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Abstract: Recently, Siamese architecture has been widely used in the field of visual tracking, and has
achieved great success. Most Siamese network based trackers aggregate the target information of
two branches by cross-correlation. However, since the location of the sampling points in the search
feature area is pre-fixed in cross-correlation operation, these trackers suffer from either background
noise influence or missing foreground information. Moreover, the cross-correlation between the
template and the search area neglects the geometry information of the target. In this paper, we
propose a Siamese deformable cross-correlation network to model the geometric structure of target
and improve the performance of visual tracking. We propose to learn an offset field end-to-end in
cross-correlation. With the guidance of the offset field, the sampling in the search image area can
adapt to the deformation of the target, and realize the modeling of the geometric structure of the
target. We further propose an online classification sub-network to model the variation of target
appearance and enhance the robustness of the tracker. Extensive experiments are conducted on
four challenging benchmarks, including OTB2015, VOT2018, VOT2019 and UAV123. The results
demonstrate that our tracker achieves state-of-the-art performance.

Keywords: visual object tracking; deformable convolution; deformable cross-correlation; Siamese
network

1. Introduction

Visual object tracking is a very challenging and fundamental problem in the field of
computer vision. It aims to track a given object in all frames of video sequence, and give its
position and scale through a bounding box. The object being tracked is usually given in
the first frame of the video. Different from the detection task, the tracked object is class-
agnostic. Visual tracking has a wide range of applications in practical scenes, such as video
surveillance [1], human-computer interaction [2] and automatic driving [3]. Although great
progress has been made in this field in recent years, it is still a great challenge to construct
a high-performance tracker due to the complexity of the tracking scenarios, like occlusion,
similar distractors, scale variation and deformation.

Recently, trackers based on Siamese network have become the mainstream. SiamFC [4]
is the first method to introduce Siamese network into tracking. It extracts image features
of two branches through convolution neural network (CNN) with shared parameters,
and then sends image feature pair into cross-correlation module to compute similarity
maps. This architecture is very simple and effective, and Siamese trackers achieve good
performance in tracking speed and accuracy. The main components of Siamese trackers
are feature extraction network and information embedding module. Many subsequent
improvements are mostly based on these two aspects. SiamRPN [5] and siamFC++ [6]
improve the estimation accuracy of bounding box by introducing regression branch into the
information embedding module. SiamRPN++ [7] and SiamDW [8] use deeper convolution
network as feature extraction network to enhance the capacity of feature representation.
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Although these trackers have achieved great success, there are still some problems.
Firstly, the template branch is fixed, which makes the tracker cannot deal with the dras-
tic changes in appearance and long sequence. Secondly, most current Siamese trackers
ignore the variation of object geometry in the tracking process, which will reduce the
robustness of the tracker, especially when facing deformation, scale variation and rotation.
As illustrated in Figure 1, the traditional cross-correlation is limited to a fixed area and
cannot adapt to the deformation of the target, which is easy to cause the loss of target
information or background interference. From the above considerations, we can see that
modeling the appearance changes and object geometry is very important for constructing
an efficient tracker.

Figure 1. Illustration of traditional cross-correlation and deformable cross-correlation. The left pair
of images is the traditional cross-correlation operation, and the right pair is the deformable cross-
correlation operation. The blue dots represent the convolution kernel constructed by the template
features, and the red dots represent the sampling points of convolution operation on the feature
maps of search image.

In order to tackle the above problems, we propose a new information embedding mod-
ule called deformable cross-correlation for visual object tracking. The idea of deformable
cross-correlation comes from deformable convolution network. We model the geometric
transformation information by learning a sampling position offset. Compared with the
traditional cross-correlation, deformable cross-correlation learns an offset field end-to-end
in the information embedding module, which can adapt to the variation of object scale,
posture and deformation, reduce the influence of background and ensure the integrity of
target features. In addition, to solve the problem of drastic changes of object appearance,
we also train an online classification branch to improve the robustness of the tracker. The
online classifier includes two modules: attention module and filter module. We send
the search image features into the attention module, and use the attention mechanism to
suppress the interference information and enhance the target information. In the filter
module, a deformable convolution layer is also used to model the object geometry, and the
filter is updated in the tracking process to deal with the change of object appearance. The
main contributions of this paper are summarized as follows:

• We propose a deformable cross-correlation module to aggregate template information
and search information. The geometric information can make the similarity matching
process more accurate and improve the tracking performance. In addition, we use
attention mechanism and deformable convolution layer to construct an online classifier.
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Online classification ensures that the tracker can receive the latest information of the
target in real time, and improves the ability of the tracker to deal with the changes of
the target appearance.

• Using deformable cross-correlation module and online classifier, we construct a target
geometry-aware tracker for visual target tracking. This framework is simple and
effective. It can adapt to scale variation and deformation in the tracking process, and
improve the robustness of the tracker in the tracking process by learning new target
information through an online classifier.

• We have conducted extensive experiments on several challenging benchmarks. Exper-
iments show that our proposed tracker outperforms many state-of-the-art trackers.

This paper is organized into five sections, and the remaining content is as follows. The
related works are reviewed in Section 2 and the proposed method is described in Section 3.
Section 4 presents the experimental results. We conclude this paper in the last section.

2. Related Work

In recent years, visual tracking has received increasing attention in computer vision.
Deep learning methods have also been introduced into visual tracking, such as FCN [9],
DrsNet [10]. In this section, we will review the Siamese trackers and deformable convolution.

2.1. Siamese Network Based Visual Tracking

SiamFC [4] and SINT [11] are the first trackers to apply the Siamese network to the
tracking field. Siamese structure is very simple and effective. It includes two branches:
template branch and search branch. Tracking is achieved by matching template features
with each position in search features. In order to estimate the bounding box of the object
more accurately, SiamRPN [5] introduces a region proposal networks (RPN) to regress the
boxes. SiamRPN++ [7] and SiamDW [8] use deeper convolution network to extract features,
which makes full use of the potential of deep networks and improves the representation
capacity of features. SiamMask [12] combines instance segmentation and visual tracking to
achieve more fine-grained bounding box estimation. According to the idea of multi-stage
aggregation in the detection field, C-RPN [13] proposes a cascade tracking framework to
continuously refine the tracking results and improve the tracking performance. Although
RPN can improve the accuracy of box estimation, it also has some defects: it introduces
extra parameters and requires prior knowledge to preset anchors. Recently, many anchor-
free based trackers have emerged to solve this problem, like SiamCAR [14], SiamFC++ [6],
SiamBAN [15] and Ocean [16]. These methods have achieved the state-of-the-art tracking
performance. In addition, attention mechanism is also used in tracking field to improve
the robustness and accuracy of tracking. RASNet [17] introduces a variety of attention
mechanisms, including off-line trained general attention, residual attention and channel
attention. Unlike the trackers above, SiamGAT [18] improves the cross-correlation. It
uses graph attention to construct local to local consistency of template features and search
features, which makes up for the defect that cross-correlation operation only focuses on
global matching and ignores target structure and local information. Most Siamese trackers
still have a defect, that is, the template branch is fixed in the whole tracking process, and
there is no parameter update, which leads to a certain decline in the stability of the tracker.
CFNet [19] and DCFNet [20] integrate the discriminant correlation filter (DCF) into the
Siamese framework; that is, DCF is used as a layer in the convolution network, so as to
realize online update. Different from updating filter layer, CFCF [21] fine-tunes the feature
extraction network through end-to-end training, so as to improve the tracking performance
of the tracker.

2.2. Deformable Convolutional Networks

In most computer vision tasks, we often face the challenge of geometric change or
geometric transformation in scale, attitude, perspective and deformation. The traditional
convolution networks inherently cannot model the internal geometric structure of the
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object, and can only rely on the enhancement of the existing training samples to reduce
the impact of geometric structure variation, but still cannot deal with the unknown geo-
metric transformation in the new tasks. Dai et al. [22] propose deformable convolutional
networks (DCN) to model geometric transformation, which introduces a 2D offset to the
grid sampling position of standard convolution, so the sampling position is not limited by
the grid sampling, and the input features can be adaptive to the deformation of the object.
Zhu et al. [23] have further proposed an improved DCN, which uses more deformable
convolution layers in the practical tasks, and increases the position weight for each sam-
pling position, so that DCNv2 has the ability to focus on the region of interest of the image.
In object detection, Yang et al. [24] propose RepPoints, which represents the object more
finely as a set of sample points and avoids using rough bounding box to represent the
object. In addition, estimated box is obtained directly through sample points, which is easy
to use to achieve end-to-end training. Then, Yang et al. [25] propose an improved dense
RepPoints, which mainly expands the set of sample points to make the representation
of objects more fine-grained and can be applied to segmentation tasks. Some efficient
calculation strategies are also proposed to accelerate the calculation of large sample set.
Ma et al. [26] introduce the idea of sample point set representation into the field of tracking,
and propose RPT to indicate the position of semantic and geometric significance on the
target object through training point set. Aiming at appearance variations and dynamic
environment, Walia et al. [27] propose to make the tracker adaptive to the appearance of
objects through unified graph fusion of multicue.

3. Proposed Method

As shown in Figure 2, Siamese deformable cross-correlation framework mainly in-
cludes four components: shared feature extraction networks, deformable cross-correlation
module, classification and regression head and online classification branch. We use the
modified ResNet50 as the backbone to extract template features and search features, send
the features to the information embedding module for information fusion, and then send
the fused information to the classification regression module to obtain the estimation
results. In the online classification branch, we use the attention mechanism to enhance the
target information, suppress the background information, and construct the filter through
the deformable convolution layer. Finally, the results of the two branches are fused to
obtain the final tracking results.

Figure 2. An overview of the proposed target geometric-aware visual tracking framework. The
upper part is an off-line trained target estimation sub network, which mainly uses deformable cross-
correlation to model the geometric transformation information of the tracking object. Reg represents
the regression branch in the classification regression module, and Cls represents the classification
branch. The lower part is the online classification sub network. It uses online trained classifiers to
deal with the drastic changes of object appearance, supplements the classification results of target
estimation sub network, and improves the robustness of the tracker.
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3.1. Deformable Convolution

For notation clarity, we describe the convolution operation in 2D instead of 3D. 2D
convolution operation mainly includes two steps: sampling and weighted summation. As
illustrated in the Figure 3, the sampling strategy used in traditional convolution operation
is grid sampling, and the convolution kernel is used as the weight. The deformable
convolution focuses on improving the sampling step, so that the sampling position can be
adaptive to the geometric transformation of the object. For a 3× 3 kernel with dilation 1,
the sampling position of standard convolution can be expressed as follows:

S = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)}. (1)

Then, the value of each point p on the output feature map y can be computed by the
following formula,

y(p) = ∑
si∈S

w(si) · x(p + si), (2)

where si indicates position in S, w is kernel.

(a) Grid sampling (b) Deformable sampling

Figure 3. Illustration of 3× 3 standard convolution and deformable convolution. (a) The grid sampling strategy of standard
convolution operation (blue dots). (b) In deformable convolution sampling, new sampling positions are obtained by
applying offset to the standard sampling positions. The red dots are the new sampling positions, and the blue arrows
indicate the offsets.

For deformable convolution operation, we apply an offset to the position of each sam-
pling point, which relieves the limitation that the sampling point position of convolution
operation is fixed, so that the sampling position of deformable convolution operation can
be adaptive to the internal structure of the object. Therefore, we have

yD(p) = ∑
si∈S

w(si) · x(p + si + ∆si), (3)

where ∆si is the offset corresponding to position si. Since the offset position p + si + ∆si
may not be an integer, the value of sampling point at fractional position can be obtained by
linear interpolation.
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3.2. Siamese Deformable Cross-Correlation

Given two images: template Z and search X, the traditional Siamese tracker extracts
template features and search features, respectively, through the shared backbone ϕ, and
then aggregates the target information through the information embedding function.

f (Z, X) = ϕθ(Z) ? ϕθ(X), (4)

where θ indicates parameters of backbone, ? indicates cross-correlation.
Information embedding functions can be divided into cross-correlation and depth-

wise cross-correlation. SiamFC uses cross-correlation layer to compute a single channel
response map, which takes the whole template feature as a convolution kernel. SiamRPN++
uses depth-wise cross-correlation instead of cross-correlation, which can reduce the com-
putation cost and memory usage. It combines the template feature and search feature of
the same channel into pairs, and performs correlation on each channel, respectively. The
dimension of the response maps is the same as that of the template features and search
features. In this paper, we use depth-wise deformable cross-correlation to aggregate two
image information. For the convenience of analysis, we only consider the calculation of a
single channel.

Inspired by DCN, we design a deformable cross-correlation to compute correlation
maps. The deformable cross-correlation structure is illustrated in Figure 4. The sizes of
search feature and template feature are Hx ×Wx and Hz ×Wz. The offsets are computed
by applying a convolution layer over the search feature. It is worth noting that the spatial
resolution of the convolution kernel is consistent with the template feature Hz ×Wz, and
the number of convolution kernel is the same as the number of template feature elements
N. Thus, the size of the offset field output by the convolution layer is 2N× Hs ×Ws, where
2N represents N 2-D sampling points. The offset field has the same spatial resolution
as the correlation maps. Each point in the offset field indicates a set of sampling offsets
for correlation. An example of sampling offset of a 3× 3 convolution kernel is given in
Figure 4. In the training process, the offset field is learned end-to-end.

Figure 4. Illustration of deformable cross-correlation. Hx, Wx, Hz, Wz represent the height and
width of the search image feature and the template feature, respectively. N represents the number of
elements in the template feature (Hz ∗Wz).

We add the offset field information to the cross-correlation calculation process to
obtain the deformable cross-correlation operation.

fD(Z, X) = ϕθ(Z) ?D ϕθ(X), (5)

where ?D indicates deformable cross-correlation.
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3.3. Classification and Regression Module

As shown in Figure 5, after obtaining the correlation maps, we use the classification
and regression module to accurately locate the target object. There are some problems in
RPN networks, which can only be trained on positive samples (IOU > 0.6), and requires
prior knowledge to define anchors. All of these limit the performance of RPN networks. On
the contrary, the anchor free method can be trained on the samples with small overlap. It
does not need predefined anchors and reduces additional parameters. Similar to FCOS [28],
this paper uses the idea of center point to construct classification and regression module.

Figure 5. The classification and regression module used in this paper includes two branches: clas-
sification branch and regression branch. The adjust layers are convolution layers with kernel size
of 1× 1.

First, we define the regression target. Let the position of point Pcls on the classification
feature maps be (xcls, ycls), which corresponds to the position of point Pin on the input
image be (xin, yin) =

(⌊ s
2
⌋
+ xclss,

⌊ s
2
⌋
+ yclss

)
, where s is the total stride of the backbone.

If Pin falls into the groundtruth box, it is regarded as a positive sample, otherwise it is
regarded as a negative sample. For regression task, we only consider positive samples. We
take the distance between Pin and the four sides of the ground truth box as the regression
target T = (l, t, r, b), where l = xin − x0, t = yin − y0, r = x1 − xin, b = y1 − yin. (x0, y0)
and (x1, y1) represent the upper left corner and the lower right corner of the ground truth
box, respectively. The regression branch loss function is

Lreg =
1

Npos
∑

(xin ,yin)∈Ppos

LIOU(O(xin ,yin)
, T(xin ,yin)

), (6)

where Npos indicates the number of positive samples, Ppos is the positive sample set, O∗ is
the corresponding predicted bounding box, LIOU is the IOU loss [29].

Different from FCOS, we do not use the center-ness branch, but use a position weighted
classification loss.

Lcls = WdistL f (Pcls, Ccls), (7)

where Ccls is classification label for sample Pcls, L f denotes focal loss [30], Wdist is a Gaussian
weight function.

Finally, the objective loss is

Lall = Lcls + αLreg, (8)

where α is used to balance the two parts.

3.4. Online Classification Sub-Networks

In the previous subsection, the template feature is fixed, which limits the discrim-
inability of the method. Thus, we propose an online trained classifier to solve this problem,
which provides a supplement to the classification branch and improves the robustness and
accuracy of the tracker. Similar to ATOM [31] and DROL-RPN [32], we use a lightweight
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two-layer full convolution networks to construct the classifier, as shown in Figure 6. It is
worth noting that the kernel size of the first convolution is 1× 1. It is mainly used to reduce
the dimension of features and reduce the cost of calculation. The second convolution layer
is the deformable convolution layer, which constitutes the filter module we update in the
tracking process. In addition, in order to enhance the target feature information and reduce
the influence of interference factors, we use a dual attention module to enhance the reduced
dimension features.

Figure 6. Architecture of online classification sub-network. DConv represents deformable convolu-
tion and Conv represents standard convolution. FC represents two-layer fully connected networks.

The attention module consists of two parts: channel attention and position attention.
For channel attention, we first use the global average pooling operation to obtain the
channel information, and then use a two-layer full connected network to establish the
relationship between channels, so as to obtain the channel attention information. For
positional attention, we use channel averaging and softmax operation to obtain positional
attention information. Finally, channel attention and position attention are fused with the
initial features to obtain the final enhanced features.

Xen = Xin + Xin � Ca + Xin ⊗ Pa, (9)

where Ca, Pa represent channel attention and position attention, � represents channel-wise
production, and ⊗ represents point-wise production.

The online training samples come from the previous frames of the current frame.
To avoid noise influence such as occlusion, we only choose high-quality frames whose
classification score is higher than a certain threshold as the training samples, and the label
of the training frame is a binary Gaussian function whose center is located in the center of
the target estimation position. In addition, in order to model the geometric information of
the object, we introduce the sampling position offset in the deformable convolution layer
to construct the deformable classifier. The sampling offset comes from the sampling offsets
obtained from the deformable cross-correlation. The filter size in the online classification
branch is the same as the template feature size in the deformable cross-correlation.

In the tracking process, the online classifier is initialized in the first frame, and then
all parameters except the filter are fixed. This not only reduces the number of update
parameters, reduces the amount of calculation, but also maintains the stability of the
classifier. In the subsequent online updates, we only update the filter parameters. Similar
to ATOM [31], we do not use the stochastic gradient descent (SGD) optimization strategy,
but use the conjugate gradient descent method to accelerate the convergence speed.
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After calculating the online classification map, we fuse it with the classification results
of the matching branch to obtain the final classification map.

Sall = βSonline + (1− β)Scls, (10)

where Sonline is the output of online classifier, Scls is score map of matching branch, β is
parameter to balance two parts.

3.5. Multi-Stage Fusion

In many visual tasks, using multi-stage features is an effective strategy. In the field of
tracking, such as HCF [33] and C-RPN [13], they all adopt multi-layer features. Shallow
features preserve fine texture, shape and other high spatial resolution features, which is
conducive to target location. Deep features preserve high robust semantic information,
which is used to distinguish objects from the background. The features of different layers
are complementary to each other in tracking tasks, and can deal with some challenging
scenes, such as motion blur and large deformation.

In this paper, we use ResNet-50 to extract the features, and the output of the last
three-stage is used as the feature representation. Similar to SiamRPN++, the last three-stage
feature maps have the same spatial resolution, so we can conveniently fuse multi-stage
features. For the classification and regression module, we first compute the classification
maps and regression maps on all stages, and then fuse all the results by weighted sum.

Scls =
5

∑
l=3

γl · Sl
cls, (11)

Rall =
5

∑
l=3

δl · Rl , (12)

where Sl
cls and Rl represent classification maps and regression maps of stage l. γl and δl

represent fusion weight for corresponding stage. After obtaining the fusion classification
map, it is finally fused with the online classification map to estimate the target.

For the online classification sub network, we use weighted sum to fuse the online
classification results,

Sonline =
5

∑
l=3

wl · Sl
online, (13)

where wl , l = 3, 4, 5 are the fusion weights for classification results at all stages. They are
trained end-to-end in the network. · represents element-wise production. Sl

online, l = 3, 4, 5
are online classification results at all stages.

4. Experiments

This section mainly includes four parts: implementation details, comparison with
other state-of-the-art (SOTA) trackers, ablation experiments and qualitative comparison.

4.1. Implementation Details

We use ResNet-50 which is pre-trained on ImageNet [34] as the backbone to extract
the features. Similar to SiamRPN++, we modify the structure of the network to make it
suitable for the tracking field. The output of the last three convolution blocks is taken as
the multi-stage features. For the fourth and fifth convolution blocks, the down sampling is
discarded to preserve more spatial details. Meanwhile, dilated convolutions with different
atrous rates are used to improve the receptive field.

The input of off-line training is an image pair, in which the size of template image
is 127× 127 and the size of search image is 255× 255. The image pair is extracted from a
video sequence, and the interval is less than 100 frames. Then the object area is cropped
according to ground truth, and finally the patch is resized to the required size. The training
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data sets include Image VID [35], COCO [36], Image DET [35] and YouTube Bounding
Box [37].

The whole training process includes 20 epochs, which can be divided into two stages.
In the first five epochs, we use warm up learning rate from 0.001 to 0.005 to train the
deformable cross-correlation module and classification and regression head, and freeze
the backbone parameters. In the last 15 epochs, the learning rate of the whole network
decreases exponentially from 0.005 to 0.0005, and the learning rate of the backbone network
is set as one tenth of the overall learning rate. Our optimization method is random gradient
descent (SGD), in which momentum is set to 0.9 and weight decay is set to 0.0005. The
online classification branch uses the high quality frames that have been tracked as the
training set. We use Pytorch to implement this method. All experiments are carried out on
a PC equipped with NVIDIA Geforce GTX2080TI GPU and Core i7-8700 at 3.2GHZ CPU.

4.2. Comparison with Other Sota Trackers

The proposed tracker is compared with other SOTA trackers on several popular
benchmarks. These datasets include OTB2015 [38], VOT2018 [39], VOT2019 [40] and
UAV123 [41].

OTB2015. The OTB2015 dataset is extended from OTB2013 [42], which contains
100 video sequences. It includes many challenging aspects in visual tracking, like Illumina-
tion Variation, Scale Variation, and Occlusion and so on. The evaluation is mainly based on
two criteria: precision and success rate. The precision measures the distance between the
tracking results and the ground truth center, while the success rate measures the overlaps
between estimated boxes and ground truth boxes. We compare our tracker with the follow-
ing SOTA trackers: ECO-HC [43], SiamFC [4], ATOM [31], SiamRPN++ [7], SiamFC++ [6],
SiamAtt [44], Ocean [16], SiamR-CNN [45], SiamBAN [15] and DiMP-50 [46].

Table 1 shows the precision scores, area under curve (AUC) scores and frame per
second (FPS) of all trackers on OTB2015, Figures 7 and 8 show the detailed tracking results.
Our tracker achieves the best performance of all trackers on both metrics, with AUC score
of 0.709 and precision score of 0.928. Compared with SiamRPN++, the performance gains
of our tracker on AUC and precision are 1.3% and 1.4%, respectively. This is mainly because
our tracker uses deformable cross-correlation and online classification components, so that
the tracker can learn more powerful feature representation, so as to improve the accuracy
and robustness. Compared with DiMP-50 with online fine-tuning, our tracker also achieves
performance gains of 3.4% and 2.3% on precision and success rate.

Figure 7. Results of precision on OTB2015. The numbers in the legend indicate the precision scores
when the threshold is 20 pixels.
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Figure 8. Results of success rate on OTB2015. The numbers in the legend indicate the area under
curve (AUC) scores.

Table 1. Comparison with the state-of-the-art trackers on OTB2015. The numbers in column of
AUC indicate area under curve scores. The numbers in column of Precision are the scores when the
threshold is 20 pixels. Red, green and blue represent the first, second and third rank, respectively.

Tracker AUC Precision FPS

ECO-HC 0.643 0.856 60
SiamFC 0.582 0.771 86
ATOM 0.663 0.874 30

SiamRPN++ 0.696 0.914 35
SiamFC++ 0.682 0.896 90

LSART 0.672 0.923 1
MDNet 0.677 0.909 1

SiamR-CNN 0.701 0.891 4.7
SiamBAN 0.696 0.910 40
DiMP-50 0.684 0.894 43

Ours 0.709 0.928 30

VOT2018. The VOT2018 dataset contains 60 video sequences with different challenges.
In contrast to OTB2015, it needs to reinitialize the tracker when tracking fails. The criteria
used to evaluate the trackers are accuracy, robustness and expected average overlap (EAO).
The accuracy measures the average overlap of the estimation box and ground truth box
when the tracking is successful, and the robustness measures the tracking failure rate. The
expected average overlap is a combination of the first two criteria, which is used to rank
the trackers. We compare our tracker with state-of-the-art trackers, including D3S [47],
SiamRPN++ [7], ATOM [31], SiamMask [12], SiamR-CNN [45], DiMP-50 [46], LADCF [39],
MFT [39], UPDT [48], SiamFC++ [6].

Figure 9 shows the EAO scores and rankings of all trackers, and Table 2 gives a detailed
comparison of top trackers. Figure 9 shows that our tracker ranks first with the highest
EAO score of 0.495. We can see from Table 2 that our tracker achieves the second best score
of 0.612 in accuracy and the best score of 0.126 in robust. Compared with LADCF, the best
tracker in VOT2018 challenge, our tracker improves the performance of EAO by 10.6%.
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Figure 9. Expected average overlap scores ranking for compared trackers on the VOT2018 benchmark.
The trackers on the right have better performance.

Table 2. Detailed experimental results of several top ranked trackers on VOT2018. Red, green and
blue represent the first, second and third rank, respectively.

Tracker EAO ↑ Accuracy ↑ Robust ↓

SiamRPN++ 0.414 0.600 0.234
D3S 0.489 0.640 0.150

SiamFC++ 0.426 0.587 0.183
ATOM 0.401 0.590 0.204

DiMP-50 0.440 0.597 0.153
LADCF 0.389 0.503 0.159

SiamR-CNN 0.408 0.610 0.220
Ours 0.495 0.628 0.126

VOT2019. VOT2019 dataset also contains 60 video sequences, most of which are the
same as VOT2018. The difference is that several easiest sequences in VOT2018 is replaced
with more challenging sequences. The same measurements as VOT2018 are also exploited
for performance evaluation. We compare our track with following trackers: ATOM [31],
SiamRPN++ [7], DiMP-50 [46], DRNet [40], ACNT [40], SiamFCOT [40], SiamCRF [40],
SiamMask [12], ROAM++ [49], and SPM [50].

As illustrated in Figure 10, our tracker achieves an EAO of 0.402, ranks first and
outperforms other trackers. Table 3 shows that our tracker attains the best robustness
of 0.220 and third best accuracy of 0.623 among all trackers. ACNT and SiamCRF are
slightly superior in terms of accuracy. Compared with DRNet, the best tracker in VOT2019
challenge, our tracker improves the performance of EAO by 0.7%.

UAV123. Inherently different from OTB2015 and VOT benchmarks, UAV123 is a
dataset captured by Unmanned Aerial Vehicle (UAV), which contains 123 video sequences
with an average length of 915 frames. The same measurements as OTB2015 are also
exploited for performance evaluation. We compare our tracker with following SOTA track-
ers: DiMP-50 [46], ATOM [31], ECO [43], SiamRPN++ [7], DaSiamRPN [51], UPDT [48],
SiamRPN [5], ECO-HC [43].

Table 4 illustrates the results of the compared trackers. Specifically, our tracker
achieves best performance with precision score of 0.872 and AUC score of 0.660. Compared
with SiamRPN++ without appearance update and geometric modeling ability, the perfor-
mance of our tracker in precision and AUC is improved by 6.5% and 4.7%. The Dimp-50
tracker has no geometric structure modeling ability, so its performance is 1.4% and 0.6%
lower than our tracker on precision and AUC, respectively.
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Figure 10. Expected average overlap scores ranking for compared trackers on the VOT2019 bench-
mark. The trackers on the right have better performance.

Table 3. Detailed experimental results of all compared trackers on VOT2019. Red, green and blue
represent the first, second and third rank, respectively.

Tracker EAO ↑ Accuracy ↑ Robust ↓

ATOM 0.292 0.603 0.411
SiamRPN++ 0.285 0.599 0.482

DiMP-50 0.379 0.594 0.278
DRNet 0.395 0.605 0.261
ACNT 0.368 0.626 0.278

SiamFCOT 0.350 0.601 0.386
SiamCRF 0.330 0.625 0.296
SiamMask 0.287 0.594 0.461
ROAM++ 0.281 0.561 0.438

SPM 0.275 0.577 0.507
Ours 0.402 0.623 0.220

Table 4. Results of precision and area under curve (AUC) on dataset UAV123. Red, green and blue
represent the first, second and third rank, respectively.

Tracker Precision AUC

DiMP-50 0.858 0.654
ATOM 0.856 0.643
ECO 0.741 0.525

SiamRPN++ 0.807 0.613
DaSiamRPN 0.795 0.585

UPDT 0.780 0.547
SiamRPN 0.748 0.527
SiamFC 0.648 0.485

Ours 0.872 0.660

4.3. Ablation Experiment

In this subsection, ablation experiments are performed to illustrate the influence of
each components of the tracker proposed in this paper. We conduct ablation experiments on
OTB2015 and use SiamFC++ with a backbone of ResNet-50 as the baseline. The components
to be analyzed are deformable cross-correlation (Def-XCorr), online classification (OC) and
multi-stage aggregation (MSA). As illustrated in Table 5, the improvement gains for three
components are 2.3%, 0.4%, 0.7%, respectively.
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We can see that Def-XCorr component contributes the most to the performance gain of
the tracker. It is proven that the deformable cross-correlation is beneficial to more accurate
target estimation. This is partly because it models the geometric structure of the object,
makes the information embedding more reasonable, and can adapt to the deformation of
the object. OC component introduces new appearance information of the object into the
tracker, which can deal with the appearance change factors of the object to a certain extent,
so a AUC performance gain of 0.4% is obtained. MSA component enables the tracker to
adopt different stages of convolution features, improves the representation ability of the
learned object features, and further improves the performance of 0.7% on AUC. At last, the
combination of all components makes our tracker achieve the best performance.

Table 5. Ablation study of our tracker on OTB2015. Baseline represents a modified SiamFC++ with a
replaced backbone of ResNet-50. Def-XCorr, OC, MSA represent deformable cross-correlation, online
classification and multi-stage aggregation, respectively.

Baseline Def-XCorr OC MSA Precision AUC ∆AUC

X 0.898 0.675 -
X X 0.920 0.698 2.3%
X X X 0.922 0.702 0.4%
X X X X 0.928 0.709 0.7%

4.4. Qualitative Comparison

We compared our tracker with several other advanced trackers quantitatively, and
Figure 11 shows the qualitative results on the experimental dataset. The video sequences
tested are several challenging scenes selected from OTB2015 benchmark, namely: Bird,
Diving, Jump and Skating2-1. We can see that our tracker can model the local information
and internal geometry of objects, so it can deal with the deformation and partial occlusion
of non-rigid objects. The experimental results show that our tracker achieves the best
tracking performance in all test sequences.

Figure 11. Qualitative comparisons with 4 state-of-the-art trackers.

In order to further illustrate the effectiveness of our proposed method in dealing with
the challenges of occlusion and object deformation, we use deformable cross-correlation and
plain cross-correlation to build two different trackers, respectively, test them on multiple
video sequences with occlusion and deformation factors, and visualize the response of
tracking results, as shown in Figure 12. The four video sequences used for the test are
Jump, Skating2-1, Diving and Woman from top to bottom. From Figure 12, we can see that
the human body in the sequence Jump and Dividing has undergone severe deformation.
The plain cross-correlation does not have the ability of local information modeling and
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internal geometry modeling, resulting in tracking drift and eventually loss of target. In
Jump and Dividing sequences, the plain cross-correlation tracker lost the target in frames
35 and 50, respectively, and never recovered. In contrast, the response maps of deformable
cross-correlation tracker are very accurate, and the tracker always focuses on the deformed
human body. In Skating2-1, there are similar distractor and occlusion factors in video
sequences. It can be seen from frames 270 and 460 of Skating2-1 that the deformable cross-
correlation tracker has a more accurate response map and is less affected by interferences,
while the response map of the plain cross-correlation tracker is more divergent and cannot
accurately locate and track the target. In Woman sequence, the woman’s lower body is
occluded by a vehicle during walking. From frames 320 to 415 in Woman, it can be seen
that in case of partial occlusion, the deformable cross-correlation tracker can quickly focus
on the upper body of women, then quickly return to focus on the whole body when passing
the vehicle, and can always track the target robustly. When the plain cross-correlation
tracker faces partial occlusion, the performance of the tracker decreases and produces strong
response in the background. In addition, the response maps of deformable cross-correlation
tracker in all sequences are more compact and less disturbed by background information.

Figure 12. Cont.
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Figure 12. Visualization of response maps. The figure contains four video sequences, and each row
represents the tracking results of the corresponding tracker on the sequence. The odd rows represent
the response maps of the plain cross-correlation tracker, and the even rows represent the response
maps of the deformable cross-correlation tracker.

5. Conclusions

In this work, We propose a geometry-aware tracker to model the geometric structure
of the target. Our tracker mainly includes two parts: offline trained target estimation
sub network and online classification sub network. We integrate the idea of deformable
convolution into these two parts to realize the learning of geometric information. Compared
with cross-correlation based trackers, our method can sample the search feature area by
learning an offset field, so that it can adapt to the structural variations of the target and
achieve more accurate visual tracking. Besides, online classification sub-network is used to
deal with the appearance changes of target and provide supplementary information for
the tracking process. Comprehensive evaluations on multiple benchmarks indicate that
our method can achieve leading performance. In future work, we will explore a backbone
network that can model the geometric structure of the object for visual tracking.
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