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Abstract: This paper addresses the problem of robust sensor faults detection and isolation in the
air-path system of heavy-duty diesel engines, which has not been completely considered in the
literature. Calibration or the total failure of a sensor can cause sensor faults. In the worst-case
scenario, the engines can be totally damaged by the sensor faults. For this purpose, a second-order
sliding mode observer is proposed to reconstruct the sensor faults in the presence of unknown
external disturbances. To this aim, the concept of the equivalent output error injection method
and the linear matrix inequality (LMI) tool are utilized to minimize the effects of uncertainties and
disturbances on the reconstructed fault signals. The simulation results verify the performance and
robustness of the proposed method. By reconstructing the sensor faults, the whole system can be
prevented from failing before the corrupted sensor measurements are used by the controller.

Keywords: sensor reliability; linear matrix inequality; robustness; sliding mode observer; diesel
engine

1. Introduction

Nowadays, industrial applications need increasingly reliable approaches to operate at
a high level of performance. Fault Detection and Isolation (FDI) methods are becoming
much more effective at making a process reliable [1]. The sensor faults are the most frequent
faults that occur in many control systems such as wind turbines [2], motor drives [3], electro-
hydraulic and rotating machines [4,5], power systems and renewable energies [6].

In the presence of unknown signals, the earliest observer (i.e., Luenberger observer [7])
may be unable to force the output estimation error to converge to zero, and consequently the
observer states will not converge to system states [8]. In the presence of disturbances and
faults, a sliding mode observer (SMO) can be used to minimize the effect of disturbances
on fault reconstruction signals [9]. In [10], the faults are reconstructed using a sliding mode
observer in a system with no unknown signals. Sensor and actuator faults are reconstructed
in [11] using an adaptive sliding mode observer in a 5 MW wind turbine system. The
second-order sliding mode observer (SOSMO) is becoming a more interesting method these
days [12,13]. Chattering reduction, higher accuracy motion, and finite-time convergence
for dynamical systems are three important features of SOSMO [14,15].

Heavy-duty diesel engines are industrial equipment which is generally commercial
equipment with GVWR (Gross Vehicle Weight Rating) of 10,000 pounds or more. Diesel en-
gines have several advantages over gasoline engines, like creating an optimal compromise
between fuel consumption and given exhaust legislation level by producing the requested
torque [16]. Model predictive control in [17,18] and sliding mode control in [19] are two
common control strategies in diesel engine air-path systems.
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Sensor faults can thoroughly damage the system. With the loss of accuracy and
showing a constant value rather than the true value due to the loss of sensitivity of
sensors, reconstruction of these faults has currently become more crucial. There are several
methods for fault reconstruction in industrial processes. In [20], two design methods
were proposed to reconstruct known and unknown faults for a class of nonlinear systems
using linear matrix inequality (LMI). In [21], a terminal sliding-mode observer (TSMO)
was proposed for reconstructing faults in a class of second-order multi-input and multi-
output (MIMO) nonlinear systems. In [22], considering the actuator and sensor faults
of Markovian jump systems, a fault reconstruction-based method was developed using
two novel observer schemes. In [23], a sliding mode observer was designed for the fault
diagnosis problem of a linear time-invariant system. An adaptive super twisting observer
was used in [4] for fault reconstruction in electro-hydraulic systems in the presence of
uncertainties. Multiple sliding mode observers in the cascade were proposed in [24] for
robust fault reconstruction in uncertain linear systems. In [25], a sliding mode observer
was suggested for the fault reconstruction problem in a Takagi–Sugeno fuzzy descriptor
system. In [26], a higher terminal sliding mode observer was proposed for robust fault
reconstruction of the nonlinear Lipschitz system using the LMI concept. To the best of the
authors’ knowledge, the investigation of sensor fault in an engine air-path has not been
reported yet. This problem is addressed in this paper. The main contributions of this paper
are as follows:

1. A diesel engine air-path system is studied completely, and by considering the sensor
faults and disturbances which can affect the system, a complete model of the air-path
system is presented.

2. The nonlinear discontinuous term causes chattering of fault reconstruction, while
proper higher-order sliding mode observer can weaken this problem. A higher-
order sliding mode observer can also eliminate the deviation from true states and
fault reconstruction in the presence of disturbances. Therefore, in the next step, a
second-order sliding mode observer is designed.

3. Although this paper’s approach is developed for a diesel engine air-path system, it
can be broadened to other industrial processes and applications for reconstructing
various possible faults in the presence of disturbances.

The proposed sensor fault reconstruction method is investigated according to the
designed observer, and the simulation results for an air-path of a heavy-duty diesel engine
system are compared to a sliding mode observer based approach.

2. Diesel Engine Air-Path Modeling
2.1. Diesel Engine Overview

Diesel engines are a kind of energy converter which convert fuel energy into mechani-
cal energy. They work according to supply, and heat is released by combustion in an engine
forming a thermodynamic cycle [27]. Modeling and details of control methods for diesel
engines have been studied in [28,29]. Figure 1 shows the diagram of the diesel engine
air-path system.

2.2. Manifold Modeling

The dynamics of diesel engine air-path system is modeled as follows:

ṗim =
RaTim

Vim

(
Wair + Wegr −Wei

)
(1)

where pim is the intake gas pressure and is considered as the system’s manifold. The system
has the ideal gas constant Ra for the air. Tim is the intake gas temperature, which is assumed
to be constant, and Vim is the intake manifold volume. Wair, Wegr and Wei are the air rate,
Exhaust Gas Recirculation (EGR) rate and the cylinder mass flow rate, respectively.
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Figure 1. A diesel engine air-path diagram.

2.3. Turbocharger Speed Modeling

According to Newton’s second law,

ω̇t =
Ptηm − Pc

Jtωt
(2)

where ηm is the mechanical efficiency of the turbocharger and Jt is the rotating inertia of
the turbocharger. Pt and Pc are the turbine power and the compressor power, respectively,
which are calculated as follows:

Pt = ηtmWtCpeTem

(
1−

(
Pamb
Pem

)(1− 1
γe

))

Pc =
1
ηc

(
Wair + Wegr

)
CpaTamb

((
Pim

Pamb

)(1− 1
γa

)
− 1

) (3)

where ηtm is the turbine efficiency, ηc is the compressor efficiency, Cpe is the heat capacity
of exhaust gas, γe is the heat capacity ratio of exhaust gas, Cpa is the heat capacity of intake
gas and γa is the heat capacity ratio of intake gas. Tem, Tamb, Pem and Pamb are also the
temperature of the gas in the exhaust before the turbine, the ambient temperature of the
intake gas, the exhaust pressure before the turbine, the pressure ratio of the downstream
pressure of EGR valve, respectively. By considering density variation in the mass flow, the
turbine mass flow Wt is modeled as

Wt
√

TemRa

Pem
= Avgt fΠ (4)

where Avgt is the effective area that the gas flow through, modeled as [19]

Avgt = Avgtmax

(
1− e−kvgtuc

vgt
)

(5)

where Avgtmax is the maximum nominal flow area of the variable-geometry turbocharger
(VGT) actuation, and uc

vgt and kvgt are the VGT actuator dynamic and a constant value,
respectively. fΠ shows that the mass flow depends on the pressure ratio and is equal to

fΠ =

√
1−

(
Pemtd

Pem

)Kt

(6)

where Pemtd is the downstream pressure of turbine, and Kt is constant.
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2.4. EGR Mass Flow Modeling

The fluid flows (airflow and exhaust gas flow) through the engine are controlled by
the EGR throttle, EGR valve and variable geometry turbocharger (VGT). The EGR-valve
mass flow through a variable area is modeled as

Wegr =
AegrPem√

TemRe
ψegr (7)

where Re is the ideal gas constant for exhaust. ψegr is a function of the pressure ratio of
Pamb and Pemtd . Aegr is the effective flow area of EGR valve, and is calculated as [19]

Aegr = Aegrmax uegr = Aegrmax

(
1− e−kegruc

egr
)

(8)

where Aegrmax is the maximum nominal flow area of EGR actuation, and uc
egr and kegr are EGR

actuator dynamic and a constant value, respectively. In (1), the term
(
Wair + Wegr

)
= Wc is

called compressed air-flow and is modeled as

Wc =
PambπR3

c ωt ϕc

RaTamb
(9)

where Rc and ϕc are the radius of the compressor blade and volumetric flow coefficient,
respectively.

2.5. Cylinder Flow Modeling

From the intake manifold to the cylinders, the cylinder mass flow model is obtained as

Wei =
ηvol PimωeVd

120RaTim
(10)

where ηvol , ωe and Vd are the volumetric efficiency, the engine speed and the displaced
volume, respectively.

2.6. Unified Model of a Diesel Engine Air-Path

By combining Equations (1)–(9), the state-space model of a diesel engine air-path is
obtained as follows:

ẋ =

 R1 R2 0
0 R3 0
0 0 0


︸ ︷︷ ︸

A

x +

 0 0
R4 0
0 R5


︸ ︷︷ ︸

B

u

y =

[
1 0 0
0 0 1

]
︸ ︷︷ ︸

C

x

(11)

where

R1 = ηvolVdωe
120Vim

R2 = TimPambπR3
c ϕc

VimTamb

R3 = − PambπR3
c ϕcCpa

Raηcωt Jt

((
Pim

Pamb

)(1− 1
γa

)
− 1

)

R4 =
Avgtmax Pem fΠηtmCpeTem

ωt Jt
√

TemRe

(
1−

(
Pamb
Pem

)(1− 1
γe

))
R5 =

Aegrmax Pem√
TemRe

ψegr

(12)
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In (11), the state vector and the control input vector are denoted as x =
[

Pim ωt Wegr
]T

and u =
[

uvgt duegr
]T , respectively, where uvgt and uegr are the VGT and EGR normal-

ized actuator signals.

2.7. Disturbance and Sensor Fault Modeling

In this system, the measured disturbance is the engine speed (ωe). The faults in the
manifold air pressure sensor, which is used to measure the intake gas pressure, and EGR
mass flow rate sensor are considered. The EGR mass flow rate sensor is located in the path
of the EGR valve and the intake manifold in Figure 1. Note that the EGR mass flow rate
is estimated by the measured pressures on both sides of the EGR system. Accordingly,
from (11), the output state-space model will be written as

y =

[
1 0 0
0 0 1

] Pim
ωt

Wegr

+ F
[

fPim
fWegr

]
(13)

where fPim and fWegr are the manifold gas pressure sensor fault and the EGR mass flow rate
sensor fault, respectively.

Finally, the model of diesel engine air-path system in the presence of external distur-
bance and sensor faults is obtained as

ẋ(t) = Ax(t) + Bu(t) + Dωe
y(t) = Cx(t) + F f (t)

(14)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×q, C ∈ Rp×n and F ∈ Rp×l are the distribution
matrices of state, control input, disturbance, output and sensor fault, respectively.

Consider a new state z f (t) that filters the output y(t) given by

ż f (t) = −A f z f (t) + A f y(t) (15)

where −A f is a stable matrix. Substituting y(t) from (14) into (15) gives

ż f (t) = −A f z f (t) + A f Cx(t) + A f F f (t) (16)

From (14) and (16), the augmented state-space model with n + p states is achieved as[
ẋ
ż f

]
=

[
A 0

A f C −A f

]
︸ ︷︷ ︸

Aa

[
x
z f

]
︸ ︷︷ ︸

xa

+

[
B
0

]
︸ ︷︷ ︸

Ba

u(t)+

[
0

A f F

]
︸ ︷︷ ︸

Fa

f (t) +
[

D
0

]
︸ ︷︷ ︸

Da

d(t)

z f (t) =
[

0 Ip
]︸ ︷︷ ︸

Ca

[
x
z f

]
(17)

Equation (17) can be written as

ẋa(t) = Aaxa(t) + Bau(t) + Fa f (t) + Dad(t)
z f (t) = Caxa(t)

(18)

The output in (18) has formed by the combination of the actual and filtered outputs. It
is also assumed that rank(CaFa) = rank(Fa) = r.
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To obtain a canonical form for the augmented system (18), a transformation matrix T
is introduced, so the canonical form is obtained using x̃a = Txa. For this case, the following
model is achieved:

˙̃xa(t) = Ãa x̃a(t) + B̃au(t) + F̃a f (t) + D̃ad(t)
z f (t) = C̃a x̃a(t)

(19)

where Ãa = TAaT−1 =

[
A1 A2
A3 A4

]
, B̃a = TBa, F̃a = TFa, D̃a = TDa =

[
D1
D2

]
and

C̃a = T−1Ca.

3. Sensor Fault Reconstruction Using Second-Order Sliding Mode Observer

A second-order sliding mode observer for (19) is presented as follows:

˙̃̂xa(t) = Ãa ˙̃xa(t) + B̃au(t)− Gley(t) + Gnv(t)
ŷ(t) = C̃a ˆ̃xa(t)

(20)

where x̂a and ŷ denote the estimation of states and outputs, respectively. Gl and Gn are the
observer gains which will be defined later. In (19), v(t) is a nonlinear discontinuous term
used to induce the sliding motion.

The output estimation error is defined as

ey(t) = ŷ(t)− z f (t) = C̃a x̂a(t)− C̃axa(t) = C̃aex(t) (21)

where ex(t) = x̂a − xa is the state estimation error. From (18) and (19), one gets

ėx = ˙̃̂xa − ˆ̃xa = (Ãa − GlC̃a)ex − F̃a f − D̃ad + Gnv(t) (22)

To force the output estimation error ey to zero in the finite time, the sliding mode
surface will be presented as

S =
{

ex ∈ Rn+r : ez = C̃ex = 0
}

(23)

The second-order sliding mode output error injection v(t) is presented as follows:{
v(t) = −k1sign(ey(t))

∣∣ey(t)
∣∣0.5

+ z(t)
ż(t) = −k2sign(ey(t))− k3ey(t)

(24)

where k1, k2 and k3 are the design scalars.
The gain Gn is chosen as

Gn =

[
−L

I(p×p)

]
∈ R(n+r)×p (25)

where L has the following structure:

L =
[

L1 0(r×r)
]
∈ R

(n+r−p)×p
(26)

where L1 ∈ R(n+r−p)(p−r) is designed such that (L1 A31 + A1) is Hurwitz and A31 is also
the first (p− q) rows of A3.

The observer gain matrix Gl is also designed in terms of L and a chosen design matrix
Ãs

22 ∈ RP×p. This chosen matrix can be calculated as the following form [30]:

Ãs
22 = kIp (27)
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The coefficients k1, k2, k3 and k are chosen as

k > 0
k1 > 2

√
ε

k2 > ε

k3 >
k(k3

1+
5
4 k2

1+
5
2 (k2−ε))

k1(k2−ε)

(28)

where ε is sufficiently large, then ey(t) converges to the origin in the finite time.
The sensor fault reconstruction signal is presented as

f̂ = MGnveq (29)

where the matrix M ∈ Rp×l needs to be designed such that MF̃a = I. As ey(t) and ex(t)
converge to zero in the finite time, then, from (22) one obtains

0 = −F̃a f − D̃ad + Gnv(t) (30)

Multiplication of both sides in (30) by M implies

MGnv(t) = MF̃a f + MD̃ad (31)

From (29), one gets:

f̂ = f + MD̃ad (32)

Therefore, the effect d on the fault reconstruction signal will be minimized if∥∥MD̃a
∥∥

∞ < γ (33)

where γ is a small positive scalar.
Let define P in the following form:

P =

[
P11 P12
PT

12 P22

]
> 0 (34)

where P11 ∈ R(n−p)×(n−p) and P22 ∈ Rp×p. Using the Bounded Real Lemma (BRL), the
inequality (34) is converted to

P =

 Φ11 Φ12 −(MA3)
T

ΦT
12 −γI MDT

2
−MA3 WD2 −γI

 < 0{
Φ11 = P11 A1 + AT

1 P11 + P12 A3 + AT
3 PT

12
Φ12 = −P11D1 + P12D2

(35)

By obtaining P and M from (35) and substituting M into (32), one obtains

f̂ ' f (36)

This concludes the result.

4. Simulation Results

To illustrate the accuracy of the results presented in this paper, a state-space model of
a heavy-duty diesel engine with initial conditions of x(0) = [0.1, 0.5, 0.51, 0.1]T is obtained
as follows:
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A =

 3471.35 5827.65 0
0 1467.26 0
0 0 0

, C =

[
1 0 0
0 0 1

]

B =

 0 0
173.39 0

0 3135.39

, D =

 1
0
0

, F =

[
1

0.5

] (37)

The value and description of the real system’s parameters are given in Table 1.

Table 1. The value and description of the real system’s parameters.

Symbol Description Value Unit

ηvol Volumetric efficiency 0.043 -
Vd Displaced volume 12.4 m3

ωe Engine speed 1500 rad
min

Vim Intake manifold volume 0.00192 m3

Tim Intake gas temperature 315.2 K
Pamb The downstream pressure ratio of EGR 1.55× 105 Pa
Rc The radius of the compressor blade 45× 10−3 m
ϕc Volumetric flow efficiency 0.6 -
Tamb Ambient temperature of the intake gas 750 K
CPa Heat capacity of intake gas 1.1 -
Ra Ideal gas constant for the air 287 J

kg·K
ηc Compressor efficiency 0.73 -
ωt Turbocharger speed 6.7× 104 rad

min
Jt Rotating inertia of the turbocharger 75× 10−4 kg·m2

Pim Intake gas pressure 1.9× 105 Pa
γa Heat capacity ratio of intake gas 2.2 -
Avgtmax The maximum nominal flow area of VGR 8.5 m2

Pem Exhaust pressure before the turbine 2.25× 105 Pa
fΠ Mass flow depends on the pressure ratio 0.4 -
ηtm Turbine efficiency 0.526 -
Cpe Heat capacity of exhaust gas 1.31 -
Tem Gas exhaust temperature before the turbine 693 K
Re Ideal gas constant for exhaust gas 22.55 J

kg·K
γe Heat capacity ratio of exhaust gas 1.7 -
Aegrmax Maximum nominal flow area of EGR 8.4 m2

ψegr The function of the pressure ratio 1.7 -

By choosing A f =

[
20 0
0 20

]
, the following augmented system is obtained:

Aa =


3471.3 5827.6 0 0 0

0 1467.3 0 0 0
0 0 0 0 0

0.02 0 0 −0.02 0
0 0 0.02 0 −0.02



Ba =


0 0

173.4 0
0 3135.4
0 0
0 0

, Da =


0
1
0
0
0

, Fa =


0
0
0

20
10


Ca =

[
03×2 I3

]

(38)
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To obtain a canonical form, we define a matrix T:

T =


1 0 0 0 0
0 1 0 0 0
0 0 −0.4472 −0.4000 0.8000
0 0 −0.8944 0.2000 −0.4000
0 0 0 −0.8944 −0.4472

 (39)

Therefore, the matrices are transformed to

Ãa =


1467.3 0 0 0 0
−5827.6 3471.3 0 0 0

0 −8 −23.2 −6.3 0
0 −17.9 4 8 −20
0 0 0.02 0 −0.02



B̃a =


−173.4 0

0 0
0 −1402.2
0 −2804.4
0 0

, F̃a =


0
0
0
0

−22.3607


C̃a =

 0 0 −0.4472 −0.8944 0
0 0 −0.400 0.200 −0.8944
0 0 0.800 −0.400 −0.4472


D̃a =

[
0 1 0 0 0

]T

(40)

and the matrices Gn, Gl and M are designed as

Gn =


−1 1 0
0 −2 0.5

0.5 −1 0
1 0 0
0 1 −0.5

, Gl =


1 −1 0
0 −1 −2

0.5 −1 0
1 −1 0
0 0 1



M =


0 1 2 −0.044
−1 0 0 −0.044
0 1 −0.1 −0.044
0 0 0 −0.044


(41)

Choosing ε = 4, the observer parameters have been chosen as k = 2, k1 = 4, k2 = 5
and k3 = 45. Figure 2 shows the states and their estimation. As can be seen, although there
is a disturbance signal d(t) = 0.2u(t− 20) in the system, each state accurately tracks its
estimation signal in the finite time.

For the manifold gas pressure sensor fault, we consider the following fault:

fPim = sin(t) (42)

Figure 3 shows the fault and its reconstruction signal indicating that the sensor faults
can be reconstructed using the proposed method.

For the EGR mass flow rate sensor fault, the following fault is assumed:

fWegr = u(t− 10)− u(t− 30) (43)

In this case, the fault can be reconstructed as Figure 4. For the sake of comparison, the
sliding mode observer (SMO)-based approach proposed in [31] is applied for the EGR mass
flow rate sensor fault reconstruction, and the corresponding result is shown in Figure 5.
The results demonstrate that the proposed SOSMO has more robust performance when
coping with the unknown disturbances.
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Figure 2. The real states and their estimations.

Figure 3. The manifold gas pressure sensor fault and its reconstruction using the proposed
SOSMO method.

Figure 4. The EGR mass flow rate sensor fault and its reconstruction using the proposed
SOSMO method.
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Figure 5. The EGR mass flow rate sensor fault and its reconstruction using SMO method [31].

Using some quantitative criteria, the performance of the proposed SOSMO method
is investigated and compared with the SMO approach. To this aim, the following criteria
are defined:

Jobserver =
1
Ts

∫ Ts
0 e2

x(t)dt, ex(t) = x(t)− x̂(t)
Jsensor =

1
Ts

∫ Ts
0 e2

s (t)dt, es(t) = f (t)− f̂ (t)
(44)

where Ts denotes the simulation time. Table 2 provides the performance evaluation results
for the observer and sensor fault, both for the manifold gas pressure sensor fault and EGR
mass flow rate sensor fault. It also shows the result for the EGR mass flow rate sensor fault
designed with SMO.

Table 2. Quantitative performance evaluation.

Sensor Fault Jobserver Jsensor

Manifold gas pressure 0.122 0.2572
EGR mass flow rate (SOSMO) 0.112 0.0332
EGR mass flow rate (SMO) 0.125 0.751

5. Conclusions

In this paper, a new robust strategy is proposed for sensor fault reconstruction in a
heavy-duty diesel engine in the presence of disturbance. First, a SOSMO was designed
using the LMI approach. Then, a sensor fault reconstruction strategy was introduced for
the reconstruction of the manifold gas pressure sensor and EGR mass flow rate sensor
faults. To verify the advantages of the SOSMO method, the EGR mass flow rate sensor fault
reconstruction was compared with a SMO-based method. The results of this comparison
were verified both numerically and graphically so that it was proved that the second-order
sliding mode observer has more reliable results than the sliding mode observer. According
to the results in Table 2, in the SOSMO method, the convergence of the states and the EGR
mass flow rate sensor has improved 10.4% and 95.5%, respectively.
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