝑚𝑏𝑒𝑑 =  𝑓𝑒𝑎𝑛 + 𝑓𝑒𝑎0 = 𝛽 ⨀ 𝑅𝐼𝑅𝐵𝑛( 𝑓𝑒𝑎𝑛−1) + 𝑓𝑒𝑎0,  

𝑤ℎ𝑒𝑟𝑒 𝑓𝑒𝑎𝑖 = 𝑅𝐼𝑅𝐵𝑖( 𝑓𝑒𝑎𝑖−1), 𝑖 = 1, . . , 𝑛,  𝑓𝑒𝑎0 = 𝐼𝑚𝐿𝑅    
(1) 

where ⨀ is the matrix scalar multiplication operator which takes each element in the ma-

trix (such as feature map) multiplied by the single scalar value; 𝛽 is the residual scalar to 

stabilize the network training;  𝑓𝑒𝑎𝑖 is the intermediate feature map of the i-th layer out-

put and 𝑓𝑒𝑎0 is the low-resolution image as the input of the block 𝑅𝐼𝑅𝐵, and 𝑠𝑟𝑒𝑚𝑏𝑒𝑑  is 

the input of the up-sampling layer, which is the last layer in the generator. 

Inspecting the detail of 𝑅𝐼𝑅𝐵, the formal definition of the 𝑖-th RIRB is given by Equa-

tion (2): 

𝑅𝐼𝑅𝐵𝑖( 𝑓𝑒𝑎𝑖−1) = 𝛽 ⨀ 𝐷𝐷𝐴𝐵 𝑖,𝑟( 𝑓𝑒𝑎𝑖−1,𝑟−1) +  𝑓𝑒𝑎𝑖−1,0,  

𝑤ℎ𝑒𝑟𝑒  𝑓𝑒𝑎𝑖,𝑗 = 𝛽 ⨀ 𝐷𝐷𝐴𝐵 𝑖,𝑗( 𝑓𝑒𝑎𝑖−1,𝑗−1) +  𝑓𝑒𝑎𝑖−1,𝑗−1, 𝑗 = 1, . . , 𝑟  
(2) 

where  𝑓𝑒𝑎0,0 =  𝑓𝑒𝑎0 is the initial input of the block 𝐷𝐷𝐴𝐵, and here, the Gaussian noise 

is omitted in each layer of the 𝐷𝐷𝐴𝐵. Moreover, the inner structure as well as the formal 

description of the DDAB will be revealed in the next section. The network architecture of 

the 𝑅𝐼𝑅𝐵 is shown in Figure 2. 
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Figure 2. Residual in residual block (RIRB) inner structure. Each of the RIRB is composed of several 

DDAB, which is our proposed kernel module to fulfill the dual dimensional attention mechanism, 

with the residual scaling for stabilizing the training procedure. 

3.1.2. Attention Mechanism Module 

After illustrating the whole picture of network structure, we further inspect the 

DDAB structure in detail, which offers the attention mechanism to extract the ROI feature 

with respect to the channel dimension and the spatial dimension, and the inner structure 

of DDAB is illustrated in Figure 3. Specifically, the DDAB is composed of the channel 

attention module (CAM) as well as the special attention module (SAM) in the sequential 

order. So, the feature maps will be processed by the CAM, and the weighted channel sca-

lars will be produced to indicate which feature map is more important than the others. 

Later, the weighted feature maps will be further processed by the SAM. The contextual 

feature will be extracted from the weighted feature map, and it produces the weighted 

feature map in the next layer to further enhance the feature inside the ROI region. 

 

Figure 3. Dual-dimension attention block architecture. Each of the DDAB is composed of the pro-

posed CAM followed by the SAM, which are able to figure out the ROI feature by investigating the 

cross-channel correlation as well as the inter-channel correlation. 
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3.2. The Kernel Modules of Dual Dimension Attention Block  

3.2.1. Channel Attention Module (CAM) 

In CAM, the interrelationship in terms of the channel dimension between the feature 

maps will be inspected by performing the sequential operations, which are global average 

pooling (GAP), channel squeeze (CS), and channel excitation (CE). At first, each input 

feature map will be compressed into the single dense scalar by calculating the average 

value of the corresponding feature map in the GAP layer. To achieve the robust represen-

tation of feature maps, the vector containing all average value will be mapped into the 

dense vector space by performing the non-linear transformation in the CS layer, and the 

dense vector will be further mapped back into the higher dimension in the CE layer. The 

resulting output of the CE layer is called the weighting vector, and it is further normalized 

by the sigmoid activation function to constrain its range within [0, 1]. Finally, each feature 

map multiplied by the corresponding scaling factor will present how important the cor-

responding feature map is between the feature maps. The scaling factor will be automati-

cally calibrated in the training phase without the domain knowledge of ROI. Suppose the 

height, width, and channel of the input feature map are 𝑓ℎ, 𝑓𝑤, 𝑡, respectively. The formal 

definition of the GAP, CS, and CE layer can be described by Equations (3)–(5), respectively. 

Finally, the formal definition of integral CAM module is given by Equation (6): 

𝐺𝐴𝑃(𝑓𝑒𝑎) =
1

𝑓ℎ × 𝑓𝑤
∑ 𝑓𝑒𝑎𝑖

𝑢

𝑓ℎ×𝑓𝑤

𝑖=0

= 𝑓𝑒�̃�, 𝑤ℎ𝑒𝑟𝑒 𝑓𝑒𝑎 ∈ ℝ𝑓ℎ,𝑓𝑤,𝑡 , 𝑢 = 1~𝑡, 𝑓𝑒�̃� ∈ ℝ1,1,𝑡  (3) 

𝐶𝑆(𝑓𝑒𝑎) = (𝑊𝑐𝑠 ∗ 𝑓𝑒𝑎) + 𝑏𝑐𝑠, 𝑤ℎ𝑒𝑟𝑒, 𝑊𝑐𝑠 ∈ ℝ3,3,𝑠, 𝑏𝑐𝑠 ∈ ℝ𝑓ℎ,𝑓𝑤,𝑠 (4) 

𝐶𝐸(𝑓𝑒𝑎) = (𝑊𝑐𝑒 ∗ 𝑓𝑒𝑎) + 𝑏𝑐𝑒 , 𝑤ℎ𝑒𝑟𝑒, 𝑊𝑐𝑒 ∈ ℝ3,3,𝑡, 𝑏𝑐𝑒 ∈ ℝ𝑓ℎ,𝑓𝑤,𝑡 (5) 

𝐶𝐴𝑀(𝑓𝑒𝑎) = 𝐶𝐸 (𝐶𝑆(𝐺𝐴𝑃(𝑓𝑒𝑎))) ⨀𝑓𝑒𝑎 (6) 

where ∗  denotes the convolution operator; 𝑊 is the convolution kernel; 𝑏 is the bias 

value; ⨀ is the matrix scalar multiplication operator; and 𝑠 ≪ 𝑡 in the number of feature 

maps. Finally, the overall structure of CAM is shown in Figure 4. 

 

Figure 4. Operation mechanism architecture of channel attention module (CAM). 

3.2.2. Spatial Attention Module (SAM) 

In SAM, the inner relationship in terms of the spatial dimension for each feature map 

will be inspected by performing the sequential operations, which are dilated convolution 

(DC), CS, and CE. The spatial dimension of the feature map reveals the relationship with 

the nearby feature extracted by the previous convolution. However, the constrained re-

ceptive field limits the capability of feature extraction. So, we make use of the DC layer to 

further extend the receptive field by increasing the stride, and the contextual information 

will be extracted with mitigation of the effect of the redundant information. Moreover, we 
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perform a smaller stride of the DC layer to avoid losing the information detail and per-

forming K times DC operation to confirm that the contextual information will finally be 

extracted. However, it may require very heavy computational resources due to the nu-

merous feature maps. In order to lessen the computational requirement, we compress the 

information of feature map by wrapping the DC layer between the CS and the CE layer 

as Squeeze-Net. The resulting output of the CE layer is called the weighting mask, and we 

further constrain the range of weighting masks to obtain the normalized mask compo-

nents using the sigmoid activation function. Finally, each feature map will be enhanced 

by performing the element-wise multiplication with the corresponding mask. The mask 

component will be automatically calibrated during the training phase without the domain 

knowledge of the ROI. The formal definition of the CS, CE, and DC layer can be described 

by Equations (7)–(9), respectively. Finally, the formal definition of a complete SAM mod-

ule is given by Equation (10). 

𝐶𝑆(𝑓𝑒𝑎) = ( 𝑊𝑐𝑠 ∗1 𝑓𝑒𝑎) + 𝑏𝑐𝑠, 𝑤ℎ𝑒𝑟𝑒  𝑊𝑐𝑠 ∈ ℝ3,3,𝑠, 𝑏𝑐𝑠 ∈ ℝ 𝑓ℎ,𝑓𝑤,𝑠 (7) 

𝐶𝐸(𝑓𝑒𝑎) = ( 𝑊𝑐𝑒 ∗1 𝑓𝑒𝑎) + 𝑏𝑐𝑒 , 𝑤ℎ𝑒𝑟𝑒  𝑊𝑐𝑒 ∈ ℝ3,3,𝑡 , 𝑏𝑐𝑒 ∈ ℝ𝑓ℎ,𝑓𝑤,𝑡 (8) 

𝐷𝐶(𝑓𝑒𝑎) = ( 𝑊𝑐𝑠 ∗2 𝑓𝑒𝑎), 𝑤ℎ𝑒𝑟𝑒  𝑊𝑐𝑠 ∈ ℝ3,3,𝑠, 𝑑𝑟 = 2 (9) 

𝑆𝐴(𝑓𝑒𝑎) = 𝐶𝐸(𝐷𝐶𝑘(𝐶𝑆(𝑓𝑒𝑎)))⨂𝑓𝑒𝑎, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1, … , 𝐾  (10) 

where ∗𝑑𝑟   is the convolution operator with the dilated rate 𝑑𝑟; 𝑊 is the convolution 

kernel; 𝑏 is the bias value; ⨂  denotes the element-wise multiplication operator; and 

𝑠 ≪ 𝑡 in the number of feature maps. Finally, the overall SAM is demonstrated in Figure 

5. 

 

Figure 5. Operation mechanism architecture of spatial attention module (SAM). 

3.3. Overall Network Loss Function 

Since nESRGAN+ [30] is adopted as the network backbone of DDA-SRGAN, all of 

the loss function used in nESRGAN+ will remain in this work. Such loss functions are also 

commonly used for enhancing the image quality from different perspectives in the field 

of SR, and the attention modules of DDAB are optimized by those loss terms automati-

cally. 

The overall loss of the DDA-SRGAN network is a combination of perceptual loss, 

relativistic loss, and 𝐿1 pixel loss. Finally, the overall loss value is available by the linear 

combination of each loss values of the network, and the formal definition is described by 

Equation (11). 

𝐿𝐺 = 𝜆𝐿𝑝𝑒𝑟𝑐𝑒𝑝
𝑏𝑒𝑓𝑉𝐺𝐺

+ 𝜂𝐿𝑎𝑑𝑣
𝑅𝑎 + 𝛾𝐿𝑝𝑖𝑥𝑒𝑙

𝐿1  (11) 
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where 𝜆, 𝜂, 𝛾 are the weight of individual loss value, and the details of each loss function 

are given by the following Equations (12)–(16). 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝
𝑏𝑒𝑓𝑉𝐺𝐺

= −𝐸ℎ𝑟~𝑃𝐻𝑅𝑖𝑚𝑔

𝑙𝑟~𝑃𝐿𝑅𝑖𝑚𝑔

∥ 𝜑𝑖,𝑗(ℎ𝑟) − 𝜑𝑖,𝑗(𝐺(𝑙𝑟)) ∥2  
(12) 

where 𝜑𝑖,𝑗 denotes the VGG-19 pre-training network, which extracts the feature from i-

th layer before the j-th activation, and the parameters used in this study are  𝑖 = 5, 𝑗 = 4. 

Finally, the 𝐿2 distance between the real image and the generated images is obtained. 

𝐿𝑎𝑑𝑣
𝑅𝑎 = −𝐸ℎ𝑟~𝑃𝐻𝑅𝑖𝑚𝑔

[𝑙𝑜𝑔(1 − 𝐷𝑅𝑎(ℎ𝑟, 𝑠𝑟))] − 𝐸𝑠𝑟~𝐺(𝑙𝑟)[𝑙𝑜𝑔(𝐷𝑅𝑎(𝑠𝑟, ℎ𝑟))] (13) 

𝐷𝑅𝑎(ℎ𝑟, 𝑠𝑟) = 𝜎(𝐶(ℎ𝑟)) − 𝐸[𝜎(𝐶(𝑠𝑟))] (14) 

𝐷𝑅𝑎(𝑠𝑟, ℎ𝑟) = 𝜎(𝐶(𝑠𝑟)) − 𝐸[𝜎(𝐶(ℎ𝑟))] (15) 

where 𝐸[. ]  is the expected value and 𝐶(. )  is the unbounded output of the discrimina-

tor, whose range of output value may beyond [0, 1]. Again, we use 𝜎(. ) , which is the 

sigmoid activation function, to constrain the value in the range of  [0, 1]. It can be seen 

that 𝐷𝑅𝑎(ℎ𝑟, 𝑠𝑟) determines whether the real image is more real than the average gener-

ated images. In contrast, 𝐷𝑅𝑎(𝑠𝑟, ℎ𝑟)  determines whether the generated image is faker 

than the average of real images. In this way, the discrimination capability will be im-

proved, and the quality of generated image will be further enhanced indirectly. 

𝐿𝑝𝑖𝑥𝑒𝑙
𝐿1 = −𝐸𝑙𝑟 ∥ 𝐺(𝑙𝑟) − ℎ𝑟 ∥1 (16) 

where 𝐺 is the generator and the 𝐿1 distance of each pixel value between the SR image 

and the HR image is obtained. 

4. Experiments and Results 

The proposed DDA-SRGAN can be used in the various fields of computer vision 

tasks, for example, biometric authentication or medical image enhancement. In this sec-

tion, in order to evaluate the effectiveness of the proposed model in practical situations, 

we follow the experimental framework proposed in [13], which means we will conduct 

experiments of biometric recognition (face and iris) based on SR images, which are ren-

dered by various models, and the biometric recognition accuracy will be used as a practi-

cal indicator for SR performance comparison. 

In this work, we use the dataset CASIA-Iris-Thousand v4 [39] for iris recognition and 

the dataset CelebFaces Attributes [40] for face recognition. The specifications of the dataset 

are described as follows, and detailed information of both datasets is presented in Table 

1. 

Table 1. Biometric dataset specification. 

Dataset Type 
CASIA  

(Iris Image) 

CelebA  

(Face Image) 

Number of Categories 2000 6000 

Number of Images in each 

category 
10 20 

Image Resolution 640 × 480 160 × 200 

4.1. Iris Dataset Specification 

CASIA-Iris is the worldwide largest dataset of iris released by the Chinese Academy 

of Sciences. It contains a total of 20,000 images and 2000 classes, and each class contains 

10 HR (640 × 480) eye images. We manually labeled the mask for each iris image in the 

dataset. 
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4.2. Face Dataset Specification 

CelebA is a large-scale human face attributes dataset released by the Chinese Univer-

sity of Hong Kong. The CelebA dataset contains 202,599 images with 10,177 classes, and 

each class contains various numbers of images. As the number of images contained in 

each class is unbalanced, we preprocess the dataset so that each class contains 20 images 

with a resolution of 160 × 200; the resulting number of classes used for experiments is 6000. 

Note that the dataset contains some factors that make the dataset harder to recognize, such 

as ill-posed faces or faces with age variation. Due to the enormous diversity of the dataset, 

the difficulty level of biometric recognition using CelebA is closer to the real-world appli-

cation. 

4.3. Partition of Experimental Dataset 

In this experiment, the CASIA-Iris-Thousand-v4 [39] and Large-scale CelebFaces At-

tributes [40] datasets are further divided into the training subset and the evaluation sub-

set, respectively. In the training phase, half of the classes will be used to train the model. 

In the evaluation phase, we attempt to simulate the practical situation of biometric recog-

nition, which enrolls the high-quality images during the enrollment process in most cases. 

So, the gallery set contains the HR image as the ground truth, while the probe set contains 

either the LR image or the SR images generated from the LR images. To this goal, the 

evaluation dataset was further divided into two subsets: gallery set and probe set. Note 

that we simulate the resolution downgrade by using the bicubic kernel during the down-

sampling procedure, which is the classical method used in most of SR work. So, we sim-

ulate each LR image by downsampling the HR image to a quarter of its original image 

size, and then feed each LR image into various SR models in the training phase as well as 

the evaluation phase. Finally, detailed information of the iris dataset partition and the face 

dataset partition are presented in Tables 2 and 3, respectively. 

Table 2. Dataset specifications of separation in the training phase. 

Image Type Categories 
Number of Images 

Per Class 

Total Number of  

Images 

Iris image 1000 10 10,000 

Face Image 4200 20 84,000 

Table 3. Data specifications of separation in the evaluation phase. 

  Enrollment Dataset   Query Dataset  

Image Type  Categories 
Number of Images 

Per Class 

Total Number of 

Images 
Categories 

Number of  

Images Per 

Class 

Total Number of 

Images 

Iris image 1000 5 5000 1000 5 5000 

Face Image 1800 10 18,000 1800 10 18,000 

4.3.1. Iris Dataset Partition 

In the training phase, the model is trained with all of the left iris images from all 

categories, and the training data are also augmented by the horizontal flip, so that the 

model is able to learn the general feature to generate the right iris images. In the evaluation 

phase, all of the right iris images are used to evaluate the model performance. In the gal-

lery subset, the first half of images from each category are chosen and the number of the 

subset is 5000 images. In the probe subset, the remaining images from each category are 

chosen and the number of images in the subset is also 5000. 
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4.3.2. Face Dataset Partition 

In the training phase, the model is trained with 4200 categories of face images, and 

the training data are also augmented by the horizontal flip, so that the model is able to 

learn the general feature. In the evaluation phase, the remaining 1800 categories of face 

images are used to evaluate the model performance. In the gallery subset, the first half of 

images from each category are chosen and the number images in the subset is 18,000. In 

the probe subset, the remaining images from each category are chosen and the number of 

images in the subset is also 18,000. 

4.4. Domain Knowledge of Biometrics 

4.4.1. Common Procedure of Biometrics 

The general procedure of biometric recognition can be mainly divided into two 

stages: the enrollment stage and matching stage. In this study, we further divide the detail 

of the proposed framework into four stages: 

1. Enrollment stage: we load the HR image (iris image or face image) from the gallery 

set and take the image as input of recognition system to extract the corresponding 

features for enrolling the feature template of gallery set. Later on, the feature tem-

plates are stored in the local database. The enrollment stage is illustrated in Figure 6. 

2. SR generation stage: we load the HR image from the probe set, and the corresponding 

LR images are obtained by downsampling the HR images with the scaling factor of 

×4. We further feed the LR images into the SR generator to enhance the image reso-

lution, as shown in the illustration in Figure 7. 

3. Matching stage: the SR image obtained from the SR model will be further taken as 

the input of biometric recognition system, and the SR image feature will be extracted 

by the recognition system. After that, all of the feature templates extracted from the 

SR images will be compared by all the enrolled feature obtained from the local data-

base to calculate the distances (Hamming distance or Euclidean distance). The result-

ing confusion matrix will be obtained by further calculating those distance. The 

matching stage is illustrated in Figure 8. 

4. Performance evaluation stage: finally, the corresponding EER, Fisher ratio, and area 

under curve (AUC) information are calculated by the given confusion matrix, and 

the corresponding receiver operating characteristic (ROC) curves are plotted to visu-

alize the overall performance of the recognition system as illustrated in Figure 9. 

 

Figure 6. The flow chart of biometric template enrollment stage. 
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Figure 7. The flow chart of the SR images generation stage. 

 

Figure 8. The flowchart of the matching stage. 

 

Figure 9. The flow chart of the performance evaluation stage. 

4.4.2. Iris Recognition Procedure 

In the experiment, the procedure of iris recognition is described into five stages: iris 

image acquisition, iris segmentation and normalization, feature extraction, and feature 

matching. In the first stage, HR iris images are acquired by NIR cameras, of which the 
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wavelength can accurately reflect and capture the texture structure of the iris. The prepro-

cessing including iris segmentation and iris coordinate transformation is executed so that 

the iris texture (which is the ROI for iris recognition purpose) in the original image will be 

transformed into the polar coordinate system, producing another representation of iris 

image in a rectangular shape. After that, the iris features will be extracted and converted 

into the vector of binary string, which is called the iris codes. The feature is compared with 

the already stored iris templates. In our experiments, the Harr-wavelet-based feature ex-

traction method was used for feature extraction for iris images. 

During the matching phase, the probe iris code is matched against all iris codes in 

the enrolled database. This matching is performed by computing the Hamming distance 

(HD) between the two iris codes. In our experiments, the threshold value of HD for ac-

ceptance or rejection is selected by considering the best EER. The overall process is de-

picted in Figure 10. 

 

Figure 10. The classical procedure for iris recognition. 

4.4.3. Face Recognition Procedure 

For face recognition, the face image is captured by the optical sensor, which can be 

either an RGB sensor or NIR sensor. The preprocessing including face detection and face 

alignment is executed so that the location of the face can be detected and the input face 

can be properly aligned. After that, depending on which model or classifier is chosen for 

the recognition, there exist different ways for feature extraction for face biometrics. In our 

experiment, we adopt a deep-learning-based model. We applied Dlib library [41] on the 

aligned face to extract the feature and encode it into a 128-dimensional vector and the 

encoded value will be normalized into the range [0, 1]. The feature extractor in Dlib ap-

plied a very deep residual network as the backbone to extract the face feature as well as 

encode the facial identities. In the matching phase, the probe face code is matched against 

all face templates in the enrolled database by computing the distance between two face 

codes. 

In this paper, the threshold value of the distance is selected by considering the best 

EER. The overall process is depicted in Figure 11. 
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Figure 11. The classical procedure for face recognition. 

4.5. Details for Training and Parameters Tuning 

At first, we also make use of the PSNR-oriented pre-trained model to initialize the 

generator. The loss weights for iris generation are 1.0 for perceptual loss, 0.03 for relativ-

istic loss, and 0.05 for pixel-wise loss, respectively (𝜆 = 1, 𝜂 =  3 ×  10−2, 𝛾 = 5 ×  10−2) 

[31]. The learning rate was initially set to 0.0001 and trained for 10,000 epochs to achieve 

convergence. On the other hand, the loss weights for face generation are 1.3 for perceptual 

loss, 0.08 for relativistic loss, and 0.4 for pixel-wise loss (𝜆 = 1.3, 𝜂 =  8 ×  10−2, 𝛾 =

 4 ×  10−1). The learning rate was initially set to 0.0001 and trained for 80,000 epochs to 

reach convergence. 

In addition, the batch size is set to 4 for iris generation and 32 for face generation, due 

to the constraint of the GPU memory, and the general stability parameters of Adam opti-

mizer fine-tune in training are 𝛽1 = 0.0009 and 𝛽2 = 0.5  including adding the AMS gra-

dient to speed up the network convergence. The implementation is performed with Keras 

based on the TensorFlow backend and trained with 4 NVIDIA GeForce GTX1080 Ti GPUs. 

5. Experimental Results 

5.1. Downstream Task: Iris Recognition 

For iris recognition experiments, the ROC curve presents that the proposed DDA-

SRGAN outperforms most of the SR methods, as shown in the illustration in Figures 12 

and 13, and the quantized value of each ROC curve also reflects on the AUC, of which a 

greater value indicates better performance. For the comparison between DDA-SRGAN 

and nESRGAN+, which is the latest SOTA in the SR field, our proposed method has better 

performance in terms of EER. Furthermore, our method compares with the MA-SRGAN, 

which is the latest proposed model in the field of biometric SR, also showing superiority 

with lower FAR, and achieves the lowest EER with 2.24%, as described in Table 4. To 

further understand the discriminating power between the authentic distribution and the 

imposter distribution, the fisher ratio is used to measure the different SR method, and the 

proposed DDA-SRGAN also shows the highest discriminating capability by presenting 

the largest distance between the distributions. Note that the ground truth (HR) images 

achieve an EER of 2.072%, and the gap between SR image and ground truth is very small. 
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Table 4. The comparison with different SR method in iris recognition. 

 EER (%) Fisher Ratio AUC VR 

LR 5.500 1.53 98.46% 75.62% 

Bicubic 3.796 1.68 99.06% 84.35% 

RCAN 2.430 1.86 99.49% 91.74% 

nESRGAN+ 2.488 1.85 99.46% 91.65% 

MA-SRGAN 2.308 1.87 99.49% 92.23% 

DDA-

SRGAN(ours) 
2.240 1.88 99.51% 92.7% 

GT 2.072 1.93 99.57% 93.62% 

 

Figure 12. Comparison of ROC curves for each SR model on the CASIA-Iris dataset. The figure 

shows the various SR methods, and the deep-learning-based approaches show the outstanding per-

formance compared to the traditional method (bicubic). Furthermore, the proposed DDA-SRGAN 

achieves the best performance and narrows the gap between the SR method and ground truth (GT). 

 

Figure 13. Detailed comparison of ROC curves for each SR model on the CASIA-Iris dataset. In the 

detailed comparison, we can find that the LR images downgrade the recognition accuracy almost 

20% when FAR = 0.1%. The various SR approaches mitigate this gap, and the proposed method 

achieves the best performance among those approaches. 
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5.2. Downstream Task: Face Recognition 

For face recognition experiments, the ROC curve presents that the proposed DDA-

SRGAN outperforms some SR methods, as shown in the illustrations in Figures 14 and 15. 

Although, DDA-SRGAN may not have better performance than nESRGAN+ as well as 

MA-SRGAN in the case of face recognition, the reason may be that multiple ROI regions 

of the face cause the model to barely optimize and converge to the global optimum. How-

ever, our proposed method still performs better than other kinds of attention-based 

method, such as RCAN, as it achieves lower EER and a higher Fisher ratio and AUC, as 

described in Table 5. Moreover, other SR methods, such as MA-SRGAN, require prior 

knowledge of the downstream tasks to indicate the ROI region. 

Table 5. Comparison of the proposed method with different SR models for face recognition. 

 EER (%) Fisher Ratio AUC VR 

Bicubic 11.310 1.16 92.34% 24.18% 

RCAN 8.260 1.40 95.67% 68.74% 

nESRGAN+ 6.247 1.65 97.36% 87.71% 

MA-SRGAN 6.237 1.64 97.41% 89.75 

DDA-SRGAN 

(ours) 
6.840 1.53 97.02% 84.24% 

GT 5.506 1.86 97.91% 92.01% 

 

Figure 14. Comparison of ROC curves for each SR model on the CelebA dataset. The figure shows 

the various SR methods, and the deep-learning-based approaches show the outstanding perfor-

mance compared to the traditional method (bicubic). The proposed DDA-SRGAN achieves an ac-

ceptable performance among all of the deep-learning approaches without the need for prior 

knowledge of ROI. 
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Figure 15. Detailed comparison of ROC curves for each SR model on the CelebA dataset. In the 

detailed comparison, we can find that the bicubic SR images downgrade the recognition accuracy 

to roughly 68% when FAR = 5%, and the various SR methods mitigate this gap. Among them, the 

proposed method achieves an acceptable performance without prior knowledge of ROI. 

5.3. Visual Evaluation 

The objective metric of iris recognition has already presented the superiority of the 

proposed method in terms of the ROI feature, while the visual evaluation is still the main-

stream method to judge the image quality in the SR field. Therefore, in this sub-section, 

we also present several visual comparisons in the iris images on the ROI part according 

to the domain knowledge. 

Figures 16 and 17 demonstrate visual comparisons of normalized iris images. For 

both image sets, we observe that most of the compared methods cannot recover the iris 

texture and would suffer from the blurring artifacts. In contrast, our DDA-SRGAN can 

slightly alleviate such a side-effect and preserve the texture detail. 

 

Figure 16. Visual comparison of the super-resolved image of “Rcls6_10” from CASIA dataset. 
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Figure 17. Visual comparison of the super-resolved image of “Rcls489_7” from CASIA dataset. 

Although the objective metric may not perform well in the case of face recognition, 

our proposed method still presents competitive results in the visual comparisons. In the 

experiment, we inspect the detail of the ROI feature by highlighting a few important re-

gions on a face image, as illustrated in Figures 18 and 19. For both image sets, we observe 

that some of the baseline methods produce the blurring artifacts nearby the region of facial 

landmarks, for example, RCAN produced blurred eyes, as shown in Figure 18. Some of 

the baseline methods, such as nESRGAN+ and MA-SRGAN, also generate images of 

which the color is less saturating (see Figure 19), while the proposed DDA-SRGAN pro-

duces more faithful results to describe the facial texture and preserve image color satura-

tion. 

 

Figure 18. Visual comparison of the super-resolved image of “011006” from CelebA dataset. 
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Figure 19. Visual comparison of the super-resolved image of “064049” from CelebA dataset. 

5.4. Quantitative Evaluation 

The quantitative metric is also used in the SR field to judge the image quality. There-

fore, in this sub-section, we also present such results based on several commonly used 

metric such as PSNR and SSIM. To further measure the perceptual quality, we also com-

pute the inception score to present the performance of image generation. 

According to Tables 6 and 7, we can observe that PSNR and SSIM almost present 

consistent results, which indicate that the bicubic and RCAN performs well when recon-

structing the structural information of the images. On the other hand, the GAN-based 

methods produce worse results, whose distortion may be caused by super-resolving 

edges and textures which are not pleasing to the eyes. However, such reconstructed im-

ages may benefit the downstream task such as classification, recognition, etc., which is the 

novel perspective that we argue in this work. For the inception score, the perceptual score 

of the image is based on the VGG network. In Table 6, the details of the patch information 

are crucial for the classification; the proposed method achieves a competitive result and is 

only worse than ESRGAN+. In Table 7, the proposed method presents the worse case, 

which partially reveals a similar result of the face recognition in Table 5. The difference 

between the iris and face recognition is the number of potential ROI in the entire image. 

The iris recognition mainly focuses on the iris texture, which only exists in the single re-

gion nearby the pupil boundary. However, for face biometrics, there are multiple regions 

that influence the final recognition rate, such as noise, eyes, mouse, hair style, and each of 

them can be seem as one individual ROI in a face image. So, the proposed method is re-

quired to learn the multiple ROIs in the face SR hallucination task, which is harder to 

converge to the global optimum during the training. In other words, the weakness of the 

proposed method is that it may not be suitable for some special SR tasks when multiple 

ROIs exist. 

Table 6. The comparison of the proposed method with different SR models for iris recognition. 

 PSNR SSIM (%) Inception Score 

Bicubic 33.91 89% 2.1 

RCAN 34.88 89.5% 2.23 

nESRGAN+ 20.75 83.5% 2.35 

MA-SRGAN 23.36 84.9% 2.29% 

DDA-SRGAN (ours) 28.27 80% 2.3% 

GT inf 100% - 
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Table 7. The comparison of the proposed method with different SR models for face recognition. 

 PSNR SSIM (%) Inception Score 

Bicubic 26.62 81.9% 3.18 

RCAN 26.38 79.9% 3.11 

nESRGAN+ 22.4 76.6% 2.88 

MA-SRGAN 21.22 74.5% 2.96 

DDA-SRGAN (ours) 22.21 65.8% 2.73 

GT inf 100% - 

5.5. The Comparison between the Previous Work 

Some of the approaches in the SR field are based on the attention mechanism, whose 

network blocks may be quite similar with the proposed method. So, we attempt to briefly 

summarize the main difference between the proposed kernel module DDAB and the pre-

vious works. In the previous work, the RCAN as well as the RBAN are quite similar to the 

proposed method, which may cause the reader to be confused about the contribution of 

our work. 

In the RCAN [9], the authors provide the residual channel attention block (RCAB), 

which makes use of the SE Block [31] to perform the channel attention with the additional 

residual connection as the kernel module to extract the feature in the LR images. While 

the proposed DDAB is composed of the CAM and SAM, we consider the feature correla-

tion to not only be present across the channel but also in the content of each feature map. 

So, we combine the SAM followed by the CAM to further allow the DDAB to figure out 

the context correlation of each feature map. The main differences between the CAM as 

well as the DDAB are shown in Figure 20. 

 

Figure 20. The main difference between the RCAB and the DDAB. The red solid circles indicate the 

additional parts in our module DDAB. 

In the CBAM [38], the channel attention module (also called CAM in CBAM) makes 

use of the max-pooling and the average-pooling to extract the cross-channel features and 

perform the concatenation, while we only use the global average pooling in our CAM to 

extract the global feature (cross-channel) without such post-processing. Since the max-

pooling is prone to overfit in most cases, we eliminate such a mechanism to speed up the 

training procedure as well as to reduce the memory usage to store the intermediate fea-

tures. Furthermore, the spatial attention module (also called SAM in CBAM) in the previ-

ous work only uses the convolution with a pooling layer to extract the contextual infor-

mation (the value belongs to each feature map), but we further use the dilated convolu-

tion, which can enlarge the receptive field without losing too much information (unlike 
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the method based on pooling) with a proper dilated rate, to extract the contextual infor-

mation. The main difference between the CBAM as well as the DDAB are shown in Fig-

ures 21 and 22, respectively. 

 

Figure 21. The main difference between the RBAM and DDAB in terms of channel attention module. 

The red solid circle indicates the different implementation in our module DDAB. 

 

Figure 22. The main difference between the RBAM and DDAB in terms of spatial attention module. 

The red solid circle indicates the different implementation in our module DDAB. 

6. Conclusions 

We have proposed DDA-SRGAN for accurate super-resolution image reconstruction 

and demonstrated its effectiveness in the case of biometric recognition. Specifically, the 

dual-dimensional attention module automatically forces the generator to focus on the dis-

criminative feature in the ROI region for enhancing the performance of biometric task. 

Furthermore, the proposed method allows the generators to reconstruct high-level seman-

tic features, such as iris texture or facial details, which are crucial for enhancing the accu-

racy of the biometric system. 
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In the framework of IoT application, the security of the authentication system in Bi-

ometricIoT can be further enhanced by using the proposed SR method. Furthermore, the 

sensor node in the secured IoT network will be safe and the risk of the sensor nodes being 

compromised can be minimized. As a result, the proposed DDA-SRGAN outperforms the 

current SOTA (MA-SRGAN) in the task of iris by 0.5% VR in the large-scale biometric 

experiments and achieves competitive visual results in face recognition. 

For the future works, we plan to combine the mask attention module into the pro-

posed DDA-SRGAN to stabilize the performance of the face recognition task. It may also 

boost the performance of the iris recognition task by propagating the additional ROI in-

formation, resulting in a better SR method for mobile sensing networks. 
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