
sensors

Communication

Method of Step Detection and Counting Based on Measurements
of Magnetic Field Variations
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Abstract: Basic human activity recognition (HAR) and analysis is becoming a key aspect of tracking
and identifying daily habits that can have a critical impact on healthy lifestyles by providing feedback
on health status and warning of deterioration. However, current approaches for detecting basic
activities such as movements or steps rely on solutions with multiple sensors which affect their size
and power consumption. In this paper, we propose a novel method that uses only a single magnetic
field sensor for basic step detection, unlike the well-known multisensory solutions. The approach
presented here is based on real-time analysis of magnetic field sensor measurements to detect and
count steps during a walking activity. The approach is implemented in a system that integrates a
digital magnetic field sensor with software blocks: filter, steady state detector, extrema detector with
classifier, and threshold comparator implemented in an embedded platform. Outdoor experiments
with volunteers of different ages and genders walking at variable speeds showed that the proposed
detection method achieves up to 98% accuracy in step detection. The obtained results show that
a single magnetic field sensor can be used to detect steps, and in general offers the possibility of
simplifying the current solutions by reducing the device dimensions, the cost of a system and its
power consumption.

Keywords: magnetic sensor; motion detection; step detection; gait; HAR; activity recognition

1. Introduction

In recent years, human activity recognition (HAR) [1] has become an important topic of
scientific research due to the growing interest in healthy lifestyles associated with physical
activity. The ability to detect a lack of, or minimal, physical activity has become a key factor
in the care of the elderly or people after hospitalization, for whom irregularity or decrease
in daily activity is the first symptom of deteriorating health. In addition, expanding
technological progress has led to an increase in the number of services provided through
computers, limiting our daily activity habits and causing the number of people suffering
from diseases of the vascular system to increase year by year. These health-related reasons
have led to the development of a number of different methods of activity detection based
on a wide range of sensors [2]. From a large group of integrated, widely available sensors,
the most common approach of HAR is the utilization of multiaxis inertial sensors [3–5]
combined with advanced classification techniques such as Bayesian decision making
(BDM), least-squares method (LSM), k-nearest neighbor algorithm (k-NN), dynamic time
warping (DTW), support vector machines (SVM) and artificial neural networks (ANN),
which have high computation costs but can reach up to 99.6% detection accuracy.

One of the most basic and crucial aspects related to physical activity recognition
and preliminary classification is motion detection. In the basic HAR solution, motion is
treated as a displacement, which at a fundamental level requires the detection and counting
of steps in a given period of time. Common approaches to step detection use signals
from acceleration sensors [6–8] where all 3D axis measurements are required at real-time
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computation level and reach nearly above 90% of detection accuracy. Sometimes a single
acceleration sensor approach is extended with additional gyroscopic [9] or magnetic [10]
sensing to improve the step detection ratio. However, the use of a standalone magnetic
field sensor for HAR has not yet been reported. For example, in [11], the authors presented
a direction change detection algorithm based on magnetic field sensor measurements that
achieved high detection accuracy after initial calibration. The researchers in [12] used
an additional magnet attached to the shoe to generate a magnetic field disturbance that
enabled step detection by a magnetic field sensor mounted on the other shoe and allowed
the traveled distance to be calculated. In the experiment, they achieved an accuracy of
0.3 m walking along a loop totaling 66 m in length. Meanwhile, in [13], the authors present
a complex system for basic electronic devices and activity recognition based on a group of
magnetic field sensors located on different parts of the human hand. Despite the various
applications of magnetic field sensors in HAR, the direct step detection and counting based
on magnetic field variations has not yet been directly addressed.

However, the research trends in the improvement and development of magnetic
field sensors have increased their resolution and minimal detection threshold [14]. Thus,
they could be a good replacement for current solutions in certain areas of activity detection.
Therefore, we present an approach for step detection and counting based on real-time
processing and analysis of magnetic field variation measured by magnetic field sensor.
This approach was implemented using a well-known and widely used embedded platform
and a commercial digital magnetic field sensor. By combining a magnetic field sensor
with the proposed complex multiblock signal processing algorithm, high step detection
accuracy (98%) was achieved. The obtained results show that a single magnetic field sensor
can be used to detect steps, and in general, this offers the possibility of simplifying the
current solutions. Moreover, the block design of the proposed approach allows the different
processing parts to be easily replaced, which can significantly reduce the processing time or
the power consumption of the whole system in certain applications without compromising
the accuracy of step detection, which is a key factor in systems with stringent and limited
power and energy requirements.

2. Methods

We used the natural arm movement during walking in our magnetic field sensor-based
approach to step detection and counting (Figure 1). The arm oscillates out of phase during
walking, i.e., the left arm moves forward when the right leg and torso move forward
and vice versa for the opposite leg and arm [15]. This arm motion can be considered
pendulum-like [16,17] with maximum forward (max-f) and backward (max-b) positions.
To use the arm swing for step detection, we attached a magnetic field sensor (S) to the hand
(wrist position) (Figure 1a). The movement of the sensor between max-f and max-b in the
Earth’s magnetic field (Figure 1b) causes a change in the components of the magnetic field
(Figure 1c). The sensor measures the change in the magnetic field between Bmax and Bmin
(Figure 1d). Bmax corresponds to the maximum forward and backward movement of the
arm and Bmin corresponds to the perpendicular position of the arm to the ground. Due to
the out-of-phase relationship between arm and leg movement, the measured periodic
change in magnetic field can be related to leg movement, i.e., steps.

To investigate the possibility of step detection using a magnetic field sensor, we in-
tegrated a magnetic field sensor with an embedded platform. We used a 3-axis magnetic
field sensor MAG3110 attached to the hand (wrist position). The sensor can measure
magnetic field in the range of +/− 1000 uT with a sensitivity of 0.1 uT and has noise level
of 0.25 uT [18]. It was configured to acquire data in full range at a sampling frequency
of 40 Hz and a resolution of 16 bits. The sensor measured the instantaneous magnetic
field variations caused by walking (Figure 1c). The recorded field variations show that the
Z-axis was most affected by walking, which gave us the basis to analyze only data from
that axis. We used the STM32F334R8T (ARM Cortex M4F) microcontroller [19] as the main
processing unit. The microcontroller gathers magnetic field measurements collected by sen-
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sor over digital I2C communication bus (Figure 2b). When measurement records are ready
to read, the sensor triggers a data reception process toggling the interrupt line connected to
the microcontroller. This additional connection provides synchronization between sensor
and controller and ensures that measurement record will not be missed or readout twice.
The recorded magnetic field variations are processed in several functional blocks (Figure 2)
designed for collecting magnetic field samples, filtering the collected data, and associating
the magnetic field variations with the steps covered during the walking period.
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Figure 1. Concept of step detection based on measurement of magnetic field variation caused by
natural arm swing during walking. Position of sensor on the arm (a). The arm as a pendulum-like
motion (b). Example of magnetic field measured by the sensor during walking (c). Periodically
changing magnetic field caused by the arm swing during walking (d).
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Figure 2. System hardware and functional blocks for data processing implemented in the microcontroller. Circular buffer
memory section (a). System components: communication and power bus wiring (b).

The block circular buffer enabled us to preserve historical data while collecting new,
upcoming samples without impacting on currently processed data. We implemented it
as a circular buffer. The proposed implementation divides the main circular buffer space
into three subblocks (Figure 2a). Each of these blocks stores data as follows: historical data
(already processed), current data (ready for processing), and new pending data (collected
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for future processing). This approach allows our system to store historical data for a short
period of time, which becomes part of the feedback loop for the following functional block
of the algorithm. In the block circular buffer approach, we can distinguish two phases
of data aggregation. The first phase represents the period of actual data processing and
collection of new data. The second phase, the buffer switching phase, represents the
action of overwriting blocks, where the current data that have already been processed
replace the historical data. New data that have just been collected become the record to be
processed, while the content of the historical block is cleared and prepared for the collection
of new datasets.

A windowing FIR filter reduced the output signal edge effect and decreased the
number of operations by removing higher frequency components from the magnetic field
signal. It combines a regular FIR filter approach with data windowing. This method
consists of two filtering phases—first, the historical data are filtered to prepare the start-up
condition of the filter, and then the actual data are processed. We chose this solution to
reduce the edge effect of data filtering caused by sample-less starting conditions. Although
the windowing of an operational buffer is twice as large, it can significantly reduce the
number of filtering operations. This reduction results from the block filtering instead
of continuous filtering, which would be triggered each time a new sample is received.
In addition, the windowing can be directly connected to a circular block buffer, which
reduces the number of operations required to prepare the data for filtering. What is more,
filtering removes higher frequency components from the signal, which can significantly
reduce the complexity of step detection in the next processing block.

FFT analysis showed that the cutoff frequency of the filter set to 2 Hz removes higher
frequency components without losing step detection information. The spectrum of record-
ings from several walking sample records (Figure 3) shows that walking at different speeds
significantly affects the frequency components below 2 Hz (Figure 3-inset). The walking
speed in relation to frequency can be calculated by the following equation:

frequency[Hz] =
walkspeed

[m
s
]

stridelength[m]
(1)

Assuming that the average walking speed varied in the range 4–6.5 km/h and average
stride length is 1.3 m [20], the frequencies correlated with walking are in the range of
0.85–1.38 Hz. For this frequency, we designed an FIR filter with a cutoff of 2 Hz. The best
filtering results were obtained with a filter order above 45. Accordingly, we chose a filter
order of 47, which provides the best balance between filtering performance and filter
memory requirements.
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The extrema detector identified all peaks and valleys in the buffered data. All points
detected in the filtered low frequency signal points are first classified as potential steps.
We implemented a detection algorithm with a simple amplitude comparator that compares
the amplitude of the point with the values of its surrounding neighbors. If the neighboring
values are lower (for peaks) or higher (for valleys), the point under investigation is classified
as a local extremum.

The threshold comparator enabled the first level extrema to be filtered. We apply
two threshold classifiers that compare each detected extremum with the following one.
The first compares the amplitudes between two adjacent extrema provided by the second
classifier. If the differences between the tested extrema are smaller than the required
threshold, the next complementary extremum is included in a comparison test. The second
classificator is responsible for providing a complementary extremum for the threshold test.
In this test, the complementary extremum should be understood as the opposite type to the
currently tested sample—peak for valley and valley for peak. Such an approach reduces
the number of tested extrema, since all adjacent signal extrema are of the opposite type
(repeating the peak–valley–peak–valley pattern). In this case, the rejection of a sample
forces the algorithm to skip the following sample, which is always of the same type.
This procedure significantly reduces the number of possible steps and eliminates false steps
caused by variations in the ambient magnetic field.

The motionless detector allowed a final step classification. Observed low ampli-
tude variations during step recognition can be classified as motionless phase operation.
Distinguishing whether the currently processed dataset corresponds to a movement or
motionless action allows us to exclude some extrema from the final processing stage. In the
present case, the motionless phase can be directly assigned to the walk halt. Thanks to this
observation, we could apply a simple absolute threshold comparator to discard extrema
representing false steps during standing. The absolute threshold was calculated as the
average sample deviation from different sets of samples collected during the motionless
phase and used as a constant comparison value.

3. Results

Low frequency magnetic field variations correlate with steps taken during walking
(Figure 4). Magnetic field samples recorded by a wrist-mounted sensor—with the Z-axis
oriented perpendicular to the direction of movement and parallel to the ground surface—
show significant field variations during walking. The records with filtered out neighbor
signal extrema that differ by less than 5 uT show the link between steps and signal changes.
Analysis of these changes revealed a direct correlation between the local extrema of the
signal and the steps taken.

Extrema in magnetic field variations caused by walking can be related to the steps
taken. Long term (approx. 1 min) recording of filtered magnetic field samples (Figure 5a)
shows a deviation in relative extrema levels during mixed walking and standing action.
Analysis of these changes led to the need to distinguish three different approaches to
step detection based on extrema. The first is direct extrema mapping, where the detected
extrema represent steps. The second, which is more complex, is where additional envi-
ronmental disturbances must be filtered out before assigning the extrema to steps. In the
third method, motionless phases (while standing) are skipped, and the extrema cannot be
correlated with steps.

The direct extrema mapping approach allows all detected extrema to be linked to
steps during the walking period. This is the simplest method for detecting steps. The direct
mapping approach is used when the amplitude difference between two consecutive extrema
exceeds 0.5 uT (10 sampling units). The noise of the sensor does not exceed 0.25 uT [18].
The level of fake step (0.5 uT) was determined as the average value of the amplitude
difference between two adjacent extrema in multiple test recordings where no ambient
(generated by the desired motion) disturbance was detected.



Sensors 2021, 21, 7775 6 of 9

Magnetic field variations disturbed by the ambient field require additional threshold
verification to avoid fake step counting. In cases where the signal, even after filtering,
contains disturbances that are labelled as extrema (Figure 5b), more complex operations are
required to remove additional noisy extrema. Avoiding fake step hits requires additional
comparison and shift operations to effectively remove false extrema from the step counting
algorithm. Firstly, the difference between adjacent extrema values is compared to check
whether the values exceed the fake step threshold (0.5 uT). If the threshold exceeds the
comparison value, both extrema are directly mapped to steps. Otherwise, the second
extremum is skipped and the next complementary (with the opposite sign of the first
derivative) extremum is included in the comparison test. The detection phase is repeated
until the complementary extremum passes the threshold test.
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Figure 4. Magnetic field signal variations after low pass filtering. The signal extremum correlates
with leg movement during steps.
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Figure 5. Extrema filtration and step detection in the low frequency component of magnetic field
signal variation recorded during complex walk activity (a). Threshold discriminator for fake extrema
rejection (b).
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A simple step count detection algorithm applied to samples recorded by one axis of
the magnetic field sensor can achieve up to 98% accuracy in step detection. The accuracy
of the detection was demonstrated by experiments (Table 1). To obtain reliable results,
experiments were conducted with a group of seven volunteers of different ages (21–82)
and genders walking at different speeds. The average walk speed during the test was
measured by a smartphone application utilizing GPS measurements. Each volunteer was
asked to perform three trials in each of two typical environments—except 2 performed by
elderly. The first typical environment was a wild nature area where external magnetic field
disturbances were minimal. The second was an urban area, where much more artificial
disturbances were detected compared with the first location. In each trial, participants
were asked to follow any route with his regular walking speed with an experimental step
detection system on their hand (wrist area). Participants did not show any symptoms of
disorder manifested by unconditional or involuntary hand movements. During the test,
any kind of gesticulation or abnormal hand movement was forbidden and the subject was
required to count the steps performed during the walk.

Table 1. Worst test results in a set of three trials for all volunteers per each test area.

Gender Age Average
Speed (km/h) Test Area 1,2 Detected

Step Count
Counted

Steps
Accuracy

(%)

Male 21
5.3 W 216 211 97.7

5.6 U 155 163 95.1

Male 29
5.4 W 326 332 98.2

5.1 U 234 251 93.2

Female 43
4.8 W 178 186 95.7

5.1 U 130 126 96.9

Female 51
5.0 W 287 296 97.0

4.6 U 236 221 93.6

Male 51
4.5 W 167 175 95.4

4.6 U 307 294 95.8

Female 82 4.2 W 220 207 93.7

Male 82 4.0 W 81 86 94.2
1 W—wild nature area, 2 U—urban area.

4. Conclusions

This paper proposes a new approach utilizing a single magnetic field sensor for step
detection. The approach fills the gap in simple and basic activity detection based on
magnetic field variation analysis. Unlike most existing studies and a known solution
based on an inertial sensor or a group of sensors (acceleration, gyroscopic or pressure),
the proposed approach requires only a single-axis magnetic field sensor and a low power
embedded microcontroller.

In the proposed approach, the magnetic field variations caused by walking are contin-
uously measured by a magnetic field sensor and collected in an embedded platform. In the
next stage, the detection algorithm is applied on previously buffered data to extract the
steps associated with the signal extrema and map them into the performed steps. By using
a commonly available embedded platform and a commercial magnetic field sensor, the cost
of the proposed step detection system can be significantly reduced. Moreover, the block
design of the proposed algorithm allows its different processing parts to be easily replaced,
which can significantly reduce the processing time or power consumption of the entire
system in specific applications without compromising the accuracy of step detection, which
is a key factor in systems with stringent and limited power and energy requirements.
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It is also important to indicate that the presented approach based on the analysis of
magnetic field variation has certain limitations, despite its high accuracy in step detection.
The first limitation is random magnetic field peaks in the environment originating from
nearby electronic devices or natural phenomena. These can generate a field fluctuation
high enough to induce fake step conditions, which can be treated by the algorithm as true
steps recorded during walk. The second limitation is gesticulation or disorders causing
involuntary hand shaking. Such a movement performed by a hand equipped with a
magnetic field sensor might create a similar magnetic field vector distribution as the body
movement during walking and cause a false positive step classification. Another limitation
that could be considered in a future work is the method of filtering field variations related to
steps performed. The present study focuses on a limited group of healthy individuals with
an average stride length (approximately 1.3 m) and a normal walking speed (4.0–6.5 km/h).
This results in an additional area of research in the field of filtering method and design for
groups of individuals with motor disorders or variable gait patterns that affect step stride
length and walking speed.

There are several possible future research directions that can extend the usability of the
proposed approach. The first possible direction is to reduce the power consumption, where
a digital multi-axis magnetic sensor can be replaced by a single-axis analog sensor. The use
of the analog sensor also enables the replacement of the digital filter with its low power
hardware substitute. Another possibility is to increase the complexity of activity recognition
by extending the detection blocks to detect not only steps but also activity areas (urban,
suburban, mountain, . . . ) by applying a more complex harmonic analysis of the magnetic
field variations. More complex signal analysis could further increase the immunity of the
detection algorithm to random magnetic field fluctuations in the environment, which limit
the application area of the presented approach, and improve the accuracy of step detection.
Furthermore, such processing can also efficiently mask unwanted variations caused by
additional upper limb activity and allow for more complex hand movements, such as
gesticulations, without compromising the accuracy of step recognition. Another—and the
most advanced—direction that could be considered is the application of machine learning
or artificial intelligence algorithms. Such an approach could lead to two different research
directions. The first will enable more efficient removal of false extrema representing steps
and increase the accuracy of step detection. Secondly it might be possible to detect the
first symptoms of a neurological disorder by analyzing abnormal and involuntary hand
shaking during walking.
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