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Abstract: The main challenge faced by RF energy harvesting systems is to supply relatively small
electrical power to wireless sensor devices using microwaves. The solution is to implement a new
device in a circularly polarized rectenna with circular polarization sensitivity integrated with a
thin-film solar cell. Its dual-feed antennas are connected to a 2 × 4 asymmetric hybrid coupler and
a multi-stage voltage doubler rectifier circuit. This configuration has a 2 × 4 asymmetric hybrid
coupler used to produce 4 outputs with a 90-degree waveform phase difference. The two ports
can independently be connected to the wireless sensor circuit: radiofrequency harvesting of hybrid
energy solar and information equipment can be carried out with these two antennas. The Dual-Feed
circular patch antenna has a two-port bandwidth of 137 MHz below −15 dB and an axial ratio of
less than 3 dB, with a center frequency of 2.4 GHz with directional radiation and a high gain of
8.23 dB. It can be sensitive to arbitrary polarization of the input voltage multiplier waveform to
overcome uncertainty in empirical communication environments. A parallel structure is arranged
with a thin film solar cell integration from the transmitter with an output voltage of 1.3297 V with a
compact composition and RF energy. The importance of adopting a wireless sensor strategy with
circular polarization sensitivity and integrated RF solar energy harvesting rather than a single source
method makes this research a significant novelty by optimizing the analysis of multiple wireless
sensor signal access.

Keywords: CP antenna; hybrid coupler; wireless sensor; hybrid RF solar; energy harvesting

1. Introduction

With the high demand for communication devices, the challenge of providing wireless
sensor devices without batteries increases, along with the need to significantly reduce
replacement costs and battery waste. A Rectenna is a transducer device whose primary
function is to convert RF (Radio Frequency) energy into electrical energy. It performs as
a wireless battery to supply wireless power continuously for these portable devices in
positions far from each other [1,2], or by utilizing wasted scattered RF or electromagnetic
waves in the air. The integration of rectennas, solar cells, and Wireless sensor devices in
communication systems allows the development of new technologies for wireless energy
harvesting and information transmission simultaneously without interference. Therefore,
the configuration concept in this article is Wireless Sensing and Simultaneous Power
charging independently, which has provided a solution to the problem and presents
significant new value in the future for wireless communication systems.

Several studies on antennas that utilize a hybrid coupler have been published to
develop a wearable communication system for wireless sensors and data communication
transmission [3,4]. In addition, improvements in developing optical energy materials are
increasingly efficient in harvesting solar energy [5]. The antenna configuration utilized has
one port and two ports for the feed couple, based on previous research. The antenna is
utilized for a single port system for wireless communication and transmitting power to the
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rectenna. However, the rectennas of one port influence each other between the two func-
tions because they are utilized interchangeably [6,7] so that they affect information changes.
Recently, several two-port rectennas for data communication transmission and wireless
energy harvesting have been designed [8,9]. The addition of the optical element integration
in solar cells has been studied to optimize the optical and electrical properties of the most
promising examples [10]. In [11], a microstrip rectenna between two ports is designed for
data communication transmission and energy harvesting. However, the rectenna applied
configuration in previous research has a complex multi-layer structure, and the resonant
frequency is different for each feed port, limiting the application scenario. Antennas with
microstrip circuits with dual feed channels and two alternative ports are proposed to
provide solutions, that is, for energy harvesting to achieve typical harmonic frequency
bands for radiofrequency harvesting and wireless sensors. It can accommodate both energy
sources: solar cells and RF independently and independently of the performance of the
wireless sensor system and energy harvesting and without changing the transmission
process. Of course, this process uses a compact configuration and inexpensive materials.
Another advantage is that the analysis applied to the antenna utilized a powerful method
of multi-signal classification for multi-input and multi-output communication networks.

2. Design Circuit Structure

Figure 1 shows that the proposed configuration can adopt two rectenna structures
integrated with thin-film solar cells. It has circular polarization sensitivity and an asym-
metric 2 × 4 hybrid coupler to produce 4 different wave outputs on the coupler element as
an RF combiner circuit with every two sides 90 degrees at synthesizing wave transmission
on a wireless sensor antenna.
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Figure 1. Schematic of the CP Antenna with a 2 × 4 Hybrid Coupler.

The configuration scheme consists of two main components as the design struc-
ture. It is a Dual Port CP Antenna that functions as a collector of RF waves energy that
has been integrated with solar energy harvesting media. Other main components are a
2 × 4 Direction-Finding Hybrid Coupler and Hybrid Electromagnetic Solar Circuit as a
rectifier of energy from an AC source, and a passive component of a wireless sensor directly
connected to the Dual Port CP Antenna.
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2.1. Dual Port CP Antenna

The CP antenna design is based on a circularly polarized patch antenna. Optimization
of the circular patch is the feeding probe from the center of the patch to the disk side area of
the LHCP (Left-hand Circular polarization) and RHCP (Right-hand circular polarization).
The orientation of circular transmission wave portions and double slot U increases the
antenna’s sensitivity to circular polarization waves. This change ensures that the antenna
in Figure 2 has symmetrical and similar performance in each mode of the feed working
frequency. Figure 2 also shows the ideal circular double slot U circular patch antenna case in
a circular polarization operation. It is sensitive to wireless sensors’ horizontal polarization
(HP) and vertical polarization (VP) antennas. The dual-slot U slot is constructed on a
circular surface with the open slots in the direction of the side concentrically via the
feed antenna. An antenna patch setup is connected with a circular polarization aperture.
The antenna consists of two layers, with a phenolic white paper antenna substrate with
the intrinsic specifications of the material used, which is generally used as a reference
for determining the dimensions of the transmission line in the feed line circuit (εr = 4.2,
tanδ = 0.0018, h = 0.0035 mm) with a two-port patch antenna installed and a 50 Ohm SMA
port utilized for network feeding. The FEM (Finite Element Method) analysis used to solve
numerical differential equations for 3D electromagnetic modeling in the High-Frequency
Structure Simulator Software is utilized to optimize the implementation and design of
the structure.
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Figure 2. Double slot with dual feed CP Antenna Geometry.

The direction of wave polarization is related to the via hole orientation on the feed
as a medium for propagating waves from the main patch. With this configuration, the
linearly polarized antenna feed position can be reconfigured via disk surface to control one
polarization orientation in the electromagnetic design TM11 mode [12,13]. The antenna
configuration has a symmetrical geometry; therefore, the antenna’s electrical characteristics
in the two feed states have the same behavior in orthogonal polarization. Briefly, the
working frequency of the antenna can be represented by Formula (1) to determine the
position of the feed circular polarization.

Ey

Ex
≈

sin
(

π
2R y′

)
k2(1− j/Qt)− (kx)

2

sin
(

π
2R x′

)
k2(1− j/Qt)−

(
ky
)2 (1)

Thus, feeding the element along the disk side position starts from the angle, according
to Figure 3a. It is indicated by the dashed line resulting in an ideal left circular polarization
on the broad side of the circular polarization that can be obtained if the E field ratio is
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3 dB [14]. To represent the position of the via hole to the axial ratio value, therefore
decomposed into Ey. It is an E-field linear polarized to the y axis. Additionally, Ex linear
polarization to the x-axis to produce a right-hand circular polarization can be achieved by
feeding along the opposite radius, which starts from the lower right corner and continues
to the upper left corner to produce a left-hand circular polarization. This method obtains
circular polarization to place the via hole in a feed based on optimization. Thus, based
on the optimization results, the via-hole position formulation for the antenna design is
obtained by Formula (1).
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The value in Formula (1) of Qt = 1/tan δ, and the k = (ky − kx) − Qt. Tan δ is the loss
tangent of the material. Based on the optimization, the angle φ separates the two via holes
is determined. It is obtained to produce an orthogonal field to each other under the patch
and outside the patch. The via hole is positioned at the point where the other via-hole
generates the field; therefore, the reducing effect significantly changes the performance
between ports to increase the antenna’s sensitivity to wave polarization [15]. The ground
plane separating the primary patch connection and the double U slot is smaller than the
resonance size so that radiation has propagated to the main patch element. Assuming the
circular patch resonates in its dominant mode, the accumulation of the slot optimization
model concerning the frequency formed on the patch surface is expressed in Equation (2).

f ≈ c(εr + 1)
1
2
{

π Ris (2εr)
1
2
}−1

(2)

The speed of light as c in free space with a value of 3 × 108 m/s and εr is the per-
mittivity value of the antenna substrate, which is the phenolic white paper. The resonant
frequency at each output port on the CP antenna is 2.4 GHz, which has the same resonant
frequency with a lower axial ratio. Using the formula to estimate the operating frequency
of the two ports to produce CP axial ratio, the double U slot is optimized, and the slot
width calculation dst = Rso − Rsi to determine the path distance to the ground. With a
tolerance value of less than 4% when the slot width is 0.0001 m. The double U slot in the
design has the advantage that most of them independently have a resonant frequency on
the antenna with a specific band range on the performance of other antennas with changes
in the frequency value in Figure 4a,b. Figure 4b has a lower slope point than Figure 4a. It is
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due to the wave reflection on port 1 in Figure 4a. However, it does not significantly affect
the antenna’s resonant frequency.

However, the position and dimensions of the double U slot must always be symmet-
rical between the top side and bottom side on the entire patch surface so that every shift
in the resulting polarization value still has circular sensitivity. Of course, the essential
circular polarization adopts an electromagnetic configuration via hole according to the
optimization in Equation (1), the incident wave that propagates to the feed antenna and
the reflection from the reflector.
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Tuning the resonance frequency with double U slot optimization (dst) based on the
radius of the circular patch dimension to the ground distance obtained from dst = Rso − Rsi
with a value of dst with a shifting accuracy up to 10–5 mm at the narrowband frequency so
the correct frequency capture on the antenna settings according to the implementation.

2.2. 2 × 4 Direction-Finding Hybrid Coupler and Hybrid Electromagnetic Solar Circuit

The circuit consists of two feed functions on the CP antenna. The first function is to
transmit sensor signals, and the second is to convert electromagnetic and solar energy into
electric energy. The sensor signal transmission circuit consists of a hybrid coupler that
produces a 2 × 90 degree phase difference. At the antenna line transmission to the hybrid
coupler feed, the two antennas are connected to a couple that has a 90-degree phase-shift
that is coupled to each between two output feed lines in an orthogonal position. The first
sub-strip is a straight configuration feedline with a dimension of λg/4, and the wavelength
is expressed as g in the waveguide. The next branch contains a microstrip with four-line
feeds with dimensions of about 3λg/4, and the branching pairs are manipulated to have
compact dimensions [16,17]. Then, the wave is transmitted via tuning stub optimization to
the second coupler branch as a reference guide for the second hybrid coupler, physically
listed in Figure 5.

The dual hybrid coupler construction uses a stripline identic with two rectangular
circles with eight stubs configured as six ports. This construction consists of two sub-phase
shifters, and each sub consists of four feed stubs with one bend on the right side between
ports 1 and 2 in Figure 6, which are indirectly connected to the two CP antennas. There are
four feed coupler ports on the left side with port 6, port 5, port 4, and port 3 as a connecting
strip to the wireless sensor network with the media feed towards one of the connecting
stubs between the hybrid coupler.
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The proposed microstrip antenna has circular polarization. The coupler circuit is
connected to the antenna when the antenna only operates on one 50 ohm port based
on effective impedance. Additionally, the port as receiver energy is fed to a 50-ohm
load with a suitable alternative load ZL1, which has a complex impedance assuming that
the loss coupler is negligible [7,18]. Suppose the circuit impedance between the feeds
does not match from the coupler side. In that case, the reflected wave from port 4 is
1 so that the reflected wave at port 3 is jҐα1 where Ґ is the reflected wave coefficient
on the wave propagation in the stripline hybrid coupler and α is the representation
of the signal originating from port 4 which propagates with the reflected wave. β is
the propagated reverse wave on the circuit with the numbers following, which is the
port shown in Figure 6. Then, the signal is transmitted back to ports 4 and 3 through
the coupler; therefore, the output waveform on the reflection coefficient at port 1 is
from port 3 in the form of β3 = −jҐα1/

√
2 (β3 = −Ґα1/

√
2) and on port 4 β4 = −Ґα1/

√
2

(β4 = −jҐα1/
√

2) or the incoming feed-side coupler where 1 is the input waveform of port 1.
Then, the reflection value can be expressed as α3 = jҐҐe−i2Φ

α1/
√

2 (α3 = ҐҐe−i2Φ
α1/
√

2), and
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α4 = ҐҐe−i2Φ
α1/
√

2 (α4 = jҐҐe−i2α1/
√

2), which propagates to the coupler and then to Port 1
with Φ as the phase length of the propagated wave; on the feed, the coupler path prop-
agates to the other side. The output wave propagation is β1 = 0 (β1 = −jҐҐe−i2Φ

α1) and
β2 = −jҐҐe−i2Φ

α1 (β2 = 0). β1 and β2 are the reflection coefficient values for ports 3 and 4.
At a reflection value of 1, where one of the feeds goes towards the other side, the value of
the matching circuit causes the deficiency of a reflected wave based on Port 1; it can be
expressed as β1 = 0 after reflection occurs. This happens when no reflected wave returns to
Port 1.

However, at jҐα1, there is no reflected wave from the feed through to the other side of
the coupler, and arbitrary circuits can reuse the reflected wave β1 = −jҐҐe−i2Φ

α1. The feed
structure differs from the antenna. The feed structure varies in input power and output
load. However, this can work well as long as it can remain impedance-matched. So that
there is no reflected wave, the wave structure can be reused even to increase the efficiency
of the shifting conversion of the reflected wave.

In a narrow local area, power transmission on radio frequency with high input power
density is prohibited by regulations for health reasons. According to these rules, to meet
the safety standards for transmitting RF waves, they must have a power density (σ) of
less than 1 mW/cm2 [19]. Based on these regulations, the circuit design in this study
uses a power rectifier with an intermediate input. The circuit design configuration is
described in Figure 7. The circuit configuration design is printed on the FR4 substrate,
which is identical to the antenna with a coplanar structure. The components in the rectifier
circuit design include capacitors, series rectifier diodes, and circuits with a 3-stage voltage
doubler configuration.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20 
 

 

propagation in the stripline hybrid coupler and α is the representation of the signal 
originating from port 4 which propagates with the reflected wave. β is the propagated 
reverse wave on the circuit with the numbers following, which is the port shown in Figure 
6. Then, the signal is transmitted back to ports 4 and 3 through the coupler; therefore, the 
output waveform on the reflection coefficient at port 1 is from port 3 in the form of β3 = 
−jҐα1/√2 (β3 = −Ґα1/√2) and on port 4 β4 = −Ґα1/√2 (β4 = −jҐα1/√2) or the incoming feed-side 
coupler where 1 is the input waveform of port 1. Then, the reflection value can be 
expressed as α3 = jҐҐe-i2Φα1/√2 (α3 = ҐҐe-i2Φα1/√2), and α4 = ҐҐe-i2Φα1/√2 (α4 = jҐҐe-i2α1/√2), 
which propagates to the coupler and then to Port 1 with Φ as the phase length of the 
propagated wave; on the feed, the coupler path propagates to the other side. The output 
wave propagation is β1 = 0 (β1 = −jҐҐe-i2Φα1) and β2 = −jҐҐe-i2Φα1 (β2 = 0). β1 and β2 are the 
reflection coefficient values for ports 3 and 4. At a reflection value of 1, where one of the 
feeds goes towards the other side, the value of the matching circuit causes the deficiency 
of a reflected wave based on Port 1; it can be expressed as β1 = 0 after reflection occurs. 
This happens when no reflected wave returns to Port 1. 

However, at jҐα1, there is no reflected wave from the feed through to the other side 
of the coupler, and arbitrary circuits can reuse the reflected wave β1 = −jҐҐe-i2Φα1. The feed 
structure differs from the antenna. The feed structure varies in input power and output 
load. However, this can work well as long as it can remain impedance-matched. So that 
there is no reflected wave, the wave structure can be reused even to increase the efficiency 
of the shifting conversion of the reflected wave. 

In a narrow local area, power transmission on radio frequency with high input power 
density is prohibited by regulations for health reasons. According to these rules, to meet 
the safety standards for transmitting RF waves, they must have a power density (σ) of less 
than 1 mW/cm2 [19]. Based on these regulations, the circuit design in this study uses a 
power rectifier with an intermediate input. The circuit design configuration is described 
in Figure 7. The circuit configuration design is printed on the FR4 substrate, which is 
identical to the antenna with a coplanar structure. The components in the rectifier circuit 
design include capacitors, series rectifier diodes, and circuits with a 3-stage voltage 
doubler configuration. 

 
Figure 7. Configuration of the 3-stage voltage doubler circuit. 

Low-loss rectifier diodes are a significant concern in achieving a high AC to DC 
voltage conversion value at <1 mW/cm2. Based on previous high-frequency research, 
rectifying is effective at a low threshold voltage (Vbi = 0.25 V); a single SMS 7621-079LF 
Schottky diode is utilized, with a bias capacitance value (Cj = 0.18 pF), which is connected 
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Low-loss rectifier diodes are a significant concern in achieving a high AC to DC voltage
conversion value at <1 mW/cm2. Based on previous high-frequency research, rectifying is
effective at a low threshold voltage (Vbi = 0.25 V); a single SMS 7621-079LF Schottky diode
is utilized, with a bias capacitance value (Cj = 0.18 pF), which is connected in series [20,21].
It is based on the working principle of a multi-stage circuit doubler. In addition, the
advantages of diodes in circuit design are that they have low power consumption and band
switching at a frequency of 2.4 GHz according to antenna specifications. Optimization
is additionally carried out. Line feed dimensions and capacitor values are based on the
calculation of the electrical circuit. Then, by electromagnetic method analysis, the wave
propagation is simulated using ADS software with an impedance following the feed on the
antenna and thin-film solar cell with the circuit source scheme shown in Figure 7.

The equivalent circuit of a rectenna with a voltage doubler configuration using the
Dickson charging pump model is shown in Figure 8. Two Schottky diodes, D1 and D2, are
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placed in series and shunt circuits in the impedance circuit configuration. Then, to provide
a long-lasting effect on the delivery of the waveform, a capacitor is embedded between the
transmission lines with a Cot value, each with an impedance value of Zli and df with a DC
output load at a load of Rl.
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The circuit design’s optimization did not have a capacitor charging pump with iso-
lation of the ground on the rectenna on one side of the antenna branch because the DC
voltage does not propagate through the antenna. However, this configuration is ineffective
if utilized on an antenna connected directly to the ground, such as occurs with antenna
Loops [22–24]. Thus, the source of electromagnetic energy at an angular frequency is the
power input of the rectenna. In the circuit configuration, the source impedance is designed
at 50 Ohm impedance, with the same value as the antenna impedance. The antenna dimen-
sion design for impedance is calculated with electromagnetic methods analysis using 3-D
High-Frequency Structure Software with a normalization description on the Smith chart.
The input power Pif can be described using Equation (3):

Pi f =
λ2

4π
GrWr (3)

where λ is the wavelength, Gr is the gain of the receiving antenna, and the power density in
the receiving environment is expressed as Wr. The value of Gr is the antenna gain according
to the design configured with the circuit. When measuring the rectenna, the Wr value is
tuned to 1 mW/cm2 so that, at a distance of 30 cm, the Pif value is 10.28 dBm. The analysis
of the antenna circuit design can be represented in an equivalent circuit as a resonance
circuit at the antenna’s instruction load value. The inductance is LAn and capacitance CAn
in Equation (4). Adjustments the resonant frequency, which must meet Equation (2) by
ω for generating f, the value of which is utilized later for process analysis [25,26] on the
propagation of the transmitted RF wave.

ω = (LAn CAn)
− 1

2 (4)

From the antenna equivalent circuit implemented into line w, therefore, in the equiva-
lent circuit, the antenna only works in the AC voltage domain so that the rectifier charac-
teristics are not affected by LAn and CAn. However, to guarantee the minimum capacitance,
the CAn must be smaller than the charging pump capacitor. The LAn and CAn values are
obtained as 6.5 nH and 0.65 pF by ensuring that no electrical charge is stored on the Can at
a frequency of 2.4 GHz.

3. Performance and Analysis
3.1. Double Feed CP Antenna—Double U Slot

The depiction of a microstrip antenna has a circular polarization. Therefore, the
analysis in this work considers several critical antenna parameters. The vital parameters
include the proposed antenna performance of the via hole radian area position of the
antenna patch and the dimensions of the shaped slot around the patch. Figure 9 describes
the complete circuit implementation.
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Figure 9. Implementation of the prototype CP Antenna with 2 × 4 Hybrid Coupler for Hybrid
Electromagnetic Solar Energy Harvesting and wireless sensor.

One optimized antenna parameter is the dimension of the double U slot, which is
directly affected by the circular patch radius. The antenna ground also influences on
the axial ratio for CP and impedance matching for CP antennas. The antenna setup was
measured using a Rhode and Schwarz ZVL Network Analyzer 9 KHz–13.6 GHz, and
Figure 10 presents the results of the S parameters calculated for the antenna. It describes
that the antenna with double U slot Dual Feed has a balanced operating frequency band,
and the resulting bandwidth is about 137 MHz (12%) at a focus working frequency of
2.4 GHz (2.35–2.47 GHz).
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The axial ratio and gain on the antenna performance at the 2.4 GHz resonance fre-
quency are shown in Figure 11. The antenna offers comprehensive coverage at the working
frequency with AR < 3 with a gain value of 8.23 in the targeted range area. It has an effective
bandwidth of 24%. Therefore, the dual-feed structure with a double U slot can accom-
modate the impedance bandwidth, circular-polarization characteristics, 3-dB beamwidth
with a dual feed method, and antenna material with the low-cost profile. This research
proposal is based on previous research [27,28], showing that the proposed antenna has
a directional, compact slot structure and a 3 dB wide beamwidth. The antenna [29,30]
has a compact dimension of the proposed antenna, however it does not have double CP
radiation. Therefore, the compact dual-slot CP antenna is more suitable for integrating
wireless sensor devices for long-range applications than other antennas.
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Figure 11. Power Gain level and Axial Ratio of the Double U slot with the dual feed CP Antenna.

Figure 12 shows the antenna radiation pattern performance in the elevation plane
(ϕ = 0◦) and the azimuth plane (θ = 90◦ and 0◦) for an antenna working at 2.4 GHz, which
is shown in Figure 12a with a rectangular plot. To describe the level scattering power and
circular property, Figure 12b shows the antenna’s electromagnetic wave distribution area
pattern. The antenna radiation has a single beam pattern with a maximum elevation field
of ±87◦. The azimuth plane has a directional radiation pattern with a side lobe of less than
0.9 dB. However, in the elevation plane (θ = 90◦), there is a loss of pattern directionality
caused by the grounding effect on the antenna.
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3.2. Rectifying Multistage Hybrid RF Solar Energy Harvesting and Wireless Sensing

Due to its symmetrical configuration between the antenna ports and the reciprocal of
the two couplers through a two-way connection between the antennas, the placement of
the rectifier circuit can be switched independently without disturbing the communication
channel, as shown in Figure 3b. Moreover, the proposed hybrid electromagnetic solar
rectifier circuit is flexible. It was shifted to be optimal according to user’s needs [31,32].
As the hybrid electromagnetic solar rectifier circuit works on the same frequency band
or the same frequency band on each low band port, each port shares the power with the
same value.

The input wave coming from the antenna has a circular polarization sensitivity and
mismatch factor v = 0 on one of the antenna ports that deliver the power or signal in the
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process of transmitting data communication which propagates through the hybrid coupler
as a wireless sensor. Thus, in the equivalent circuit calculation, the antenna port and the
hybrid coupler are connected to a 50-ohm load with matched and isolated conditions. There
is no power loss on the load circuit of 50 ohms. Therefore, the rectenna and communication
circuits can receive the overall RF power without any wasted power-sharing with efficient
circular polarization matching. Then, at a predetermined frequency (f ), the input power of
the rectenna circuit is therefore expressed as:

PRx (θ, ϕ, f ) = vPr (θ, ϕ, f )ηa (Pif) (5)

The power received by the antenna is expressed by Pr (θ, ϕ, f ), and the input power
of the rectifier circuit is defined by (Pif), which is correlated with the arrival angle (θ, ϕ, f )
as an indicator of the transmission process in the communication system. In addition, to
express the efficiency of the antenna based on the frequency function, it is represented
by ηa.

With two antenna ports with identical configurations between the two feeds, the com-
munication circuit and rectifier can work independently with equal or different working
frequencies. Still, they must be in the antenna operating frequency range and the band-
width of the couplers between 2.35 and 2.47 GHz. The configuration of the prototype circuit
performance test is according to Figure 13. The signal generator generates the signal of
the transmission device with an operating frequency of 2.4 GHz. Signal amplification and
filtering are carried out with predetermined variables and monitoring of signal structure
with the signal vector analyzer. The receiver setup is carried out from the RF signal-received
process by measuring the output voltage using a high precision multimeter and a signal
vector analyzer for the communication system parameters. Additionally, the measurement
of integrated thin-film solar cells is carried out using an adjustable light LED source that
can spread light evenly in the room and then measuring the light luminance in the room
using a luminous flux meter to determine the amount of luminous light that is spread by
the LED and exposed to the thin solar cell file.
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Figure 13. Configuration of the prototype circuit performance test.

Based on the configuration in Figure 13, it has been confirmed that the rectenna circuit
independently has not affected the signal injection process leading to the hybrid coupler.
Therefore, the efficiency of RF-DC power conversion is optimally utilized without any



Sensors 2021, 21, 7721 12 of 20

interference in the communication system, where (ηr) is the RF-DC conversion efficiency
which the following equation can express:

ηr =
VOut/ZL

PRv
× 100% (6)

With the power received by the rectifier circuit from the PRv antenna, the load
impedance is expressed by ZL, and the DC output voltage above the load is defined
by VOut, thereby comprehensively identifying the DC output voltage in each circuit con-
figuration. Before measuring the VOut of PRv performance, this is done by testing and
taking several power samples that the antenna can obtain in far-field conditions with the
power spectrum level on the signal vector analyzer, which is represented on the spectrum
in Figure 5.

The electromagnetic wave transmission spectrum level is calculated into four sample
levels to represent the reference antenna working at the 2.4 GHz frequency. With a spectrum
of transmission levels of 30, 20, 10 and 0 dBm, with the spectrum received in Figure 14,
the spectrum is adopted as a whole, covering the transmission of empirical scattered
electromagnetic waves. In the configuration carried out, the first solar energy test, which
has been integrated without involving electromagnetic energy, is carried out to identify
the ability of thin-film solar cells in the rectifier circuit. The process of generating solar
energy in the configuration requires a certain level of light so that the voltage can flow
in the circuit performance. Figure 15a shows the voltage level on the light luminance on
exposure to the solar cell.
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Figure 14. Spectrum graph of the signal reception level by the CP antenna.

After testing the solar cell, the RF circuit was then tested in transmitting RF energy. It
was spread with an isotropic power emission model with a maximum effective radiation of
30 dBm, applied to the experiment in Figure 15b. In the experiment, the main focus was on
the variation of the emitted power to obtain a voltage as a representation of power based
on Equation (5), following these conditions if it is to be practically implemented.
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Performance measurement produces a DC voltage based on various power transmitted
at an operating frequency of 2.4 GHz on an antenna measured using a spectrum analyzer
stated in the spectrum level shown in Figure 14 under ideal conditions. Figure 16 confirms
that increasing the power level in the spectrum received by the antenna provides an
increase in the DC output voltage. According to the circuit specification, the increased
output voltage is higher at the resonance frequency value of 2.4 GHz than the other
frequency resonance values. The DC output voltage obtained at 2.4 GHz is approximately
54,344 mV recorded at the 10 dBm level spectrum. Thus, the practical circuit can work
better as an electromagnetic energy harvester than [33–35]. Then, to increase voltage levels,
higher performance measurements are integrated with thin-film solar cells.
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Furthermore, the maximum conversion efficiency, calculated according to Equation (6),
is achieved at the circuit’s intrinsic resistance for a given transmission power. The rectifier
with the medium input power of −10 to 10 dBm has a value of RF to DC conversion
efficiency of 51.5%, and the high power is 30 dBm with an efficiency level of 53%. It
concluded that the conversion efficiency would increase if the transmitted power was
increased because the multi-stage doubler this work designed operates at a low current
level, emphasizing optimization of the output voltage. The separation between the two
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feed antenna elements in Figure 16 shows the DC voltage output in integration with a thin-
film solar cell with a significant maximum increase of 1.3297 V on 200 Lx. The performance
comparison of previous research and development configurations of energy harvesting and
wireless sensing can be analyzed in Table 1. In Table 1, after comparing previous studies,
the proposed circuit configuration has one main clear advantage: its configuration ability
to communicate and harvest energy simultaneously or as an independent operation with
two ports with circular polarization sensitivity and a higher energy conversion efficiency
value than configurations proposed in previous studies.

Table 1. Comparison of the CP Antenna with the 2 × 4 Hybrid Couple with Energy Harvesting and wireless sensing with
previous research.

Ref Freq (GHz) S11 S21 Polarization Eff % Working Mode Structure Communication
Analysis

[36] 1.8 and
2.45 GHz −28dB - LP 43 Only energy

harvesting

Multiple layers
in the

encapsulation
-

[37] 2.4 GHz <−15 dB <−15 dB Dual CP -
Communication and

energy harvesting
simultaneously

Two-layer
Semiconductor

Multiple signal
classification

[33] 1.7–2.6 GHz <−10 dB - LP - Only energy
harvesting

Single-layer
Semiconductor -

[34] 5.8 GHz <−12.65 dB <−12.04 dB LP 51.73
Communication and

energy harvesting
separatedly

Single-layer
Semiconductor -

[35] 1.7–2.6 GHz <−10 dB - LP - Only energy
harvesting

Single-layer
Semiconductor -

This
work 2.4 GHz <−15 dB <−15 dB Dual CP 53

Communication and
energy harvesting

simultaneously or in
independent

operation

Two-layer
Semiconductor

Multiple signal
classification

In the wireless sensor system, the hybrid circuit coupler has its main parameter in
the implementation function. It produces a phase difference of 90 degrees for each of
the two output ports in the four output ports with an impedance according to the circuit
qualification, namely 50 Ohm as shown in a comprehensive analysis in Figure 17b. The
wave phase value based on the hybrid coupler output is symmetrical so that one side
can be taken as a reference. It is between ports 1, 3, and 4 because the other side has
identical values. At the output of port 3 = 80.6281◦ and port 4 = 170.5510◦ so the value of
the phase difference = 89.8227◦. The phase difference is still efficient in the communication
circuit even though it is not exactly 90 degrees because it is still within the tolerance of
±5 degrees. Then, the impedance of the circuit performance is described in the Smith chart
as a measurement model in Figure 17a at port 1 = 1.0101 + 0.0153i, port 3 = 0.9732 + 0.0829i
and port 4 = 0.9809 − 0.078i. From this value, the value 1 is normalized as 50 ohms
at Z impedance. Based on the impedance performance value, it is close to 50 ohms
and, according to tolerance, reflected waves do not therefore have a significant effect
on the transmitted and received signal. With these specification parameters, the overall
configuration can work well on the adaptive antenna system, which is then described in the
configuration analysis in the sensor wireless communication system in the next sub-section.
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Based on the configuration in the wireless sensor communication system, it can be
analyzed as an adaptive antenna system which has been confirmed to provide significant
advantages on single-input single-output [38,39] or multiple-input multiple-output [40,41].
This analysis has additionally proven powerful for applications such as location-based ser-
vices, positioning for tracking, and wireless sensor networks. The adaptive antenna system
can accommodate multiple beams according to the antenna’s radiation polarization specifi-
cations. In Figure 18b, it is shown that the maximum main beam can be directed towards
the targeted object while spatially reducing interference. It reduces power to unwanted
areas using the Direction-of-arrival estimation algorithm analysis with the schematic analy-
sis of the antenna configuration in Figure 18a [42,43]. Assume that the antenna analysis is
positioned in planar conditions with specifications according to performance tests, namely
sensitive to circular propagation wave polarization and directional radiation polarization.
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The analysis of the Direction-of-arrival algorithm in the configuration of Figure 5
describes each antenna element and they receive a signal. Then perform a spatial calcu-
lation of the correlation matrix. A comprehensive analysis described the ability of the
spatial calculations process in the sensor antenna configuration system to be empirically
implemented into an adaptive circuit system [44,45]. The investigation is carried out by
sending 1250 propagation signals at the azimuth of the transmission position. The first
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step is to determine the transmitted signal x(τ) with different beams N times. This method
can provide a spatial variation of the object because the observations on the M signal are
empirically represented as a steering vector α(φ). With this method, the received signal
vector N × 1 one y(τ) can be defined as Formula (7).

Y(τ) = α(Φ) × (τ) + y(τ) (7)

With the symbol index accepted as τ, then at K × 1, where the element has a variance
equal to (φ) is the steering vector K × 1 as an additive to the white Gaussian noise vector
expressed by x(τ). Therefore, in the steering vector, every element of the nth antenna can
be defined by Equation (8).

αn(φ) =
√

PH
Gain

M

∑
m=1

Ime[j(m−1)x0d(sin(φ)−sin(θm))] (8)

The antenna coordinates at the transmission azimuth angle defined as a perpendicular
direction to the multi-patch antenna as a planar angle representation, with the reference
point distance on the multi-antenna in the form of d. The amplitude variance is the
algorithm on the wireless sensor device at a 2.4 GHz RF antenna signal with V.

Z1
Z2
Z3
Z4

 =
[
α(φ1) α(θφ2) α(φ3) α(φ4)

]
V1ejωt

V2ejωt

V3ejωt

V4ejωt


A random amplitude is added to the Z matrix at the signal transmission source,

denoted by ψ, where the value of ψ from the propagation source is expressed in the matrix
ψ. Then, on the noise subspace analysis. Estimating the received signal’s covariance matrix
is necessary to find the noise subspace steering matrix Â with the steering matrix of α(φ).
Then, the data generated from the conjugate complex = Â × ψ are obtained in the form of
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. Where Rxx is the estimated covariance matrix
which can be expressed as Řxx = 1

Ms
∑Ms

τ=1 y(τ) yH(τ), where the number of samples is
defined by Ms. Then, the decomposition of the eigenvalues on the covariance matrix can
be described using Equation (9).
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Then, the data generated from the conjugate complex = Â × ψ are obtained in the form of 
ϰ* from the ensemble average 𝝒𝟏𝝒𝟏,∗  𝝒𝟐𝝒𝟐,∗  𝝒𝟑𝝒𝟑,∗  𝝒𝟒𝝒𝟒,∗ . The other cross-correlation values in 
the signal assume the signal plane, from the input signal itself to be autocorrelated, on the 

∗
4

 = Â Řxx Â
H
+ ÂNoise (9)

With values Řxx = Êsg Âsg Êsg
H + Êns Âns Êns

H, and with values Êsg = [ê1, ê1, . . . , ên]
including the eigenvector estimates for the signal subspace; Âsg = diag[â1, â2, . . . , ân] is
diagonal matrix of the largest estimated eigenvalues. This is with the following subspace
eigenmatrix values:

Âsg =


0.6457 0 0 0 0

0 0.7292 0 0 0
0 0 0.8580 0 0

0 0 0
. . . 0

0 0 0 . . . 34, 442.4915

 ≈


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0

0 0 0
. . . 0

0 0 0 . . . 1
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After estimating the noise subspace for each eigenvector, the classification multi-signal
spectrum can finally be generated as Equation (10).

Psg(ϕ) =
α∗(ϕ)α(ϕ)

α∗(ϕ)ÊnsÊ
∗
nsα(ϕ)

(10)

From Equation (10), distortion can occur. Sometimes a compromise is unavoidable in
completing the direction of arrival with signal classification methods with ideal patterns
when the actual signal pattern cannot be accessed. In this case, the decrease in error
variance in the multi-signal classification is slightly different from the perfect condition,
considering a distorted pattern which is involved in estimating the covariance matrix.
Therefore, the signal and noise subspaces which can be seen in Figure 19 are the spectrum
of each signal arrival angle.
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The spectrum result can be partially analyzed considering the angle of origin of the
signal as a whole in the signal sample, which is a transmission with the condition of
random signal amplitude. The information signal spectrum is expressed in a graph with a
normalized power level of 1/Norm2 for each signal spectrum. From each spectrum level,
the degree of signal arrival can be represented at each spectrum peak with angle values of
40◦, 80◦, 120◦, and 160◦ according to the angle in the sample signal transmission process
with high accuracy under ideal conditions. Therefore, the algorithm can effectively solve
the communication process on wireless sensors supported by wireless energy harvesting
with electromagnetic harvesting and solar energy.

4. Conclusions

This study presents a new circuit configuration consisting of dual-feed antennas con-
nected to a 2 × 4 asymmetric hybrid coupler and a multi-stage voltage doubler rectifier
circuit. It has circular polarization sensitivity and is integrated with thin-film solar cells
to accommodate energy harvesting and wireless sensors on communication networks
simultaneously and independently without interference. This configuration has the specifi-
cations of two Microstrip antenna ports with an operating frequency of 2.4 GHz, Circular
Polarization, high gain values, and directional radiation polarization. It has been integrated
with thin-film solar cells and is connected to a solar electromagnetic energy harvesting net-
work and wireless sensors on the network communication. This configuration has a good
isolation value between the two feed ports (S11 or S21 < −15 dB) on the 2 × 4 asymmetric
hybrid coupler to produce four outputs with a wave phase difference of 90 degrees. It is con-
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firmed that arbitrary polarization of the input voltage multiplier waveform overcomes the
uncertainty in the empirical communication environment. In testing the energy harvesting
circuit, this system configuration produces a voltage power level for wireless sensors and
low-power energy harvesting, with a maximum radiation value of 30 dBm with a parallel
model integrated and a thin-film solar cell from the transmitter with a voltage of 1.3297 V
with a compact composition. It is necessary to analyze circuit communication networks to
adopt a wireless sensor strategy with multi-polarization sensitivity and integrated RF solar
energy harvesting rather than a single-source method. It provides practical solutions for
wireless sensor applications and independent energy harvesting.
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