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Abstract: Real-time small infrared (IR) target detection is critical to the performance of the situational
awareness system in high-altitude aircraft. However, current IR target detection systems are generally
hardware-unfriendly and have difficulty in achieving a robust performance in datasets with clouds
occupying a large proportion of the image background. In this paper, we present new results by
using an efficient method that extracts the candidate targets in the pre-processing stage and fuses
the local scale, blob-based contrast map and gradient map in the detection stage. We also developed
mid-wave infrared (MWIR) and long-wave infrared (LWIR) cameras for data collection experiments
and algorithm evaluations. Experimental results using both publicly available datasets and image
sequences acquired by our cameras clearly demonstrated that the proposed method achieves high
detection accuracy with the mean AUC being at least 22.3% higher than comparable methods, and
the computational cost beating the other methods by a large margin.

Keywords: IR target detection; real-time detection; imaging processing

1. Introduction

High-altitude aircraft has great potential in early warning and detection, space offense
and defense, and electronic countermeasures, which become increasingly significant in a
modern battlefield. The ability to detect long-distance dim and small targets is essential for
high-altitude aircraft to obtain real-time battlefield information and perceive threats during
missions. A high-performance infrared (IR) detection system for dim and small targets
is an indispensable instrument onboard high-altitude aircraft due to its key advantages
including long detection range and all-weather surveillance capability [1].

The imaging and detection of dim and small infrared targets in high-altitude scenarios
have distinctive characteristics. First, the target size is typically less than 3 × 3, or even
only 1 pixel due to long imaging distance. The optical path attenuation and large field
of view (FOV) result in low signal-to-noise ratio (SNR) of the output image without any
contour and textual features, making it difficult to detect by learning based methods [2–4].
Second, the background of the image is dominated by clouds, which are vulnerable to the
negative impacts caused by irradiation and reflection of sunlight or moonlight, and these
impacts further increase the difficulty of detection. Third, with the rapid development
of infrared detector technology and performance, the latest IR imaging systems have
shown a trend of “three highs” (high resolution, high frame rate, and high dynamic range).
Consequently, these imaging systems put forward extremely high requirements on the
computational efficiency of data processing methods, and a large number of conventional
algorithms cannot meet the real-time requirements [5]. Finally, due to the difficulty of
data acquisition for research and experiments, there are only a few high-performance IR
detection techniques for dim and small targets in high-altitude scenarios.

Due to the large FOV of the situational awareness system, multiple targets with
different scales may appear within the effective detection range, and the scale of the target
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changes as the distance between detection system and target changes. Moreover, fast flying
targets have large displacement between adjacent frames, while target flying along the
optical axis has small displacement between adjacent frames, making it more difficult to
establish a robust sequence-based detection method. Therefore, the single-frame detection
algorithm is more suitable for such applications.

Previous works on single-frame detection can be generally divided into three cat-
egories: filtering-based methods, algorithms based on image data structure, and local
feature-based approaches. The filtering-based methods typically use spatial or frequency
domain filters to suppress the background or enhance the targets and then further dis-
tinguish the targets from the background. Deshpande et al. [6] proposed to suppress the
clutters by max-mean/max-medium filter. Cao et al. [7] improved the two-dimensional
least mean square (TDLMS) filter and incorporated neighborhood analysis and data fusion.
Bai et al. [8] detected the small target by gradually decreasing the structure element in
Top-hat filter. Bae et al. [9] first introduced the bilateral filter to small IR target detec-
tion. However, all of the aforementioned algorithms cannot achieve promising results in
complex backgrounds.

Detection methods based on image data structure include low-rank sparse decompo-
sition, tensor recovery, robust principal component analysis (RPCA), etc. Gao et al. [10]
convert the infrared patch-image (IPI) model into an optimization problem based on sparse
matrix. Zhang et al. proposed to detect the small IR target by non-convex rank approxima-
tion minimization (NRAM) [11] and partial sum of the tensor nuclear norm (PSTNN) [12].
Dai et al. [13] used a priori information to adaptively assign weights to each column
based on the IPI model and proposed a weighted infrared patch image (WIPI) model.
Huang et al. [14] proposed to detect targets by density peaks searching and maximum-gray
region growing. Qin et al. [15] developed an algorithm based on facet kernel and random
walker (FKRW). However, the aforementioned methods have difficulty in achieving robust
detection performance in complex and changing scenarios.

The key idea of the local feature-based approaches is to detect targets by exploiting
the different characteristics between the targets and the background. Kim et al. [16] and
Wang et al. [17] first introduced the Laplacian of Gaussian (LoG) filter and the difference
of Gaussian (DoG) filter for IR target detection, respectively. However, the above blob
detection filters are susceptible to spot-like backgrounds and blinking pixels. Chen et al. [18]
developed local contrast measure (LCM), which enhanced the target significantly but has
difficulty in distinguishing targets and strong clutters. Wei et al. [19] developed a multiscale
patch-based contrast measurement (MPCM) to improve the processing speed of LCM.
Deng et al. [20] proposed a weighted local difference measure (WLCM) to enhance the
target and suppress the background simultaneously. Han et al. [21] developed a relative
local contrast measure (RLCM). Although a large number of methods are derived based
on the idea of LCM, single feature detection has limited performance on low SNR dataset.
Consequently, a combination of multiple features such as local intensity and gradient
(LIG) [22] properties has become a new trend.

In the application of long-distance imaging systems, previous work generally has
the problems of rapidly degrading performance under complex cloud backgrounds and
difficulty in meeting the real-time application requirements. The filtering-based methods
including TDLMS and Top-hat filter cannot handle complex scenarios [21]. The computa-
tional cost of the methods based on image data structure such as IPI and WIPI increases
exponentially with the image resolution, while with the NRAM and PSTNN methods it
is easy to regard some clutter in complex scenes as the target. Methods based on local
features, especially local contrast methods, typically have difficulties in distinguishing the
targets from the clutter, especially hot blinking-pixels with strong gray value.

Inspired by [16,17,22], a few of significant features can be used for the small IR target
detection. For one thing, the small targets (less than 3 × 3), which exhibit pop-out behavior
and blob-like morphology, can be remarkably enhanced by the blob detection filter. For
another, there are huge local contrast and gradient differences between the target pixels
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and background pixels. Consequently, the pop-out behavior and blob-like morphology
enable efficient candidate extraction, while the local contrast and gradient properties have
advantages indistinguishing real targets from clutters effectively. A recent paper by us [23]
exploited the above IR target characteristics and proposed a new detection algorithm for
small and dim target detection.

In this paper, we present new results of applying the efficient and effective detection
method combining local contrast, blob-like morphology and scale and gradient features
in [4]. The key contributions of the proposed method are described as follows:

To further improve the detection performance in real imaging system, the earlier
framework for small and dim target detection method in [23] was fine-tuned. Although
the computational time is a little more than the earlier version, the background clutter is
better suppressed.

To the best of our knowledge, we are the first to develop a high-performance MWIR
camera to evaluate the single-pixel target detection performance, which plays a significant
role in long range imaging systems.

We present new target detection results using both publicly available datasets and
datasets acquired by our own cameras, meaning that the proposed method has promising
application value.

The computational cost of our method is still much less than other state-of-the-art approaches.
This paper is organized as follows: Section 2 describes the details of the proposed

method. Section 3 summarizes the experimental results and comparison with other meth-
ods. Finally, Section 4 concludes the paper with a few future directions.

2. Detection Based on the Local Contrast and Gradient Feature

The incorporation of local contrast, blob-like morphology, and scale and gradient
features for effective small target detection was proposed in our recent paper [23]. In this
section, we include more details of the various steps of target detection. We also fine-tuned
our algorithm with more emphasis on background clutter suppression.

Figure 1 illustrates the framework of the proposed method. In the pre-processing stage,
we apply a DoG filter to the input image and introduce the cumulative distribution function
(CDF) to generate a binarized mask, which contains a small proportion of candidate pixels.
The mask enables a fast and accurate overall target detection system. In the detection stage,
we calculate the local contrast map by blob-like morphology feature and local gradient
map by four quadrant analysis. We also fuse the local contrast map and gradient map.
Finally, we accurately extract the targets by performing segmentation.
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Figure 1. Framework of the proposed IR small target detection method.

In the next few subsections, we will describe the details of pre-processing stage,
detection procedure, and segmentation.

2.1. Pre-Processing and Binary Mask Generation

Figure 2 demonstrates the 3-D and 1-D analysis for small IR targets with different
sizes in the sky-cloud scenarios. It is clear that all of the targets including that on the edge
of strong clouds (the third column of the Figure 2a) show the blob-like characteristics in
the 3-D mesh (Figure 2b) and 1-D cross-section profile analysis (Figure 2c), meaning that
the blob detection filters can be used to enhance the target effectively.
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Figure 2. Demonstration of the 3-D and 1-D analysis for small IR targets with different sizes: (a) local
patches contain targets; (b) 3-D mesh; (c) 1-D cross-section profile analysis.

Since the previous application of the Laplacian of Gaussian (LoG) filter [16] and the
difference of Gaussian (DoG) filter [17], which are widely used in blob-target detection,
we propose to apply the DoG filter to the input image because the DoG is more hardware-
friendly than the LoG filter [24]. Let σ1 and σ2, which are customer-selected parameters,
denote the standard deviations of the Gaussian functions; the DoG filter can be explicitly
expressed by

DoG(i, j, σ1, σ2) =
1

2πσ2
1

e−(i
2+j2)/2σ2

1 − 1
2πσ2

2
e−(i

2+j2)/2σ2
2 , (1)

The DoG filter is almost the same as the LoG filter [24], which is one of the most
popular blob detectors if σ2/σ1 = 1.6. Since the single-pixel target shows blob-like mor-
phology due to the atmospheric turbulence and the point spread function (PSF) of optical
lens, a single-pixel target affects about 3× 3 pixels in the image. Given that the target
sizes typically range from 3× 3 to 5× 5 in our applications and the LoG filter has the
highest response with a target diameter of 2

√
2σ [25], we set σ1 = 3/2

√
2 = 1.06 and

σ2= 1.6× σ1 = 1.70, respectively. We also found that a minor adjustment of σ1 and σ2 will
not significantly affect the results.

The filtering results of the targets in Figure 2 are shown in Figure 3. Let ID represent the
filtering result of the DoG filter. There is no doubt that the targets are enhanced remarkably
in ID. However, the DoG filter is susceptible to flickering noise and spot-like backgrounds,
which means that high performance detection cannot be obtained by using only the DoG
filter. Therefore, we propose to extract candidate target pixels as a binarized mask by
calculating the cumulative distribution function (CDF) of ID and extracting the pixels with
the highest intensity. Let the adjustable parameter p represent the proportion of candidate
pixels; we found that p = 0.2% works excellent inour experiments. The pseudocode for the
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binarized mask generation is illustrated in Algorithm 1. Let IM denote the binarized mask,
all the subsequent processing stages are guided by IM, meaning that the proposed method
has great advantage in computational cost.

Algorithm 1. Pseudocode for Binarized Mask Calculation.

Input: The DoG filtering result ID, p = 0.2%, gray dynamic range N
Output: The binarized mask IM

1: [row, col] = size(ID);
2: IM = zeros(row, col);
3: for i = 1 : row
4: for j = 1 : col
5: h(ID(i, j) + 1) + +;
6: end
7: end
8: P(k) = h(k)/(row× col), k ∈ [1, N];
9: CDF(k) = P(k) + CDF(k− 1);
10: IM( f ind(CDF(ID) >= (1− p)) = 1
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2.2. Local Blob-like Contrast Map

The targets are typically enhanced remarkably by the DoG filter, while the surrounding
areas of the targets are drastically suppressed, as shown in Figure 3. Inspired by the
characteristics of ID, we propose to calculate the local blob-like contrast map by

IC(i, j) = (ID(i, j)− µt)× (µt/µb), (2)

where µt and µb are the mean intensity of candidate pixels in the target and surrounding
region. The contrast map takes into account both intensity difference and ratio difference
between the local target and the surrounding region.

Here, we should state explicitly that the local mean intensity calculation is guided by
connected components in the binarized mask. We find all the connected non-zero regions in
the mask and define a surrounding region, which is represented by the convolution result
of the local operation region and a binarized filter kernel. Let L denote a local operation
region, which is a rectangle containing the non-zero regions in the mask, and the binarized
filter kernel is defined as follows:

w(i, j) = i f (
√
(i− crow)

2 + (j− ccol)
2 <= r, 1, 0), (3)

where (crow, ccol) is the center coordinate of the filter kernel, (i, j) represents the pixel
location in the kernel, r is a customer-selected parameter, and 2 is a proper value that has
been demonstrated to work well in our experiments. The input image and the binarized
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mask are shown in Figure 4a,b, respectively, and Figure 4c represents the candidate target
region. Here we regard the combination of the non-zero pixels in the convolution result of
the candidate target region and binarized filter kernel w as the surrounding region, which
is illustrated in Figure 4e. It should be noted that even if the clutters such as cloud edge
may be denoted by the mask with large scale, the parameters of the DoG filter determine
that a small target with a size ranging from 3× 3 to 5× 5 will achieve a higher enhancement
than these clutters, as shown in Figure 4a,b.
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2.3. Local Gradient Map

Since the detection method based on a single feature makes it difficult to maintain
reliable detection performance in various scenarios, we proposed to improve the detection
performance by using the fusion of the local contrast and gradient. In the first step, we
detect all the pixels in the mask with non-zero values and generate an adaptive scale for
each region. We apply all-ones matrix Om to each candidate pixel, with m ranging from 2
to the maximum morphological size of the connected region, which consists of non-zeros
pixel clusters. The adaptive scale factor s of each region is calculated according to the
convolution result of all-ones matrix and connected region in the mask, and the scale for
the region is assigned to m when the maximum value of the convolution is greater than
m(m− 1). In order to facilitate the subsequent step, we propose to assign the scale factor 3
to the isolated pixels and clusters with a size less than 3 and adjust the scale factor to an
even value by adding 1 if the scale factor is an odd integer.

Inspired by the characteristics described in the introduction, the gradient distribution
of an infrared target is typically a few higher than the surrounding areas [16]. We propose
to divide the operation region into four quadrants and estimate the gradient features for
each quadrant by performing different filters, as shown in Figure 5a. Since filtering results
of the directions including 180◦, 225◦, 270◦ and 315◦ can be calculated by inverting the
results of directions with 0◦, 45◦, 90◦ and 135◦, we only perform gradient filtering on four
directions, as shown in Figure 5b. Let Sij represent the sum of elements in matrix obtained
by gradient filtering, with the value of i is 1 to 4 denoting the four quadrants and the value
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of j is 1 to 8 denoting 0◦ to 315◦, respectively. The gradient score of each quadrant can be
calculated by

GQ1 = a× S16 + b× (S15 + S17), (4)

GQ2 = a× S28 + b× (S21 + S27), (5)

GQ3 = a× S32 + b× (S31 + S33), (6)

GQ4 = a× S44 + b× (S43 + S45), (7)
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Both a and b in Equation (4) to Equation (7) are adjustable parameters and subject
to a + 2b = 1. We set a = 0.5 and b = 0.25 in our experiments because 225◦, 315◦, 45◦ and
135◦ represent the dominant directions of quadrant 1 to 4, respectively. Let µGQ denote the
mean gradient feature value of the four quadrants, the intensity of each candidate pixel
can be calculated by

IG(i, j) =
µGQ

(1 + p1)
× p2, (8)

where and p2 are penalty factors for the suppression of the strong clutter. The penalty
factor p1 is defined by

p1 = ∑ dQi, i ∈ [1, 4], (9)

where dQi denotes the index distance between the index of the dominant direction and
the index with the maximum gradient feature value in quadrant 1~4. The parameter p2 is
a binarized parameter used to suppress strong edge interference, and p2 equals 0 when
both the four quadrants has the same maximum directions or at least two quadrants obtain
negative scores in the main direction because these two situations are highly related to
the appearance of the strong edge. Figure 6a illustrates the index distance p1 calculation
for quadrant 1 with different situations. Figure 6b,c demonstrates the two situations with
penalty factor p2 equals zero.

2.4. Fusion and Segmentation

To generate the detection result, we fuse the local contrast map and the local gradient
map by simply multiplying IC and IG:

Iout = IC × IG. (10)

In the segmentation stage, we propose to segment the detection result by thresh-
old [18]:

TH = µO+k× σO, (11)
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where µO and σO are the mean and standard deviation of the Iout, and k is a constant
ranging from 3 to 5. It should be emphasized that the calculation of the µO and σO is only
performed for the candidate pixels indicated by the mask.
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3. Experiments and Discussions
3.1. Motivation and Preparation for the Experiments

The IR targets in public datasets are typically bigger than 3× 3, and it is hard to acquire
images with single-pixel or small-scale target, which are quite significant in the application
of the long-distance imaging systems. To evaluate the all-aluminum unobscured two-
mirror freeform imaging lens [26] and thermal characteristics of the high-performance
camera, we developed a 3.7~4.8 µm MWIR camera and a 7.7–9.7 µm LWIR camera with
a resolution of 1024× 1024 and 512× 512, respectively. The focal lengths of MWIR and
LWIR cameras are 21 and 75 mm, respectively. Our dual-band camera is also a good
platform for a better implementation and evaluation of the proposed method. Since the
detailed hardware description is not the focus of this paper, we mainly introduce the test
experiments and results. Given that the LWIR camera is not suitable for single-pixel target
detection due to the long focal length, we only use the MWIR camera for the experiment.

We made a target board (description in Figure 7a), which contains one, two, three, and
four holes in corresponding quadrants, respectively. We then integrated the target board
with a blackbody, a collimator with a focal length of 3 m, and our MWIR camera to simulate
the imaging and detection performance of single-pixel target, as shown in Figure 7b. We
also collected data under different weather conditions, as shown in Figure 7c.

To evaluate the performance of the proposed method, we applied it to both publicly
available datasets and images acquired by our cameras. Given that the filtering-based
methods have poor detection performance on data sets with complex background, we re-
gard the local feature-based approaches and image data structure-based method including
IPI [10], PSTNN [12], FKRW [15], LCM [18], MCPM [19], and LIG [22] as the baseline. All
the methods were performed by running them on a laptop with Intel i5-10500 and 16GB
RAM and with MATLAB 2020a.
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3.2. Comparison of Single-Pixel Target Detection Performance

Since it is quite difficult to acquire images with single-pixel targets, we use target board
and collimator to simulate single-pixel target detection. We set the temperature difference
between the black body and the ambient temperature to 20 ◦C and apply a low integration
time (1ms for MWIR camera) to simulate low SNR imaging. It should be emphasized that
only MWIR cameras can simulate single-pixel imaging and detection due to its large FOV
(41◦ × 41◦) and small focal length (f = 21 mm). The detection performance comparison
of different methods is shown in Figure 8, and the precision–recall curve (PRC) [27] of
different methods on single-pixel target detection are shown in the Figure 8h. The target
enhancement performance of the LCM is highly related to the target brightness, but the
LCM performs poor in terms of clutter suppression. The MPCM improves the LCM’s
clutter suppression performance at the cost of the target enhancement ability. The data
structure-based methods (IPI, PSTNN, and FKRW) have advantages in clutter suppression,
but all of these methods are prone to regard the dim target as the background. It is clear
that the proposed method enhances the target and suppresses the background clutters
simultaneously with all the targets detected, especially for those challenging targets in
quadrant three and quadrant four (shown in Figure 8a).

To further compare the robustness of the various methods, we added 20 hot defective
pixels with random locations in the single-pixel targets simulation image (Figure 9a) and
compared the performances of different methods. The detection performance of all methods
has decreased significantly, especially LCM, LIG, and PSTNN have collapsed, which means
that these methods are quite sensitive to defective pixel noise. Although our method cannot
detect some dim targets, it still maintains an effective suppression of defective pixels.

3.3. Comparison of Sequence Detection Performance

The details of the test sequences are described in Table 1. It should be noted that S1
and S2 are open datasets, while S3 and S4 are acquired by our MWIR and LWIR cameras,
respectively. Since the proposed method only performs on a few candidate pixels, it is
unfair to use the signal-to-clutter ratio gain (SCRG) and the background suppression factor
(BSF) as the evaluation metrics [11]. Recent research showed that for detection application
on an imbalanced dataset, the precision–recall curve (PRC) has better performance metrics
than the receiver operating characteristic (ROC) curve [28,29], so we used the PRC as the
evaluation metrics.
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Figure 9. The performance comparison of different methods on single-pixel image with defective
pixels: (a) target image; (b–h) normalized 3-D mesh obtained by the LCM [18], IPI [10], MCPM [19],
LIG [22], PSTNN [12], FKRW [15], and the proposed method; and (i) PRC comparison.
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Table 1. The details of the test sequences.

Sequences Frame Number Resolution Background Description Target Characteristics

S1 100 320 × 256 Strong cloud Aircraft with a size of 4 × 3
S2 100 320 × 256 Strong cloud with higher gray level Dim aircraft with a size of 4 × 2
S3 50 1024 × 1024 Strong cloud with irregular shape Aircraft with a size of 4 × 3
S4 50 640 × 512 Cloudy background birds with size of around 3 × 3

The detection results of different methods on sequence 1 are shown in Figure 10, and
the target is marked by the red circle. The 3-D mesh demonstrated that the proposed
method yielded the best detection performance by enhancing the target and suppressing
the clutters simultaneously. The IPI, LIG, PSTNN, and FKRW could not distinguish the
target from the defective pixel clusters, while the LCM and MPCM failed in suppressing
the clutters.
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Figure 10. The detection results of different methods on S1: (a) the 49th image in S1 and (b–h) nor-
malized 3-D mesh obtained by the LCM [18], IPI [10], MCPM [19], LIG [22], PSTNN [12], FKRW [15],
and the proposed method, respectively.

Figure 11 shows the detection result of a challenging sequence, in which background
clutters have a much higher gray value than the target. The LCM was collapsed on S2,
while the IPI, MPCM, LIG, and PSTNN cannot distinguish the target from the background
because the target has lower intensity than some strong clutters in the background. Al-
though the FKRW can enhance the target effectively, it is clear that our method has a better
performance in terms of clutter suppression.
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and the proposed method, respectively.
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The S3 sequence was acquired by our MWIR camera in good weather conditions with
a small aircraft and with low cloud intensity. The results obtained by different methods are
shown in Figure 12. The IPI and PSTNN, which are based on sparse representation and
low-rank decomposition, have remarkable advantages over the LCM, MPCM, and LIG in
terms of clutter suppression. The FKRW suppresses most of the clutter effectively, but still
regards a small cloud as the target. The proposed method works well on S3, beating the
other methods with a large margin.
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Figure 12. The detection results of different methods on S3: (a) the 1st image in S3 and (b–h) normal-
ized 3-D mesh obtained by the LCM [18], IPI [10], MCPM [19], LIG [22], PSTNN [12], FKRW [15],
and the proposed method, respectively.

The S4 sequence was acquired by our LWIR camera at night, and the number of the
birds in S4 ranges from 3 to 5. The bird (target 5) in the lower left corner has small scale
and quite low intensity, making it difficult to detect. The results in Figure 13 demonstrated
that most of the methods have good detection performance on targets 1 to 4, and only the
FKRW and the proposed method can distinguish the target 5 from the clutters effectively.
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The precision–recall curves of the four different sequences are shown in the Figure 14.
Since the test datasets are challenging, the overall performance of noise-sensitive methods
including LCM, MPCM, and LIG is poor, while the performance of the methods based on
data structure such as IPI and PSTNN are not robust. It is clear that the proposed method
yields the most robust performance on these sequences. Although the PRC of FKRW on S4
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is a bit better than our method, FKRW cannot obtain reliable results on S1 and S3. Moreover,
our method has a better performance in terms of clutter suppression.
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Figure 14. The PRC on different sequences: (a) PRC for S1, (b) PRC for S2, (c) PRC for S3, and (d) PRC
for S4.

The comparison of the area under the curve (AUC) among different methods is given
in Table 2. Although our proposed method does not achieve the largest AUC on the S4
sequence, the overall performance is the most stable, and the mean AUC is at least 22.3%
higher than other methods (calculated based on the results of PSTNN).

Table 2. The comparison of the AUC among different methods.

LCM IPI MPCM LIG PSTNN FKRW Proposed

Area
Under
Curve
(AUC)

S1 0.5763 0.5442 0.3461 0.1493 0.5963 0.2678 0.8532
S2 0.0001 0.3059 0.2168 0.1610 0.5058 0.7339 0.8112
S3 0.5032 0.8780 0.0706 0.2014 0.8819 0.3773 0.8835
S4 0.7892 0.7075 0.6716 0.7179 0.8082 0.9050 0.8678

mean 0.4672 0.6089 0.3263 0.3074 0.6981 0.5710 0.8539

We calculate the average time for one frame in different sequences and the comparison
of the running time among different methods is shown in Table 3. Although the running
time of all methods increases rapidly with the increasement of the resolution, it is clear
that our method is the fastest and maintains a faster speed as the resolution increases. The
computational cost of IPI and PSTNN increased dramatically due to the substantial increase
in matrix size, while the running time of the LCM, MPCM, LIG, and the proposed method
has an approximately linear relationship with the resolution. The computational cost of the
FKRW is highly related to the data structure, but it is still far from real-time processing.
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Table 3. The comparison of the running time among different methods.

LCM IPI MPCM LIG PSTNN FKRW Proposed

Running
time (s)

S1 0.035 9.227 0.048 1.726 0.028 0.141 0.024
S2 0.038 7.913 0.047 1.702 0.027 0.075 0.025
S3 0.546 854.3 0.734 24.52 2.153 1.201 0.262
S4 0.141 374.6 0.201 7.386 0.108 0.152 0.079

3.4. Merits and Limitations

The proposed method achieved stable detection performances for small-scale targets
on the data set under the sky background. The computational cost of the proposed method
is much less than that of the other baseline methods due to the fast extraction by the
DoG filter. Moreover, the experimental results demonstrated that the combination of local
contrast and gradient can effectively enhance small-scale targets and suppress background
clutter. Comparing the results here with our earlier results in [23], the background clutter
has been better suppressed at the expense of slightly more computational times.

However, the proposed method also has some limitations. First, missed detection
can occur if the pre-processing stage cannot accurately extract the target due to the coarse-
to-fine architecture. Second, the local contrast and gradient sometimes may not be good
enough to meet the detection requirements of small and dim targets under all sky back-
grounds, and it would be better if more local features can be utilized. Third, the proposed
method cannot process the high-resolution image (1024× 1024) in real-time.

4. Conclusions

In this paper, we proposed a novel and real-time method to detect a small and dim
IR target in a sky background. The experimental results demonstrated that our proposed
method achieves robust performance in terms of simultaneous target enhancement and
background clutter suppression. More importantly, the proposed method runs much faster
than the baseline methods.

Potential future directions include further improving the detection performance by
utilizing more local features and accelerating the processing speed by introducing a parallel
processing and pipeline architecture, which are essential for real-time processing of data in
IR imaging systems.
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