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Abstract: Commodity processor architectures are releasing various instruction set extensions to
support security solutions for the efficient mitigation of memory vulnerabilities. Among them,
tagged memory extension (TME), such as ARM MTE and SPARC ADI, can prevent unauthorized
memory access by utilizing tagged memory. However, our analysis found that TME has performance
and security issues in practical use. To alleviate these, in this paper, we propose CoMeT, a new
instruction set extension for tagged memory. The key idea behind CoMeT is not only to check whether
the tag values in the address tag and memory tag are matched, but also to check the access permissions
for each tag value. We implemented the prototype of CoMeT on the RISC-V platform. Our evaluation
results confirm that CoMeT can be utilized to efficiently implement well-known security solutions, i.e.,
shadow stack and in-process isolation, without compromising security.

Keywords: memory isolation; tagged memory

1. Introduction

Tagged memory architecture (TMA) is a computer architecture where every memory
block has a special memory tag representing the state of the corresponding memory
block. TMA has been considered capable of supporting various security solutions [1–4]
depending on how the memory tag is used. For example, developers can use TMA to
detect use-after-free vulnerabilities. Specifically, suppose they enforce that the allocated
memory objects and freed memory objects have different tag values. In that case, it is
possible to identify the memory access to the freed memory object by checking the tag
value of the memory to be accessed. Due to this versatility in TMA, commodity processor
architectures also announced instruction set extensions for TMA (i.e., memory tagging
extension (MTE) [5] in ARM, application data integrity (ADI) [6] in SPARC). For simplicity,
we refer to these commercial extensions as tagged memory extensions (TMEs) throughout
the rest of this paper. Accordingly, several attempts [7,8] utilize TME to enhance the security
of software applications.

Although the detailed implementation is different according to the processor architec-
ture, the common operation of TME is as follows. In TME, the physical and the pointer
are augmented to hold the tag. We call the tag for the physical memory a memory tag and
the tag for the pointer an address tag. Specifically, in TME, each physical memory block
(e.g., 16-byte memory block in ARM MTE) has its own memory tag. Moreover, memory
tags are stored in separate storage (not in the addressable physical memory), so ordinary
memory instructions cannot access the memory tag. On the other hand, they locate the tag
at the upper end of pointer value in the address tag without introducing additional storage
for this. That is, they take advantage of the fact that some of the most significant bits of
the pointer are not used for address translation in 64-bit processor architectures. TME only
permits the memory operations when the address tag in the pointer and the memory tag
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corresponding to the target memory address hold the same tag value. Notably, the proces-
sor performs the tag comparison operation while processing the memory instructions, so
TME does not require additional instructions to check tag values.

However, despite this elaborate design, we found that TME has some limitations when
it comes to applying security solutions. First, there is a risk that the security guarantee of
TME is incapacitated by an adversary who can tamper with address tags. Memory tags can
only be accessed through some special instructions; we can easily stop an adversary from
exploiting these instructions by leveraging existing works [9,10]. However, the address tag
exists in the upper bits of the pointer value so that the tag value can be altered with ordinary
memory and arithmetic instructions through software vulnerabilities (e.g., uninitialized
read and integer overflow) [2]. Second, in multi-core systems, since the memory tag exists
for each physical memory block, it is impossible to grant different access permissions (i.e.,
different tag values) for the protected memory region to each core. Lastly, developers
cannot configure the detailed access permissions using TME. In MTE, once the address and
memory tags hold the same value, they permit read and write access to the target memory
region. Thus, developers cannot configure the protected memory region as a read-only
memory region using MTE.

Based on these observations, in this paper, we present CoMeT (Configurable Memory
Tagging Extension), a new instruction set extension for TMA. At the center of CoMeT, there
is a tag permission configuration register (TPCR) to configure the access permissions for
each address tag value. Specifically, in CoMeT, the memory access is permitted not only
when the address tag and memory tag hold the same value (tag value check) but also when
the required access permission (readable or writable) for the tag value is set in TPCR (tag
permission check). Therefore, CoMeT provides the developer with additional functionality to
control access to the memory region through TPCR settings even if an attacker modifies the
address tag. Additionally, since TPCR is a per-core register that is only accessed through
dedicated instructions, developers can safely assign different permissions to each core
via TPCR. We built the prototype of CoMeT on RISC-V MTE [11,12] platform. To show
the feasibility of CoMeT, we implemented two security solutions, i.e., shadow stack and
in-process isolation, using CoMeT. Our evaluation results show that CoMeT can support
security solutions more efficiently than TME without compromising security.

2. Background
2.1. Tagged Memory Extensions

According to our preliminary study, there are two TMEs; ARM Memory Tagging
Extension (MTE) [5] and SPARC Application Data Integrity (ADI) [6]. In this subsection,
we briefly describe how these extensions.

ARM MTE is an instruction extension newly introduced in ARMv8.5-A architecture.
ARM MTE implements a lock and key mechanism [13] to provide a fine-grained access
control mechanism for physical memory. In other words, memory access is permitted only
when the key value of the pointer variable is the same as the lock value of the target physical
memory. Otherwise, an access error is reported. In ARM MTE, the key in the pointer
variable is called address tag, and the lock in the physical memory is called memory tag.
The memory tag is a 4-bits tag associated with each aligned 16-byte of physical memory.
The memory tag is stored in the unaddressable memory, so standard memory instructions
cannot access the memory tag. Instead, ARM MTE provides special instructions that can
access and update the memory tag, e.g., LDG and STG. The address tag is implemented using
the top byte ignore (TBI) feature in ARMv8-A 64-bit architecture. When TBI is enabled, the
top byte of the memory address in the pointer is not used for address translation. Thus,
in ARM MTE, 4-bits in a top byte of a memory address (i.e., [59:56] bits in 64-bit address)
are used for the address tag for the pointer. Similarly, there is a dedicated instruction that
assigns a random value to the address tag, i.e., IRG. However, since the address tag resides
at the upper bits of the pointer, an attacker can exploit any arithmetic instructions and
memory load instructions to manipulate the address tag.
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Similar to ARM MTE, SPARC ADI also realizes lock and key mechanism using
tagged memory. In SPARK ADI, every 64-bytes of physical memory is associated with
a 4-bit memory tag, and the address tag is located at [63:60] bits of the 64-bit address.
However, since the address tag is still placed in the top byte of the memory address, there
is the same threat to the address tag in SPARC ADI.

2.2. RISC-V

RISC-V is an open-source ISA that is widely used in academics and industry at present.

2.2.1. General Registers

RISC-V utilize 32 general registers (x0 to x31). x0 is hardwired with all bits equal to 0,
and others are general-purpose registers. Additionally, they are given standardized names,
which express their functionality as part of the RISC-V application binary interface (ABI).
For example, the x0, x1 and x2 register are called zero, ra and sp, respectively. The x28,
x29, x30, x31 register are used for temporary registers, so they are called t3, t4, t5, and t6,
respectively.

2.2.2. Control and Status Register

In RISC-V, Control and Status Registers (CSRs) represent various system configura-
tions, such as the base address of the first-level page table (i.e., sptbr). Additionally, RISC-V
provides 12-bit encoding space for developers to define and create a custom CSR. Since
each privilege level can access the system resources are different, CSRs are also classified
according to privilege levels, such as user-level CSRs and supervisor-level CSRs. RISC-V
provides instructions for manipulating CSRs; for example, CSRRW and CSRRS/C instructions
to read, write, or even set or clear bits on CSR.

2.2.3. RISC-V MTE

As described in Section 1, CoMeT is designed on top of RISC-V memory-tagging
extension (RISC-V MTE) [12], which is an open-source project to support tagged memory
on the RISC-V processor. RISC-V MTE uses an 8-bit tag for the address tag and memory
tag. The address tag resides in the top byte of the 64-bit address, and the memory tag is
associated with every 16 bytes of physical memory. In order to manage the memory tag,
RISC-V MTE also provides dedicated instructions, i.e., ST (Store Tag) and LT (Load Tag).
Figure 1 shows how RISC-V MTE checks the access permission of the tag. (1) and (3) are
cases where the address tag value of instructions matches the memory tag value of the
corresponding memory area, and access is permitted. (2) is the case where the addresses
tag value of instruction mismatch the memory tag value of the corresponding memory
area, and access is denied.

addr1

Memory

2

Instructions

addr0store 0

store

store

0

2

addr0

addr1

addr01

Tag value check

(1)

(2)

(3)

Figure 1. Overview of RISC-V MTE.
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3. Design

In this section, we explain the design of CoMeT and how CoMeT can be used to realize
existing security solutions.

3.1. CoMeT

Figure 2 shows an overview of CoMeT. The CoMeT provides a tag-based permission
control in addition to the RISC-V MTE’s tag-based access control method. The tag value
used in the RISC-V MTE has a corresponding permission level to control access permission
of an associated memory area in a fine-grained manner. Specifically, in order to change
the access permission of the memory, CoMeT utilizes TPCR (Tag Permission Configuration
Register) inside each core using dedicated instructions for updating TPCR, without having
to access the tag in memory frequently. For example, (1) of Figure 2 shows that store
operation to addr0 blocked by tag permission check of CoMeT though address tag value
of the store instruction is same with a memory tag value of the memory area pointed
by addr0.

addr1

r/o

r/w

r/w

Memory

2

0

1

2

TPCR(3.B) Instructions

addr0store 0

store

store

0

2

addr0

addr1

addr01

Tag permission check (3.D) Tag value check

TPCR management instructions (3.C)

(1)

Figure 2. Overview of CoMeT.

3.2. Tag Permission Configuration Register

CoMeT introduces a tag permission configuration register (TPCR), a 32-bit user-level
CSR, in the system. Figure 3 shows the encoding of TPCR. For each tag, TPCR has 2-bit
access permission bits. Each bit in the permission bits indicates Access Disable (AD) and
Write Disable (WD), respectively. Thus, when both bits are <0,0>, both read and write
operations are possible for the target memory block with the corresponding tag value. If the
permission bits are <0,1>, only the read operation is possible. Lastly, when the permission
bits are <1,x>, read and write access to the memory block with the corresponding tag
value is blocked.

AD WD

tag0

AD WD

tag1

AD WD

tag1

AD WD

tag13

AD WD

tag14

AD WD

tag15

…

…

31 02930 28 27 26 25 123456

Figure 3. TPCR (Tag Permission Configuration Register).

3.3. TPCR Management Instructions

CoMeT also provides special instructions to manage TPCR (i.e., STPCR and CTPCR) as
shown in Figure 4. STPCR updates the value of TPCR with the value in the source register
(rs) and CTPCR clears the value of TPCR by using bitmask in the source register (rs). For
example, if the value of the source register (rs) is 0x00000030, STPCR instruction only sets
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the fifth and sixth bits of TPCR and CTPCR instruction clears these bits. Note that these
instructions basically update the value of the destination register (rd) as the zero-extended
64-bit value of TPCR. Thus, a developer can use these instructions to read the original
value of TPCR. If the developer does not want to update any destination register, he can
configure the destination register as x0, a hardwired-zero register. To avoid unexpected
side effects, TPCR cannot be accessed by original CSR manipulating instructions, for
example, CSRRW and CSRRS/C instructions. Trying to access TPCR using original CSR
manipulating instructions will be detected at the decoding stage of the instruction pipeline
and denied.

csr rs1 funct3 rd opcode

0001011

0001011

dest

dest

001

010

source

source

TPCR

TPCR

12 5 3 5 7

STPCR

CTPCR

31 020 19 15 14 12 11 7 6

Figure 4. TPCR updating instructions.

3.4. Tag Permission Check

Figure 5 shows several memory operations that can occur in CoMeT. First, CoMeT first
checks the tag permission of the address tag. That is, referring to the permission bits of the
TPCR, CoMeT checks whether the memory operation is allowed with the corresponding tag
value. If the memory operation is performed without required permission, corresponding
exceptions occur, and as a result, mcause CSR, which saves the cause of exception in RISC-V,
is updated. For example, case (2) raises a ‘store access fault’ (0x0f) exception because the
corresponding tag permission is ‘write disable’. Case (3) incurs a ‘load access fault’ (0x0d)
due to the ‘access disable’ permission in TPCR. It is notable that a tag permission check
can be performed much faster than a tag value check because it can be performed without
reading memory tags, as in the case of tag value check. On the other hand, memory access
might not be permitted, even if the tag permission check is passed due to the tag value
check. For example, in case (4), the memory access is denied because the memory tag
value and address tag value do not have the same value. In this case, CoMeT generates
synchronous exception ‘instruction page fault’ (0x0c). Consequently, in CoMeT, the memory
access is permitted only when both tag permission check and tag value check are passed,
as in cases (1) and (5).

Meanwhile, in RISC-V, memory access is also controlled by the permission fields in
the page table entry (PTE). Thus, the access permissions for the target memory of TPCR
and PTE may not match each other. In this case, CoMeT enforce that the access permission
of TPCR does not override the access permission of PTE. For example, if the permission
of the TPCR is RW and the permission of the PTE is RO, a write operation to the target
memory generates a page permission fault. Note that the advantages of CoMeT compared
to this PTE-based access control will be explained in Section 6.

It is notable that each core can assign different tag permissions from those in the other
cores because each core has its own TPCR. For example, Figure 5 shows that core A and
core B have their own TPCR and assign different access permission on each tag. As a
consequence, in CoMeT, developers can enforce different access controls on each core, which
is not possible in the existing TME.
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Figure 5. Access Control in CoMeT.

3.5. Security Solutions
3.5.1. Shadow Stack

The shadow stack [14] is a security solution to protect the return address from software
vulnerabilities such as stack buffer overflow. For this, it stores the return address not in
the call stack but in another stack (called shadow stack) at the prologue of the function
and, in the function epilogue, the return address is retrieved from the shadow stack. Thus,
the security of this solution depends on ensuring memory isolation for the shadow stack.
Otherwise, an attacker can tamper with the return address in the shadow stack.

Understanding this, we implemented the shadow stack using CoMeT, as follows. First,
at loading time, we allocate the memory region for the shadow stack with a dedicated tag
value. We locate the shadow stack at a constant offset from the call stack (line 10–11 and 20–21
in Figure 6a). Moreover, we enforce that the tag permission for the tag value is read-only,
except for the function prologues. At function prologues, we temporally make the shadow
stack writable (line 7–8 and 14–15 in Figure 6a) and store the return address to it. By doing
this, we can ensure that any malicious write access to the shadow stack except the function
prologues is prevented, since the tag permission for the shadow stack is not writable.

3.5.2. In-Process Isolation

In-process isolation is a well-known security solution that isolates security-critical
code and data from other program parts in the same address space. Since it can be
applied to various security problems such as kernel extension isolation and browser
extension isolation, recently, many security studies [9,10,15] have implemented it with
several hardware features.

Thus, we also enforced the in-process isolation with CoMeT as follows. Firstly, we
placed the security-sensitive data in the memory region tagging with a dedicated value
(e.g., TAG1 in Figure 6b). Then, we configured TPCR so that tag permission for the
dedicated value was readable and writable only when the security-critical code is executed
(line 7–8 and line 12–18 in Figure 6b). In other words, the tag permission of the value
should not be accessible when the other code is executed.
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/* zero : hardwired 0
   t3 : general purpose register */

// FUNCTION PROLOGUE BEGIN
ADDI  sp, sp, #-32
// change permission to RW
LI    t3, #RW_MASK_SS
CTPCR zero, tpcr, t3 
// calculate shadow stack pointer
LI    t3, #OFFSET
ADD   t3, sp, t3
SD    ra, 0(t3)
// change permission to RO
LI    t3, #RO_MASK_SS
STPCR zero, tpcr, t3 
// FUNCTION PROLOGUE END

/* function body */

// FUNCTION EPILOGUE BEGIN
/ calculate shadow stack pointer
LI    t3, #OFFSET
ADD   t3, sp, t3
LD    ra, 0(t3)
ADDI  sp, sp, #32
RET
// FUNCTION EPILOGUE END

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17

18
19
20
21
22
23
24
25

/* zero : hardwired 0
   t3, t4 : general purpose register */

…
// UNSECURE CODES BEGIN
…
// UNSECURE CODES END
// change permission to RW
LI    t3, #RW_MASK_IP
CTPCR zero, tpcr, t3 
// SECURE CODES BEGIN
…
// SECURE CODES END
// change permission to NA
LI    t3, #NA_MASK_IP
STPCR zero, tpcr, t3 
// check consistency
LI    t4, #NA_MASK_IP
BEQ   t4, t3, #LABEL_CONTINUE
ECALL 93
LABEL_CONTINUE:
// UNSECURE CODES BEGIN
…
// UNSECURE CODES END

1
2
3

4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

entry gate

exit gate

(a) (b)

Figure 6. Shadow stack and In-process isolation in CoMeT: (a) pseudo code of shadow stack in CoMeT
and (b) pseudo code of in-process isolation in CoMeT.

4. Evaluation

In this section, we evaluated two aspects of CoMeT. First, we verified that CoMeT
can block the memory access with inadequate tag permission. Then, we measured the
performance results when security solutions are implemented with CoMeT and existing
TME. To apply security solution to the software, we used LLVM Clang-12 project [16] and
GCC toolchains (riscv64-unknown-linux-gnu and riscv64-unknown-elf).

4.1. Functionality Verification

For the functionality verification, we implemented the prototype of CoMeT on top
of RISC-V MTE implementation [12] using QEMU 4.11. The RISC-V MTE supports key
features of TME, such as top-byte ignore, memory region for storing tags, and custom
instructions for loading and storing tags. However, TME uses 4-bit tags, so we changed
RISC-V MTE to use 4-bit tags (initially, it used 8-bit tags). Furthermore, to support CoMeT,
we added TPCR to facilitate the tag permission check, and different exceptions for each ac-
cess violation on QEMU, and modified LLVM to support TPCR manipulating instructions.

We verified the tag permission check of CoMeT by inserting memory access instructions
that do not have adequate tag permission to the memory region. For example, we inserted
store instructions, which stores source register data to the memory region assigned read-
only access permission by RO_MASK_SS to lines between line 16 and line 17 of Figure 6a.
Consequently, since access permission to the memory region is configured as read-only
at line 15, we confirmed that CoMeT could detect such access by generating a ‘store access
fault’ exception.

4.2. Performance Evaluation

Since QEMU is not cycle-accurate, to evaluate the performance impact of CoMeT, we
used a PolarFire SoC Icicle Kit [11] that supports a 64-bit RISC-V processor with RV64IMAC
extensions. Linux 5.6.16 was used as a host operating system. Unfortunately, however, we
were unable to apply TME and CoMeT on this board as we could not modify the board’s
hardware. Thus, we conducted a performance experiment using the following proxy
measurement method.
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4.2.1. Proxy Measurement

Each time a memory access instruction is executed, TME reads the memory tag
of the corresponding memory region to perform a tag value check for the address tag.
To emulate this tag load operation, we inserted a memory load instruction before all
memory access instructions. Undoubtedly, this emulation will be insufficient to measure
the actual performance overhead caused by real tagged memory. However, since the
performance overhead caused by tagged memory is common to CoMeT and TME, even if
the overhead is underestimated, the relative performance differences between CoMeT and
TME would still be valid. On the other hand, to emulate the performance overhead due to
added instructions to access TPCR, we replaced these instructions with existing CSR access
instructions. Since TPCR is also one of the CSRs, we believe that this emulation shows
almost the same performance as the actual TPCR access instruction. We implemented a
function to trigger and stop the measurement. The CPU cycle measurement is carried out
by reading the CPU cycle count CSR on RISC-V called cycle on each start_trigger()
function. Then on stop_trigger() we reread the CPU cycle count and subtracted it using
the CPU cycle count at start_trigger().

4.2.2. Shadow Stack Using TME

For the performance comparison, we implemented the shadow stack with TME, as
shown in Figure 7a. Similar to the shadow stack with CoMeT (as described in Section 3.5.1),
we allocated the memory region for the shadow stack with a dedicated tag value (e.g., TAG1
in Figure 7a). However, for the same security guarantee, we introduced additional code
instrumentation to ensure that the address tag is not manipulated by attackers. Unlike
CoMeT, TME has no additional access control mechanism to prevent memory access to
the shadow stack region with manipulated address tag. Thus, we reserved a general-
purpose register (e.g., t5 in Figure 7a) for the memory address register in all memory
access instructions in the program. As a consequence, since an attacker cannot tamper
the reserved register with software vulnerabilities, we can prevent malicious access to the
address tag in the reserved register. To reserve the register, we changed the LLVM compiler
to not use the reserved register for other instructions and recompiled the C library using
–with-target-cflags=-ffixed-reg option.

4.2.3. In-Process Isolation Using TME

For the performance comparison, we also implemented the in-process isolation with
TME, as shown in Figure 7b. We initially place the security-sensitive data and other data in
the memory regions tagging with different tag values (e.g., TAG2 and TAG1 in Figure 7b).
Then, like Figure 7a, we reserved a general-purpose register (e.g., t5 in Figure 7b) for the
memory address register in all memory access instructions. Lastly, we instrumented the
program so that the address tag of the reserved register held the proper tag value. For
example, in Figure 7b, line 8–14 and 28–32 show the instructions to enforce the address tag
of t5 register holds TAG1 value, and line 19–23 show the instructions that configure the
address tag as TAG2.



Sensors 2021, 21, 7771 9 of 13

/* zero : hardwired 0
   t5 : reserved register for address
        with tag
   t4 : original address register 
   t3 : general purpose register */ 

// FUNCTION PROLOGUE BEGIN
ADDI sp, sp, #-32
// set TAG1 on t5
ADDI t5, zero, #TAG1
SLLI t5, t5, #56
// calculate shadow stack address t3
LI   t3, #OFFSET
ADD  t3, sp, t3
// combine tag with address
OR   t5, t5, t3
SD   ra, 0(t5)
// set TAG2 on t5
ADDI t5, zero, #TAG2
SLLI t5, t5, #56
// FUNCTION PROLOGUE END
// FUNCTION BODY BEGIN
SLLI t4, t4, #8
SRLI t4, t4, #8 
SRLI t5, t5, #56
SLLI t5, t5, #56
OR   t5, t5, t4
LD   t3, 0(t5)
…
// FUNCTION BODY END
// FUNCTION EPILOGUE BEGIN
ADDI t5, zero, #TAG1
SLLI t5, t5, #56
LI   t3, #OFFSET
ADD  t3, sp, t3
OR   t5, t5, t3
LD   ra, 0(t5)
ADDI t5, zero, #TAG2
SLLI t5, t5, #56
ADDI sp, sp, #32
RET
// FUNCTION EPILOGUE END

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

/* zero : hardwired 0
   t5 : reserved register for address
        with tag
   t4 : general purpose register*/
 
// UNSECURE CODES BEGIN
// make TAG1
ADDI t4, zero, #TAG1
SLLI t4, t4, #56
// zeroing top byte
SLLI t5, t5, #8
SRLI t5, t5, #8
// set TAG1 on t4
OR   t5, t5, t4 
// load data from unsecure area
LD   t4, 0(t5) 
    
…
// UNSECURE CODES END
// SECURE CODES BEGIN
ADDI t4, zero, #TAG2
SLLI t4, t4, #56
SLLI t5, t5, #8
SRLI t5, t5, #8
OR   t5, t5, t4
// store data to secure area
SD   t4, 0(t5)   

…
// SECURE CODES END
// UNSECURE CODES BEGIN 
ADDI t4, zero, #TAG1
SLLI t4, t4, #56
SLLI t5, t5, #8
SRLI t5, t5, #8
OR   t5, t5, t4
LD   t4, 0(t5)   
  
…
// UNSECURE CODES END
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Figure 7. Shadow stack and In-process isolation in TME: (a) pseudo code of shadow stack in TME
and (b) pseudo code of in-process isolation in TME.

4.3. Experimental Result

Figure 8 shows the performance overhead when the shadow stacks using CoMeT and
TME are applied to benchmarks in BEEBs benchmark suite [17]. As a result, compared to
the baseline, the average overheads of CoMeT and TME are 5.83% and 108.12%, respectively.
The main reason for this result is that the number of memory instructions required for
instrumentation in the two shadow stack implementations is different. To be specific, in
TME, all memory access instructions have to be instrumented to hold a dedicated address
tag value. However, in CoMeT, just memory access instructions to the shadow stack in the
function prologues need to be instrumented, thanks to TPCR.

We also conducted a performance evaluation for the in-process isolation. Specifically,
we applied in-process isolation mechanisms using CoMeT and TME to cryptographic func-
tions in OpenSSL crypto library 1.1.1l. As shown in Figure 9, compared to the baseline,
the average overhead of CoMeT and TME are 0.4% and 101.4%, respectively. Similar to the
result of the shadow stack, this is because TME needs to manipulate the tag always before
accessing memory. On the other hand, in CoMeT, only the tag permission is changed at the
beginning and end of the security-critical code with the help of TPCR. Consequently, with
the same level of security, TME incurs much more performance overhead than CoMeT.
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Figure 8. Execution time overhead for the shadow stack with CoMeT and TME.
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Figure 9. Execution time overhead for the in-process isolation with CoMeT and TME.

5. Related Work
5.1. Tagged Architecture

Numerous works [1–4] using tagged memory have already been proposed CoMeT.
Loki [1] is similar to CoMeT in that it checks access permissions according to tag values.
However, since Loki does not use the address tag, they define the legitimate code that
can access the specific memory tag value as a program or module, not an instruction.
In addition, Loki associates a 32-bit memory tag for each 32-bit physical memory word,
resulting in higher memory cost than CoMeT. Meanwhile, HDFI [2] proposed a tagged
architecture with low memory overhead by using 1-bit memory tags per memory word.
However, HDFI only verifies the memory tag when loading memory, so HDFI is inadequate
when the security solution needs to check the memory writes. CHERI [3] proposes a
capability model that defines the bounds and access permission of the memory region
accessed by each pointer instead of using the address tag. To protect the integrity of
capabilities in the memory, CHERI uses tagged memory. Compared to CoMeT, CHERI
requires a significant change in the processor architecture (e.g., register files and instructions
for the capability management). Similar to CoMeT, TIMBER-V [4] proposed a tagged
memory architecture on the RISC-V platform. However, they used he tagged memory to
isolate four security domains.



Sensors 2021, 21, 7771 11 of 13

5.2. Instruction Extensions for Memory Protection

CoMeT is an instruction extension for memory protection using tagged memory.
Of course, before CoMeT, there were various instruction extensions for memory protec-
tion. First, ARM MTE [5] and SPARC ADI [6] are extensions for the tagged memory like
CoMeT. However, as described in Section 1, these extensions have some limitations when
applied to security solutions, and CoMeT is designed to overcome them. Second, some
recent studies [9,10] have proposed in-process isolation techniques using Intel memory
protection keys (MPK). In MPK, each memory page is associated with a 4-bit key value,
and the user process can control the access permission for the memory pages that hold
the same key value by configuring the protection key rights register (PKRU). Similar to
MPK, CoMeT also introduces a special register called TPCR that can be accessed by a user
process. However, CoMeT’s TPCR is different from PKRU in that it sets access permissions
to memory blocks having the same memory tag. Notably, in CoMeT, the block size is a
16-byte, which is much smaller than the size of the memory page. This enables CoMeT
to support various security solutions, such as temporal memory safety, that require a
protection mechanism for each memory object, which is difficult to implement with MPK.
Lastly, similar to Intel MPK, ARM domain [5] add a domain ID to the first-level page table
entry and controls access rights to memory regions with the same domain ID through the
domain access control register (DACR). Thus, security studies for fault isolation [18,19]
and in-process isolation [15] have utilized the ARM memory domain. However, DACR is
only accessible in the OS kernel, and the ARM memory domain is no longer available in
64-bit ARM architecture.

6. Discussion
6.1. The Threat against Address Tag

As explained in Section 1, in TME, since the address tag is located in the upper bits
of the pointer, there is a risk of being tampered with general arithmetic instructions or
memory instructions. CoMeT is also designed in addition to RISC-V MTE, so CoMeT is also
exposed to these threats. In order to protect the address tag from such threats, a possible
way would be to manage the address tag in separate storage, as in the case of the memory
tag. However, this will introduce significant changes in the processor architecture. Instead,
in CoMeT, we add an additional access control process called tag permission check so that,
even if an attacker modifies the address tag, access to the protected memory region can
be prohibited.

6.2. Comparison with Page Table Based Access Control

Typically, modern processor architectures already provide access control mechanisms
using permission bits in the page table entry. Compared to this mechanism, CoMeT has
the following two advantages. First, CoMeT can configure the protected memory regions
in a more fine-grained way. Specifically, in the prototype of CoMeT, a memory tag is
associated with a 16-byte physical memory block, so that developers can grant different
access permissions to each 16-byte block. On the other hand, the page table can configure
the permission bits in the page granularity, i.e., 4 KB. Additionally developers can configure
the memory permissions of CoMeT without the intervention of the OS kernel because
memory tags and TPCR are accessible in the user process. On the other hand, the page
table is managed by the OS kernel; therefore, to change the permission bits, a system-level
function, e.g., mprotect, should be invoked. These functions include a system call, which
typically consumes hundreds of CPU cycles.

7. Conclusions

In this paper, we presented CoMeT, a new tagged memory extension on RISC-V.
In CoMeT, whenever the memory operation performs, the processor checks the access
permission of the value in the address tag before comparing values in the address tag
and the memory tag. For this, CoMeT introduces TPCR, a special CSR for representing
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access permissions for each tag value, and dedicated instructions for managing TPCR
into the instruction set architecture. Thanks to this tag permission check mechanism,
CoMeT can efficiently prevent malicious access to the sensitive memory region even if an
attacker manipulates the address tag residing in the upper bits of the pointer to bypass the
tag comparison mechanism of TME. The evaluation results show that CoMeT can support
well-known security solutions in a highly efficient manner.
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