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Abstract: The presented paper is concerned with detection of presentation attacks against unsuper-
vised remote biometric speaker verification, using a well-known challenge–response scheme. We
propose a novel approach to convolutional phoneme classifier training, which ensures high phoneme
recognition accuracy even for significantly simplified network architectures, thus enabling efficient
utterance verification on resource-limited hardware, such as mobile phones or embedded devices. We
consider Deep Convolutional Neural Networks operating on windows of speech Mel-Spectrograms
as a means for phoneme recognition, and we show that one can boost the performance of highly sim-
plified neural architectures by modifying the principle underlying training set construction. Instead
of generating training examples by slicing spectrograms using a sliding window, as it is commonly
done, we propose to maximize the consistency of phoneme-related spectrogram structures that are to
be learned, by choosing only spectrogram chunks from the central regions of phoneme articulation
intervals. This approach enables better utilization of the limited capacity of the considered simplified
networks, as it significantly reduces a within-class data scatter. We show that neural architectures
comprising as few as dozens of thousands parameters can successfully—with accuracy of up to 76%,
solve the 39-phoneme recognition task (we use the English language TIMIT database for experimental
verification of the method). We also show that ensembling of simple classifiers, using a basic bagging
method, boosts the recognition accuracy by another 2–3%, offering Phoneme Error Rates at the level
of 23%, which approaches the accuracy of the state-of-the-art deep neural architectures that are
one to two orders of magnitude more complex than the proposed solution. This, in turn, enables
executing reliable presentation attack detection, based on just few-syllable long challenges on highly
resource-limited computing hardware.

Keywords: biometrics; presentation attack detection; mel-spectrogram; phoneme classification; deep
neural networks

1. Introduction

Remote biometric user verification becomes the predominant access control technol-
ogy, due to the widespread use of mobile devices and attempts to develop convenient, yet
reliable ways for securing access to resources and services [1]. A multitude of biometric
traits have been successfully considered for identity resolution from data captured by
mobile device cameras (face appearance, palm shape and papillary ridges, ear shape) and
microphones (voice) [2]. Both sources of information can be used in a complementary,
multi-modal recognition scheme, with the significance of individual sources weighted by
input data quality. However, the unsupervised context of remote verification brings a
severe threat of attacks against the data acquisition phase of the biometric data process-
ing pipeline, executed by presenting spoofed or manipulated input. A natural means
for presentation attack detection (PAD) in the case of voice modality, i.e., in a speaker
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authentication context, is a Challenge–Response (CR) scheme that attempts to validate
the uttering of some system-prompted phrases [3]. Utterances to be generated should be
short, to make liveness detection fast and unobtrusive, and hard to predict, to resist replay
attacks, so random syllable sequences make good candidates for a challenge.

Effective PAD for voice biometrics relies on ensuring high phoneme recognition
accuracy. Phoneme identification in audio waveforms, which is the first task of any
Continuous Speech Recognition (CSR) procedure, has attracted an enormous amount of
attention and multiple paradigms have been proposed over decades of intense research
in the field [4]. However, only relatively recent breakthroughs brought by the advent
of Deep Learning and Deep Neural Network concepts, advanced phoneme recognition
performance to a level required for successful applications in a variety of real-world
contexts [5]. One of the main approaches to phoneme-classification is to represent speech
as images (Spectrograms or Mel-Spectrograms) and analyze these images using Deep
Convolutional Networks [6]. The remarkable performance of state-of-the-art deep learning
algorithms (with correct classification rates at the order of 85% for 39-class recognition in
the case of spoken English language [7]), unfortunately, requires very complex architectures,
which are ill-suited for implementation on resource-limited, mobile or embedded devices.
Therefore, to enable protection of speaker authentication against presentation attacks in
such a context, accurate and lightweight algorithms need to be sought.

The presented paper proposes a Challenge–Response procedure for counteracting pre-
sentation attacks on voice biometrics that is aimed at implementation on resource-limited
computational architectures. To retain high attack detection accuracy, while enabling a
significant reduction in the complexity of deep neural classifiers involved in processing, we
propose to simplify the task of deep model training. We show that appropriate selection
of training material, aimed at minimizing within-class data scatter, improves data anal-
ysis accuracy, thus providing a better use of the reduced capacity of small networks. As
Convolutional Neural Networks, operating on windows of speech Mel-Spectrograms, are
selected as a phoneme classification tool, the proposed idea is implemented by training
the network only on spectrogram portions extracted from the central regions of phoneme
articulation intervals.

The proposed training example selection scheme, which we refer to as a central-window
scheme (as opposed to the commonly used sliding-window scheme), was evaluated using
the TIMIT speech database [8], which is one of the most frequently used speech recognition
benchmarks. To ensure a comprehensive assessment, we have considered a wide variety of
combinations of speech preprocessing parameters—different frame lengths, spectrogram
window sizes, and a number of Mel-frequency filters. We show that networks trained using
the central-window scheme outperform, by a wide margin of 5 to 13 percent, networks
trained using a sliding-window approach, for all considered combinations of speech
preprocessing parameters.

Adopting the proposed approach enables achieving almost 74% spectrogram-window
classification accuracy for the considered 39-class recognition problem even by using ex-
tremely compact networks, comprising 40–50 thousand parameters. This in turn makes the
PAD procedure feasible for implementation in resource-constrained hardware: accurate
spectrogram-window classification, which is the most complex PAD component, is sup-
plemented with a computationally moderate speech preprocessing and a computationally
inexpensive phoneme identification step. We show that the proposed PAD algorithm that
uses compact CNN classifiers trained using the central-window scheme enables achieving
low, 23% Phoneme Error Rates (PER).

As the considered neural architectures are very simple, we additionally examine the
performance of ensembles of the derived classifiers. We find that spectrogram-window
classification accuracy can be further improved, reaching almost 80%, when applying
three-component ensembles. Although ensembling implies a multiple-fold increase in
the network’s complexity, the resulting architecture comprising 150k parameters remains
almost two orders of magnitude smaller than commonly used compact deep architectures,
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such as e.g., ResNet-18, while offering comparable classification accuracy. Having derived
a resource-friendly, yet accurate phoneme recognition algorithm, we finally show that
its application to the verification of prompted texts enables presentation attack detection
based on few-syllable utterances, with over 99% confidence.

The structure of the paper is as follows: after a brief review of related concepts,
focusing on state-of-the-art phoneme recognition methods and PAD algorithms for voice
biometrics (Section 2), we explain in detail the proposed liveness detection procedure
(Section 3) emphasizing the proposed central-window scheme for training set selection
(Section 3.2) and the proposed approach to phoneme identification (Section 3.3). Results
of experimental verification of the concept are presented and discussed in Section 4 and
concluded in Section 5.

2. Related Work

The Challenge–Response (CR) utterance verification procedure, where a biometric sys-
tem validates the uttering of some prompted texts, is conceptually the simplest presentation
attack detection scheme against speaker recognition algorithms. Despite its shortcomings,
it offers performance that is acceptable for a wide range of practical applications. Although
it has been pointed out that the CR scheme is vulnerable to sophisticated attacks that use
advanced real-time speech synthesis algorithms [9], alternative approaches can also be
circumvented or require specialized equipment. For example, the effective replay attack
countermeasure, reported by Sahidullah et al., requires the use of a special throat micro-
phone sensor [10]. In addition, the VAuth authentication system developed by Feng et
al. relies on a wearable device that detects body-surface vibrations which accompany
speech [11]. Another approach to detecting attacks against voice biometrics—a method
proposed by Zhang’s et al. [12]—assumes the presence of two microphones, as it is based
on time-arrival difference measurements. The alternative introduced by Wang in et al. [13]
relies on detecting characteristic breathing patterns coexisting with speech; however, it
requires holding a microphone in close proximity to the mouth. Taking into account the
drawbacks of the presented PAD ideas, it is clear that the application of a basic CR scheme
in remote voice biometrics seems to be well justified.

To make CR-based validation of user authenticity unobtrusive and reliable, prompted
texts need to be short, which implies a need for highly accurate speech analysis. Meeting
this objective has become possible due to recent breakthroughs in deep learning. Since
Dahl et al.’s seminal paper presenting a hybrid deep neural network—hidden Markov
model (DNN-HMM) [14]—many diverse directions of utilizing deep learning for speech
recognition have been explored. One of the possibilities is usage of Recurrent Neural
Networks (RNNs)—a tool designed specifically for the purpose of sequence analysis.
Graves et al. reported a 17.7% phone error rate (PER) on the TIMIT database [15] in
2013. Even better results—14.9% PER (by far the best for TIMIT) was obtained by using
the RNN architecture proposed in [16] and composed of Light Gated Recurrent Units
(Li-GRU) (totaling 7.4 million parameters). A different approach utilizes well-established
Convolutional Neural Networks (CNNs), where a speech signal is transformed into a
spectrogram. Abdel-Hamid et al. first proposed this concept and reported 20.17% PER,
again on the TIMIT benchmark [6]. Later, a hierarchical CNN using max-out activation
function has been proposed, and achieved a 16.5% phoneme error rate [17]. In 2020, Gao et
al. used U-Net architecture with 7.8 million parameters adopted from the semantic image
segmentation task and reported 19.6% PER [18].

Unfortunately, excellent recognition rates offered by deep neural network classifiers
require complex architectures that involve several millions parameters, which is problem-
atic for efficient implementation on resource-limited devices. Less complex classification
methods, such as Support Vector Machines (SVM) and Random Forests, have also been
proposed—e.g., by Ahmed et al., who reported an SVM RBF classifier, 8 times faster and
153 times lighter (with respect to feature size) than the state-of-the-art CNN solution [19]—
nevertheless, they are still outperformed by deep learning based methods.
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By far, algorithms for phoneme recognition in continuous speech have not been
tailored to the realm of limited-resource devices. Instead, to balance usability and hard-
ware limitations, isolated word recognition a.k.a. Keyword Spotting has been considered,
and several efficient deep learning algorithms were proposed to do the task. For ex-
ample, works presented by Sainath and Parada [20] in 2015, Tang and Lin [21] in 2017,
and Anderson et al. [22] in 2020 demonstrate compact CNN architectures trained on Mel-
spectrograms of short audio files for keyword recognition. The number of network pa-
rameters presented in those papers varies from 1.09M in the case of Sainath and Parada’s
tpool2 network, through 131K of Anderson’s et al. kws2, down to even 19.9K in the case of
res8-narrow architecture proposed by Tang and Lin, whilst achieving over 90% test accuracy
on the Google Speech Commands benchmark dataset [23], proving that small-footprint
CNNs can be successfully utilized in audio recognition tasks.

3. Liveness Detection Procedure

A scheme for Challenge–Response based presentation attack detection, which is
considered in the presented research, is to generate random texts that are to be uttered by a
speaker and subsequently validated by the algorithm. The proposed procedure, depicted
schematically in Figure 1, comprises three main data processing phases. The first one—data
preprocessing (a block denoted by ‘P’)—converts the input speech signal into a series of
overlapping Mel-Spectrogram windows, which in the second phase are analyzed using
an appropriately trained Convolutional Neural Network (a ‘CNN’ block). A sequence
of labels, predicted for subsequent windows, is then examined to identify the uttered
phonemes (a ‘PI’ block). The detected sequence is finally confronted with the expected
outcome and a decision on the procedure outcome (i.e., whether the test was passed or it
failed) is made.

Figure 1. A diagram of the proposed utterance analysis method. The data preprocessing module
(P) transforms input speech to Mel-Spectrogram windows (denoted by wi), which are subsequently
classified by a Convolutional Neural Network that assigns a label li to each input window wi. The
resulting sequence of predicted labels is analyzed by a phoneme identification module (PI), which
produces a sequence of recognized phonemes.

3.1. Speech Signal Preprocessing

Utterances are transformed into Mel-Spectrograms using a standard speech signal
preprocessing procedure. First, the input audio samples are split into a sequence of
overlapping frames. Next, each frame, after being adjusted with a window function, is
subject to the Discrete Fourier Transformation. Finally, the resulting magnitude spectra
are wrapped around a bank of triangular filters centered at a set of Mel-scale frequencies.
To ensure a comprehensive evaluation of the proposed concept, different combinations
of key parameters of the adopted signal preprocessing procedure were considered. We
examined different frame lengths, which for a given sampling frequency, determine the
range of spectral signal composition. Furthermore, we considered different numbers of
Mel-filters, which determine the spectral resolution of the analysis. Lastly, we examined
different Mel-Spectrogram window lengths, which determine the amount of contextual
information considered in label prediction.
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3.2. Derivation of Spectrogram-Window Classifier

Examples that are used for the training of CNN phoneme classifiers are typically
collected by sliding some fixed-width analysis window over subsequent spectrogram
regions, with some fixed overlap (shown schematically in Figure 2). This strategy provides
the network with comprehensive information on spectrogram structures that represent
the articulation of feasible phone combinations. However, if the network’s size, and
thus, its information storage capacity (that can be coarsely estimated, e.g., using Vapnik–
Chervonenkis’ dimension [24]) decreases, the high within-class variability of structures can
no longer be correctly captured. Therefore, to simplify the task to be learned, we postulate
to limit the training examples only to a subset of patterns that are maximally consistent.
This way, all considered models can specialize in learning the most salient, class-specific
spectrogram structures. To meet this objective, class examples are represented only by
spectrogram regions that are located within the central intervals of phone-articulation
periods, where the patterns are similar to each other and where spectrogram window
contents are less affected by highly variable contextual information (see the bottom part of
Figure 2). We define the aforementioned ’central interval’ as a region that covers up to five
percent of a given phoneme articulation period, centered around the period’s midpoint.

Figure 2. Mel-Spectrogram slicing scheme for building example sets for a conventional sliding
window-based procedure (top) and for the proposed concept (bottom). In the latter case, windows
are extracted only within a central region of an articulation period. Original spectrogram, together
with phoneme annotations, is shown for reference in the (middle) row.

Given the training sets generated using two different approaches (either a conventional
sliding-window based method or examples selected using the central-window scheme),
one can proceed with searching for a compact CNN architecture to perform the window-
labelling task. This target architecture is constrained only by two factors. The first one is
the shape of the input data: a two-dimensional matrix of size w× h, where w is a width
of the considered Mel-Spectrogram window and h denotes the number of Mel-filters (i.e.,
the number of spectral components that represent each frame). The second constraint is
the number of classes considered in the recognition, and it determines the number of the
network’s outputs.

As the considered neural classifier is a nonlinear algorithm with a considerable number
of parameters, non-gradient optimization methods seem to be feasible candidates for its
architecture optimization. Of the many possible candidate algorithms, a Nelder–Mead’s
simplex method [25] was adopted as a tool for task realization. However, before applying
the optimization, two additional constraints on the target architecture were imposed. The
first one applies to the feature extractor structure, whereas the second one to the structure
of the dense part of a CNN. In the former case, we fixed the number of convolutional layers
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to either four or five, which bounds the maximum scaling of relatively small input images
(we assume that convolutions are followed by downsampling). In the latter case, we fixed
the number of dense layers to three, to enable the formation of arbitrary decision region
shapes. The optimization objective was to maximize the classification accuracy and the
expected optimization outcome was a selection of compact CNN architectures that satisfy
this objective.

3.3. Identification of Uttered Phonemes

The CNN-based spectrogram window classifier produces a sequence of label predic-
tions with a temporal resolution determined by a between-window shift. It follows that
the labels assigned to subsequent windows that slide through a given phone should be
the same, if the shifts are small enough, with the number of symbol repeats depending
on the phoneme articulation duration. Therefore, the Phoneme Identification module (PI
block, Figure 1) adopts the following rule for assembling window-label predictions to
phonemes. The phoneme is recognized only if a sequence comprising a sufficiently long
series of identical window-labels is found. The length of this sequence is determined by a
threshold parameter that is experimentally selected based on phoneme duration statistics
and phoneme recognition performance.

3.4. Estimation of Attack Detection Confidence

Utterance validation requires confronting the expected and actual phoneme sequences.
As uttered text validation can be regarded as a series of independent experiments of testing
pairs of corresponding phonemes for equality, presentation-attack detection confidence
can be quantified based on the properties of binomial distribution. The probability of
correct recognition of at least k-phonemes in an n-element sequence by a trained classifier
is given by:

p(k,n)
c =

n

∑
i=k

Ci
n p̄i

c(1− p̄c)
n−i (1)

where Ci
n = (n

i ) is a Binomial Coefficient and p̄c denotes average probability of correct
phoneme recognition. Assuming that the average phoneme-recognition probability p̄c is
higher than the average probability of a random match p̄rand, we define PAD confidence as
a gain in probability of correct recognition of at least k-phonemes by means of the trained
classifier (p(k,n)

c ) over a probability of getting this result by random guessing (p(k,n)
rand ):

C(k,n) = p(k,n)
c − p(k,n)

rand (2)

Given the expression (2), one can determine the parameters (length of a challenge
sequence and the minimum required number of correctly recognized phonemes) that
ensure obtaining some assumed minimum confidence level θ:

k∗, n∗ = arg min
n,k≤n

(
C(k,n) − θ

)
≥ 0 (3)

Observe that maximizing phoneme recognition accuracy p̄c provides two major ben-
efits. It enables shortening a challenge, making the liveness detection procedure more
friendly, and, for a given challenge length, increases decision-making confidence.

4. Experimental Evaluation

The following main objectives were pursued throughout the experimental part of
the presented research. The first and most important goal was to verify the hypothesis
regarding a possible improvement in classification accuracy due to the adoption of the
proposed central-window scheme for training example selection. The second goal of the
experiments was to determine whether one can derive, based on a training set constructed
using the proposed scheme, a compact CNN architecture, well-suited for implementation
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on hardware-limited devices, offering sufficiently high phoneme recognition accuracy.
Finally, for the derived classification algorithms, we were interested in estimating the pa-
rameters of the challenge: phoneme sequence length and the minimum number of matches,
which are required to ensure the desired presentation attack detection confidence levels.

Throughout the experiments, we assumed 1 millisecond shifts between subsequent
spectrogram windows, and we examined different combinations of speech preprocess-
ing parameters: frame and window lengths and a number of filter banks. Specifically,
we considered five different frame lengths: nDFT = 160, 256, 512, 1024, 1600, three Mel-
Spectrogram window lengths: WL = 64, 128, and 256 (as we chose 1 ms window shift,
tested windows were, respectively, 64 ms, 128 ms and 256 ms-long), and two lengths of
Mel-filter banks: NFB = 40 and 128.

4.1. TIMIT Speech Corpus

For all experiments, we used the TIMIT speech database—one of the best established
speech data resources for research on automatic speech recognition. TIMIT contains
recordings of 630 speakers, representing eight main American English dialects, with each
speaker uttering 10 phonetically rich sentences for a total of 6300 sentences, or over 5 h of
audio recordings. Although the original TIMIT corpus transcriptions are based on the set
of 61 phonemes, following [26], it is widely agreed that some of the phonemes should be
considered as the same class, resulting in mapping of the original phoneme labels set into
39 classes—a labeling scheme that we also follow. We used a randomly selected 10% of the
TIMIT core training set as a validation dataset. Presented accuracies (ACC) and phoneme
error rates (PER) have been calculated using the TIMIT core test set.

4.2. CNN Architecture Derivation

The first part of our experiments was concerned with the derivation of a compact ar-
chitecture, suitable for mobile devices. As mentioned in Section 3.2, we assumed that CNN
with either four or five convolutional and three dense layers would be a starting point for
optimization procedures. Except for the output softmax layer, LeakyReLU [27] activation
functions were used for all network’s neurons. Since at this point the proper speech prepro-
cessing parameters were unclear, we decided to perform the optimization using input data
of size 40 rows (i.e., 40 frequency components) and 256 columns (i.e., 256 millisecond-long
spectrogram windows). The vector of hyperparameters that was used in the optimization
comprised: the number of filters per each convolutional layer, together with the param-
eters of the filters’ structure (widths and heights), and an amount of neurons per each
dense layer. The optimization objective was to maximize the classification accuracy on the
validation dataset. In each iteration, CNN was trained using a categorical cross-entropy
loss with L2-regularization. Table 1 presents architecture details and performance for both
initial models and for the best models obtained after 100 optimization steps, as well as
for the reference ResNet-18 network—the most compact variant of He’s et al. ResNet
architectures [28].

Table 1. Architectures, complexity (in number of parameters), and phoneme classification accuracy
(ACC) for the initial and optimized CNN models, and for the ResNet-18 network.

Architecture #Params ACC (%)
Convolutional Layers Dense Layers

#layers kernel size #filters #neurons
4-layer-init 4 3, 3 32, 32, 32, 32 32, 32, 39 63,207 75.64
4-layer-opt 4 7, 7 11, 81, 46, 47 139, 94, 39 558,955 79.68
5-layer-init 5 3, 3 32, 32, 32, 32, 32 32, 32, 39 47,879 75.25
5-layer-opt 5 9, 9 9, 26, 28, 59, 74 106, 59, 39 637,816 79.93

ResNet-18 ≈11 M 81.57
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As it can be seen from Table 1, both optimized architectures are significantly more
complex than the initial ones, although the corresponding performance gains are rather
minor. An interesting feature of these architectures is an increase in kernel size (beyond
what is typical in visual object recognition [28–30]), which suggests the importance of broad
contextual information in spectrogram-windows classification. As the classification accu-
racy differences between initial and optimized networks were not very large, we performed
further experiments for all architectures. However, to facilitate the task, only initial simple
five-convolutional layer architectures (of complexity ranging from 34,535 weights for input
windows of shape 40 × 64 to 51,975 for networks analyzing 128-by-256 windows) were
considered to determine the optimal signal preprocessing parameters. In each experiment,
we used a well-established ResNet-18 architecture as a reference.

4.3. Evaluation of the Proposed Classifier-Training Scenario

To verify the hypothesis that training networks with data extracted only from central
regions of phoneme articulation intervals improves phoneme classification accuracy, we
run a set of experiments for different combinations of speech preprocessing parameters.
We trained classifiers either on data prepared using the proposed central-window scheme
or using a sliding-window approach [31]. For all tests, parameter optimization was made
using Adam optimizer [32], with a fixed value of learning rate of 0.0003, batch size of 64,
and weight initialization using a scheme proposed by Glorot et al. [33]. No pre-training or
transfer learning techniques were used.

The results, summarized in Table 2, clearly show that the proposed training scheme
outperforms the sliding-window based approach. For every combination of speech prepro-
cessing parameters and for all tested architectures, the classification results for networks
trained on central-windows are higher by 5 to 13 percent. Moreover, simple CNNs trained
on central-region examples in most cases perform better than ResNet-18 trained using a
sliding-window approach.

Table 2. Spectrogram-window classification accuracy (ACC) on the TIMIT dataset for different tested
architectures and different combinations of speech preprocessing parameters.

Network Architecture Central Window Method Sliding Window Method Network Architecture Central Window Method Sliding Window Method
NFB W L nDFT ACC (%) NFB W L nDFT ACC (%) NFB W L nDFT ACC (%) NFB W L nDFT ACC (%)

ResNet-18

40

64

160 72.39

40

64

160 63.00

5-layer-init

40

64

160 67.51

40

64

160 54.44
256 72.48 256 62.54 256 68.57 256 54.48
512 73.31 512 64.85 512 69.37 512 55.95

1024 74.88 1024 64.69 1024 69.68 1024 57.78
1600 74.08 1600 65.25 1600 68.32 1600 56.98

128

160 78.66

128

160 71.31

128

160 73.13

128

160 62.24
256 78.97 256 70.66 256 72.39 256 62.53
512 79.38 512 70.96 512 73.19 512 63.13

1024 79.29 1024 71.67 1024 73.34 1024 62.79
1600 78.09 1600 69.57 1600 71.96 1600 61.73

256

160 81.25

256

160 75.69

256

160 74.97

256

160 65.09
256 80.74 256 75.64 256 75.12 256 66.04
512 81.94 512 75.45 512 75.15 512 66.19

1024 81.57 1024 75.29 1024 75.25 1024 64.95
1600 80.04 1600 74.29 1600 72.94 1600 64.17

128

64

160 73.79

128

64

160 63.53

128

64

160 69.52

128

64

160 55.96
256 73.47 256 63.44 256 68.50 256 56.43
512 74.41 512 64.67 512 69.37 512 56.10

1024 75.21 1024 65.52 1024 69.93 1024 57.46
1600 76.44 1600 66.32 1600 69.76 1600 57.68

128

160 78.30

128

160 71.15

128

160 73.85

128

160 62.13
256 79.34 256 71.05 256 74.20 256 62.50
512 79.14 512 72.00 512 73.32 512 61.79

1024 78.42 1024 72.03 1024 72.39 1024 61.51
1600 77.79 1600 71.09 1600 72.28 1600 60.38

256

160 81.50

256

160 75.39

256

160 76.05

256

160 67.61
256 80.48 256 75.24 256 76.61 256 65.83
512 80.99 512 75.01 512 75.85 512 65.27

1024 79.53 1024 73.96 1024 75.51 1024 64.59
1600 80.67 1600 73.74 1600 75.40 1600 64.01

Analysis of different speech preprocessing parameter setups shows that an increase
both in the spectral resolution of the speech representation and an increase in the amount of
considered contextual information that is provided by longer analysis windows improves
results. In the case of frame lengths, 256-long or 512-long sample sequences (16 ms or 32 ms
for the 16 kHz TIMIT speech sampling frequency) seem to be optimal. Results presented in
Table 2 were summarized in a graphical form in Figures 3 and 4.
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Figure 3. ResNet18 classification accuracies on the TIMIT core test set as a function of input image
size. Models trained using datasets derived using a central-window scheme (CW) are shown in
orange, while models trained on dataset prepared using sliding-window method (SW) are shown in
blue. The presented point clusters correspond to different frame lengths.

Figure 4. Classification accuracies for the initial 5-layer CNN architecture as a function of input
image size and speech preprocessing parameters.

4.4. Phoneme-Sequence Identification

Classification accuracy evaluated for spectrogram windows is not a relevant metric
for evaluating utterance recognition performance, as the expected speech recognition
outcome needs to be expressed using correct phoneme identification rates. This requires
assembling subsequent window-label predictions into predictions of uttered phoneme
sequences and confronting these results with the ground truth. As it has been indicated
in Section 3.3, a phoneme is identified if a sufficiently long sequence of its consecutive
predictions is detected. The number of label repetitions needs to be large enough to avoid
false predictions that could occur, e.g., during phone-articulation transients, but at the
same time, it needs to ensure correct responses to short-duration phones (phone-duration
distribution for TIMIT dataset is shown in Figure 5).
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Figure 5. Violin plot showing duration of TIMIT core training set phonemes. Vowels are indicated in
blue, while non-vowels in orange. Dark-blue ticks indicate mean phoneme durations.

To determine the optimal amount of repeating window-labels that provides a reliable
phoneme detection, we execute the following procedure. First, we choose the initial five-
layer CNN architecture and we fix data-preprocessing parameters at values that proved
the best in spectrogram-windows classification (nDFT = 256, WL = 256, NFB = 128
and 1 ms-long hops between subsequent windows). Then, using the TIMIT training set,
we begin an iterative search procedure. An initial value for the target label repetition
threshold—θ0—addresses the aforementioned compromise between phone articulation
transient effects and short-phone detection capability. We assume that θ0 = 8, i.e., we
initially test the consistency of classification results for at least eight consecutive windows
(with origins evenly distributed within the 8-millisecond interval). For each i-th iteration
of the procedure, only sequences of at least θi identical, CNN-produced window-labels are
considered as a successful phoneme recognition result and are assigned a phoneme-label.
Given a ground truth—a sequence of phoneme labels manually assigned to the considered
utterances—a Phoneme Error Rate score is then calculated, and the procedure is repeated
for another candidate θi+1 = θi + 1.

The Phoneme Error Rate—PER—is defined as:

PER =
S + D + I

N
(4)

where S, D, I denote the number of substitutions, deletions, and insertions that need to be
made to map the produced phoneme-sequence onto the expected one, and N is the length
of the reference sequence of phonemes in a challenge utterance.

Results of the threshold selection procedure have been presented in Figure 6. It can
be seen that, for the considered dataset, an optimum range of threshold values can be
clearly identified. Given the between-window shift of 1 ms, these values provide a balance
between the preservation of short phoneme detection feasibility (such as, e.g., ’b’, with a
mean duration of 17 ms or ’d’ with 21 ms mean length) and erroneous detections made
mainly in transient regions.

Figure 6. Distribution of Phoneme Error Rates for different phoneme-detection thresholds and a
simple CNN classifier (central-window scheme, NFB = 128, WL = 256, nDFT = 256).
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Having set the phoneme detection threshold to n = 15, we calculated PER score for
the recognition of TIMIT core test set utterances for different considered architectures and
all considered combinations of speech preprocessing parameters. In all cases, we used
the same 39-class CNN classifiers as for the window contents recognition experiments
presented in Table 2. The results, summarized in Table 3, further confirm superiority of the
proposed training set selection scheme for simple CNN classifiers. In the case of ResNet-18,
one can observe that the gains in accuracy are lower or even that the performance deterio-
rates. The main reason for this effect is a significant, approximately ten-fold reduction in
volume of the training set generated using the central-window scheme (from over a million
examples collected for the sliding-window scheme, to around 150 thousand examples).
This reduction clearly impairs the learning of almost a dozen million-parameter ResNet-18
architecture. The best achieved value of PER for ResNet-18, trained on examples prepared
using the central-window scheme is 18.67% (which is close to the performance of the
state-of-the-art architectures). PER scores for simple CNNs varied from 33.4% for the most
compact architecture, comprising around 34k parameters, to 24.4% for the architecture
comprising 52k parameters. These results also confirm the significance of the amount of
contextual information (the results improve as the window length increases), but provide
no clear conclusions regarding frame length.

Table 3. Phoneme Error Rates (PER) calculated for different tested architectures and all combinations
of speech preprocessing parameters on the TIMIT core test set.

Network Architecture Central Window Method Sliding Window Method Network Architecture Central Window Method Sliding Window Method
NFB W L nDFT PER (%) NFB W L nDFT PER (%) NFB W L nDFT PER (%) NFB W L nDFT PER (%)

ResNet-18

40

64

160 28.64

40

64

160 27.01

5-layer-init

40

64

160 33.40

40

64

160 36.94
256 28.88 256 28.88 256 32.74 256 37.14
512 27.78 512 27.72 512 31.28 512 37.01

1024 26.01 1024 27.41 1024 30.87 1024 36.04
1600 27.46 1600 27.75 1600 33.74 1600 36.17

128

160 23.02

128

160 23.28

128

160 28.12

128

160 31.71
256 22.84 256 23.74 256 28.57 256 31.95
512 21.96 512 24.12 512 28.27 512 31.84

1024 22.61 1024 24.14 1024 27.93 1024 32.83
1600 24.59 1600 24.53 1600 29.36 1600 34.32

256

160 19.73

256

160 21.11

256

160 25.84

256

160 30.71
256 20.07 256 20.54 256 26.41 256 29.72
512 19.33 512 21.76 512 26.23 512 30.71

1024 19.75 1024 21.99 1024 26.46 1024 31.13
1600 21.61 1600 23.46 1600 28.22 1600 32.00

128

64

160 27.93

128

64

160 28.64

128

64

160 31.67

128

64

160 35.17
256 27.34 256 27.17 256 32.45 256 36.57
512 27.30 512 27.83 512 32.19 512 36.61

1024 25.18 1024 25.26 1024 31.28 1024 35.90
1600 25.14 1600 25.48 1600 31.86 1600 34.65

128

160 22.31

128

160 23.09

128

160 27.78

128

160 31.86
256 22.51 256 22.70 256 27.30 256 30.79
512 21.77 512 22.37 512 28.33 512 32.19

1024 24.34 1024 23.30 1024 29.26 1024 32.82
1600 24.99 1600 24.53 1600 29.66 1600 35.10

256

160 20.55

256

160 21.87

256

160 24.84

256

160 28.37
256 20.55 256 21.91 256 24.40 256 31.12
512 21.21 512 19.96 512 24.58 512 30.96

1024 18.67 1024 23.05 1024 25.35 1024 31.30
1600 20.05 1600 22.60 1600 26.71 1600 32.08

Detailed information on spectrogram-windows classification results, provided by
the confusion matrix (Figure 7), is consistent with the work reported elsewhere [34]. The
phoneme posing the greatest difficulty for a classifier is the vowel ‘uh’, which is notoriously
confused with the vowels ‘ah’ and ih’, whereas the highest recognition accuracy is obtained
for short consonants (‘b’, ‘dx’, ‘q’).

To emphasize the differences caused by applying the two considered CNN training
schemes, the results of a sample speech Mel-spectrogram fragment classification have been
presented in Figures 8 and 9. The plots drawn above the presented Mel-spectrogram, com-
prising seven phonemes (with phoneme articulation boundaries delimited with red vertical
lines), depict the temporal evolution of the probabilities generated by the corresponding
seven CNN outputs. It can be seen that the plots are qualitatively different, depending on
the adopted training scenario. In case of the proposed central-window training scheme,
there are clearly visible probability peaks that emerge in the central regions of phoneme
articulation periods. On the other hand, the responses of a classifier trained using the
sliding-window scheme are spread over the whole phoneme articulation period, but with
lower and highly variable magnitudes.
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Figure 7. Confusion matrix for the best-performing simple CNN architecture (NFB = 128, WL = 256,
nDFT = 256), trained using the proposed, ’central’ examples.

Figure 8. Probabilities produced at seven CNN-classifier outputs (top) during analysis of Mel-
Spectrogram composed of seven different phonemes (bottom), for a classifier trained on central
phoneme examples. Observe an erroneous detection of a consonant ’n’ in the middle part of the plot.
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Figure 9. Probabilities produced for the same spectrogram as in Figure 8 by a classifier trained using
the sliding-window scheme. Observe an erroneous detection of a consonant ’dx’ in the leading part
of the plot.

Performance of the optimized five-convolutional layer architecture (see Table 1)
trained using the central-window scheme (summarized in Table 4) shows that it is competi-
tive with approximately seventeen times more complex ResNet-18 both in terms of window
classification accuracy (81.25% compared with 81.94% for ResNet-18) and phoneme recog-
nition (lowest obtained PER—22.91% compared with 18.67% for ResNet-18). Throughout
the experiments, we used 256 ms-long spectrogram windows, both proposed numbers of
Mel-filters (40 and 128) and all considered frame lengths (nDFT = 160, 256, 512, 1024, 1600).

Table 4. Accuracy of the optimized 5-layer network in spectrogram-window classification (ACC) as
well as in phoneme recognition (PER).

Network Architecture Central Window Method Sliding Window Method
NFB W L nDFT ACC (%) PER (%) NFB W L nDFT ACC (%) PER (%)

5-layer-opt

40 256

160 80.41 23.68

40 256

160 72.23 29.22
256 80.13 23.87 256 72.64 27.83
512 79.61 24.46 512 72.70 27.31

1024 79.93 24.37 1024 70.69 29.22
1600 78.81 25.78 1600 70.63 29.33

128 256

160 81.25 23.58

128 256

160 72.86 26.80
256 80.91 23.42 256 72.56 27.60
512 81.24 22.91 512 72.70 26.51

1024 80.78 23.01 1024 72.28 27.36
1600 80.19 23.69 1600 71.96 26.37

4.5. Ensembling Simple Classifiers

Motivated by recent advances in ensembling deep classifiers [35], we also tested
whether combining the simplest architectures that operate on different frame lengths:
128, 256, and 512 samples, thus analyzing different information, could improve phoneme
recognition. We adopted a simple bagging approach with majority voting as a decision
fusion strategy. Experiment results, summarized in Table 5, show that the lowest PER for
the ensemble of ResNet-18 architectures equals 17.32% (as compared to 18.67% without
ensembling) and 22.12% for an ensemble of the 5-layer-init architecture (compared to
24.40% without ensembling and 22.91% of its Nelder–Mead optimized variant).

Phoneme-recognition accuracy for individual classifiers and for classifier ensembles
has been summarized in Figure 10, where the results are grouped according to the input
data shape. It can be seen that, in any case, the application of classifier ensembles reduces
phoneme error rates, compared to the mean performance of individual classifiers. Further-
more, one can see that the proposed central-window training scheme is superior for both
individual simple architectures as well as for their ensembles. Finally, the performance
of ensembles of simple networks, with complexity of the order of 150k parameters, gets
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close to the performance of ResNet-18 architecture, which is approximately fifty-times
more complex.

Table 5. Performance of classifier ensembles (ResNet-18 and the simple unoptimized CNN).

Network Architecture Central Window Method Sliding Window Method Network Architecture Central Window Method Sliding Window Method
NFB W L PER (%) NFB W L PER (%) NFB W L PER (%) NFB W L PER (%)

ResNet-18

40
64 24.73

40
64 25.36

5-layer-init

40
64 29.70

40
64 34.61

128 20.04 128 21.23 128 25.84 128 29.56
256 17.32 256 18.60 256 23.92 256 27.45

128
64 24.33

128
64 23.57

128
64 29.98

128
64 34.35

128 20.15 128 20.18 128 25.37 128 29.80
256 18.06 256 18.68 256 22.12 256 28.15

Figure 10. Phoneme error rates calculated for individual classifiers and their ensembles, determined
for six groups of experiments, involving different shapes of input Mel-Spectrogram windows (either
40 or 128 rows and 64, 128, and 256 columns). Performance of Res-Net-18 and the derived CNNs,
trained either with the proposed central-window scheme (suffix CW) or sliding window (suffix
SW), is shown. For each experiment, three different frame-lengths (128, 256 and 512) were used to
preprocess input speech. Mean performance for three individual classifiers is shown using solid bars
with whiskers denoting 99% confidence intervals, whereas performance for three-element classifier
ensembles is presented using dashed bars.

4.6. Challenge Parameters Estimation

Given phoneme recognition accuracies, one can estimate the necessary challenge
sequence length that ensures some assumed PAD confidence levels. For the considered
attack scenario, where some prerecorded utterance of a legitimate user is provided as a
response to the challenge, only random phoneme matches can occur. Although a phoneme
random match probability for an m-phoneme alphabet is 1

m , feasible utterances must
be syllable-based, so, as the worst-case, we assume that p̄rand = 1

mv
, where mv is the

number of vowels. Taking this into account and assuming that challenges are generated as
random syllable sequences, we provide challenge sequence length estimates for different
assumed PAD confidence levels for different considered architectures, trained using a
central-window scheme (Table 6).
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Table 6. Required challenge length (n—in phonemes) and the minimum number of correct matches
(k) for different assumed presentation-attack detection confidence levels and selected architectures.

Network Architecture Assumed PAD Confidence
0.90 0.95 0.99

5-layer-init CNN n = 5, k = 4 n = 6, k = 3 n = 10, k = 4
Ensemble of 5-layer-init CNNs n = 5, k = 3 n = 6, k = 3 n = 9, k = 4
ResNet-18 n = 5, k = 3 n = 6, k = 3 n = 9, k = 4

4.7. Computational Complexity and Performance Results

Total computational complexity of the proposed solution is the sum of the preprocess-
ing step complexity (derivation of Mel-spectrograms) and the complexity of CNN-classifier
forward-pass execution. Assuming the adopted notation (where nDFT denotes frame
length, NFB and WL denote number of Mel-filters and window-length, respectively), the
complexity of the PAD procedure is low and can be estimated as: O(nDFT ∗ log(nDFT)) +
O(nDFT) +O(NFB ∗WL ∗ log(NFB ∗WL)).

The proposed PAD procedure has been implemented on a mobile device. We used
Xiaomi Pocophone F1 powered by a Qualcomm Snapdragon 845 processor, 6 GB of RAM,
and Android 10.0 operating system. The two network architectures: the initial 5-layer
classifier and ResNet-18, were converted to TensorFlow-Lite models with all variables
represented as 32-bit floats. Classification of spectrogram-window of size 40 × 256 using
the simple CNN architecture takes 6 ms, whereas the classification performed by Resnet-18
takes around 66 ms. Moreover, an order of magnitude lower are the memory requirements
for model storage: around 1 MB is consumed by the simple CNN classifier compared to
over 40 MB required by ResNet-18.

4.8. Discussion

The presented experiments confirmed the hypothesis that one can increase the accu-
racy of CNN-based phoneme classifiers by adopting the proposed central-window based
training scheme. The superiority of this approach has been confirmed for all tested ar-
chitectures: from the complex ResNet-18 network comprising several million parameters,
through optimized CNN networks with several hundred thousand weights, to extremely
simple, structures, comprising only several dozen thousand parameters (as shown in
Tables 2 and 4, presenting spectrogram-window classification results, and in Tables 3 and 4,
presenting phoneme recognition performance). One can also observe that performance
gains grow with a reduction in the network’s complexity, which supports our conjecture
concerning a better use of a limited network’s information capacity due to training on data
with the reduced within-class scatter.

The ability to simplify CNN classifier structure without compromising recognition
accuracy enables executing presentation-attack detection on resource-limited devices. We
show that architectures with as few as 50k parameters trained using the central-window
scheme provide higher spectrogram-window classification accuracy than several-million
parameter ResNet-18 trained using the sliding-window scheme. We also show that en-
sembling these simple architectures provides further window-recognition and phoneme-
recognition improvements while keeping the complexity of the resulting network at the
order of 150k parameters.

Finally, the results provided in Table 6 show that Challenge–Response presentation
attack detection can be successfully executed using the proposed simple architectures,
providing high decision-making confidence and requiring almost identical challenge com-
plexity as in the case of PAD executed using large networks.

5. Conclusions

The main contribution of the research reported in the paper is the experimental confir-
mation of the hypothesis that it is possible to improve CNN-based phoneme recognition
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accuracy by training a classifier on speech spectrogram windows that are extracted only
from central regions of phoneme articulation intervals. This finding, which clearly needs to
be verified on a variety of distinct speech corpora, has potential consequences for general
speech recognition research, not only for presentation-attack detection that was the focus of
the paper. The observed recognition gains grow as neural classifier complexity decreases,
suggesting a better use of the architecture’s information capacity.

By using the proposed training scheme, we have also proven that it is feasible to de-
velop reliable Challenge–Response based presentation-attack detection algorithms, which
employ neural architectures of complexity that can be orders of magnitude lower than the
commonly used ones. As a consequence, they can be easily implemented on mobile or
embedded devices, providing high verification confidence even for short, few syllable-long
prompted utterances, making the liveness detection procedure unobtrusive. Therefore,
the proposed concept can become an attractive alternative to other existing PAD methods
for voice-based user authentication that is to be executed under an unsupervised data
acquisition scenario.
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