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Abstract: An efficient energy operation strategy for the smart grid requires accurate day-ahead
electricity load forecasts with high time resolutions, such as 15 or 30 min. Most high-time resolution
electricity load prediction techniques deal with a single output prediction, so their ability to cope with
sudden load changes is limited. Multistep-ahead forecasting addresses this problem, but conventional
multistep-ahead prediction models suffer from deterioration in prediction performance as the pre-
diction range is expanded. In this paper, we propose a novel two-stage multistep-ahead forecasting
model that combines a single-output forecasting model and a multistep-ahead forecasting model to
solve the aforementioned problem. In the first stage, we perform a single-output prediction based on
recent electricity load data using a light gradient boosting machine with time-series cross-validation,
and feed it to the second stage. In the second stage, we construct a multistep-ahead forecasting model
that applies an attention mechanism to sequence-to-sequence bidirectional long short-term memory
(S2S ATT-BiLSTM). Compared to the single S2S ATT-BiLSTM model, our proposed model achieved
improvements of 3.23% and 4.92% in mean absolute percentage error and normalized root mean
square error, respectively.

Keywords: smart grid; electricity load forecasting; multistep-ahead forecasting; light gradient
boosting machine; attention mechanism

1. Introduction

A smart grid is an efficient and intelligent energy operation solution that integrates
traditional power systems and information and communications technology to enable
two-way communication between consumers and suppliers [1]. Typical smart grids utilize
renewable energy resources such as solar photovoltaic and wind power, and operate an
energy management system to establish efficient energy operation plans through short-term
energy load and supply forecasting. In particular, to establish elaborate energy operation
strategies, a high time resolution, such as 15 or 30 min, is essential in short-term load
forecasting (STLF) [2]. Furthermore, STLF can be used to establish peak load response
or energy storage system operation strategies to reduce energy costs. STLF is becoming
increasingly important as it contributes to the implementation of stable power systems
through the proper balance between supply and demand [3,4].

So far, many STLF models have been proposed based on various methods [5]. For
instance, statistical models for STLF include autoregressive [6], regression analysis [7],
and holt winters [8]. These models perform well when the input and output are linear,
but degrade when the input and output are nonlinear [9,10]. To address this concern,
artificial intelligence (AI)-based models such as support vector regression (SVR) [11], neural
networks (NN) [12], and extreme learning machines (ELMs) [13] have been proposed for
single-point prediction. Even though such single-output forecasting models perform
well even for nonlinear data, they show limited ability to cope with sudden electricity
load changes [14]. To compensate for this, various multistep-ahead (MSA) forecasting
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models have been proposed using recurrent neural networks (RNNs), such as long short-
term memory (LSTM) [15] and gated recurrent unit (GRU) [16], that reflect time series
characteristics satisfactorily. The performance was further improved by using a sequence-to-
sequence (S2S) architecture combining an encoder RNN and a decoder RNN [17]. However,
information loss problems arose in S2S architecture RNN models because the encoder
compresses all necessary information into a fixed-length vector. To tackle this problem,
attempts have been made to apply an attention mechanism to forecasting models so that
the decoder can look back on the most relevant information from the encoder output [18,19].
However, this approach showed performance deterioration as the forecasting horizon was
expanded [20].

In this paper, we propose a two-stage MSA electricity load forecasting model to deal
with the aforementioned issue. The forecasting horizon is one day from the current time at
15 min intervals, which gives 96 time points. In the first stage, a single-output forecasting
model performs day-ahead prediction. The forecasting model is constructed using light
gradient boosting machine (LightGBM) and time-series cross-validation (TSCV). In the
second stage, an MSA forecasting model based on an S2S bidirectional LSTM with attention
mechanism (ATT-BiLSTM) performs predictions for 96 time points using the output of the
first-stage forecasting model and other external data. The contributions of this paper are
as follows:

• We present a forecasting model that combines an ensemble learning method and an
RNN for accurate MSA forecasting;

• We show that the performance of an MSA forecasting model can be further improved
by considering the prediction result of a single-output forecasting model;

• The proposed model shows very stable forecasting accuracy over the entire forecasting
horizon of 96 time points at 15 min intervals.

This paper is organized as follows. Section 2 introduces some related works. Section 3
describes data collection and preprocessing. Section 4 presents the overall structure of the
proposed two-stage MSA forecasting model. Section 5 illustrates the experiments and their
results. Finally, Section 6 concludes the paper.

2. Related Works

Recently, forecasting models using AI methods such as artificial neural networks
(ANNs) [21,22] and SVR [23] have been proposed to overcome nonlinearities and complex
relationships of time series. For instance, Grolinger et al. [24] constructed a forecasting
model based on ANN and SVR to accurately forecast the electricity load of an entertainment
building. Jurado et al. [25] predicted the hourly electrical loads of three teaching buildings
using various machine learning (ML) methods such as random forest (RF), ANN, fuzzy
inductive reasoning (FIR), and autoregressive integrated moving average (ARIMA). Zhang
et al. [26] proposed an SVR-based electricity load forecasting model and optimized the
hyperparameters using the Cuckoo search algorithm.

On the other hand, Zheng et al. [27] proposed an LSTM-based short-term electricity
load forecasting model and showed that an LSTM-based forecasting model can predict
complex univariate electricity loads with non-stationarity and non-seasonality. Marino
et al. [28] also constructed two electricity load forecasting models based on the standard
LSTM and the S2S architecture LSTM, and compared their performance. Both models
were trained and tested for one-hour and one-minute time resolution data. They showed
that the standard LSTM was unable to accurately forecast loads for one-minute resolu-
tion, but the S2S architecture LSTM performed well for one-hour and one-minute time
resolution datasets.

Even though these single-output forecasting models have demonstrated good predic-
tion accuracy, they are limited in handling uncertainties, such as sudden load changes. To
address this issue, various MSA models have been proposed by simultaneously predicting
multiple time points. For instance, Kim et al. [29] proposed a recurrent inception convolu-
tion neural network (RICNN) for MSA electricity load forecasting (48 time points at 30 min
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intervals). They combined the RNN and the 1-D convolution inception to calibrate the
forecasting time and hidden state vector values calculated from the nearby forecasting
time points. Jung et al. [30] proposed an MSA load forecasting model (24 time points at 1 h
intervals) using a GRU network with attention mechanism. They demonstrated that an
attention mechanism can improve the forecasting performance of RNNs by 10% or more.
Kuo et al. [31] proposed a one-dimensional CNN-based power load prediction model with
three convolution layers. Despite their advantages, these works show limited performance
improvement because they use a single prediction algorithm.

Various studies have been conducted to overcome this limitation by combining mul-
tiple forecasting models. For instance, Park et al. [32] proposed a two-stage STLF model.
The first stage consists of extreme gradient boosting (XGB) and RF methods for prediction,
and the second stage combines their predictions using a sliding window-based multiple
linear regression (MLR) model. Siridhipakul et al. [33] proposed a dual-stage attentional
LSTM (DALSTM), which is a two-stage MSA electricity load-forecasting (48 time points at
30 min intervals) model based on LSTM and a dual-stage attention-based recurrent neural
network (DARNN). The first stage performs MSA prediction using LSTM, and the second
stage performs another MSA prediction based on the DARNN using the prediction values
from the first stage and the other inputs. Moon et al. [34] proposed an MSA forecasting
model using sliding window-based principal component regression (PCR), performing
single-output forecasting in the first stage using four MLP models with different layers and
then inputting their prediction values in the second stage. Nie et al. [35] proposed a hybrid
forecasting model based on ARIMA and SVM. The model first predicted the electricity load
preliminary for 24 h based on ARIMA, and then used SVM to correct the deviation from the
previous prediction. Tian et al. [36] proposed a hybrid forecasting model based on LSTM
and CNN. The model extracted the temporal features and local trend of the electricity
load data, and used them to make final predictions. Xie et al. [37] proposed a two-stage
forecasting model combining ATT-BiLSTM and MLP. First, 24 h prediction was performed
based on ATT-BiLSTM, and then MLP-based prediction was performed using the result as
an input.

Even though many LSTM-based methods showed strength in time series predic-
tion, LSTM-based MSA electricity load forecasting methods have not solved the problem
of performance degradation due to the increase in the prediction horizon [20]. Hence,
to address this problem, we present a robust two-stage MSA forecasting model using
a LightGBM-based day-ahead forecasting model and an S2S ATT-BiLSTM-based MSA
forecasting model.

3. Data Collection and Preprocessing

In this section, we describe the data collection and preprocessing that we performed
to configure and train our forecasting model. We collected the electricity load data of
buildings of a private university in Seoul, Korea at 15 min intervals from the Korea Electric
Power Corporation through the i-Smart system. We classified the university buildings
into four clusters based on their use and location. Cluster A consists of humanities and
social sciences buildings, while clusters B and D are both science/engineering buildings
and their laboratories. Finally, cluster C is dormitories and sports facilities. The data were
collected for 67 months from 1 January 2015 to 31 July 2020 for clusters A, B, and C, and
58 months from 1 September 2015 to 31 July 2020 for cluster D. In addition, we considered
calendar information, weather data, and historical load data as input variables to the load
forecasting model. The details are described in the following subsections.

3.1. Weather Data

We used the weather data provided by the Korea Meteorological Administration
(KMA). The KMA provides weather forecasts for most major areas, including short-term
forecasts such as the Dong-Nae Forecast and mid-term forecast. Short-term forecasts
provide weather forecasts every three hours for three days from the present day. As our
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goal is to construct a day-ahead load forecasting model, we collected weather data for the
same area as the clusters using the short-term weather forecast. The short-term forecast
provides sky conditions, temperature, humidity, wind speed, wind direction, precipitation,
and other information. As the predictions are quite accurate, there is little difference
between the forecast data and the measured data. An example of the Dong-Nae forecast is
illustrated in Figure 1.
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Figure 1. Example of Dong-Nae forecast by the Korea Meteorological Administration.

In this study, we considered four types of weather data: temperature, humidity, wind
speed, and wind direction. Those weather data were provided by KMA’s short-term
weather forecast as illustrated in Figure 1 [29]. Among them, weather data were provided
at 3 h intervals. To construct a forecasting model at 15 min intervals, we estimated the
weather data at a 15 min resolution using linear interpolation in Equation (1) [34].

f (T) =
d2

d1 + d2
f (T1) +

d1

d1 + d2
f (T2) (1)

The equation calculates the data value f (T) at any point T between two points T1
and T2 where T1 and T2 have data values f (T1) and f (T2), respectively. Here, d1 is the
distance between T and T1 and d2 is the distance between T and T2. In addition, two
indices were calculated to reflect the weather the human body actually feels in the model:
windchill index (WCI) for the actual temperature and discomfort index (DI) for feeling hot
or cold [38]. WCI and DI are calculated using Equations (2) and (3), respectively.

WCI =
(
10
√

v− v + 10.5
)
× (33− Ta) (2)

DI = T − 0.55× (1− 0.01H) × (T − 14.5) (3)
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Here, v and Ta indicate wind speed in m/s and temperature in degrees Celsius,
respectively, and T and H represent temperature in degrees Celsius and relative humidity
in %, respectively.

3.2. Calendar Information and Historical Electricity Load

As the electricity load data are time-series data, calendar information is essential in
electricity load forecasting. For calendar information, we considered months, days, hours,
minutes, day of the week, and holidays, and used them as input variables of the forecasting
model. Time data, including month, day, hour, and minute, are represented as numeric,
and day of the week data is defined as 0 to 6 from Monday to Sunday. Holiday data
are represented by one-hot encoding (i.e., “1” for holiday, otherwise “0”). We consider
historical electricity load data as the input variables so that the forecasting model can
reflect the recent trends in electricity load [34]. Historical electricity load data play an
important role in accurate forecasting as they reveal recent electricity load patterns and
trends [2]. Therefore, we selected historical electricity load data from seven days to one
day before the same point as the forecast time as input variables. Table 1 presents the 19
input variables that we used to construct the forecasting model, and Figure 2 illustrates the
Pearson correlation coefficients (PCCs) between the input variables and the electricity load,
excluding calendar information.

In this figure, the past load of 1 day and 7 days ago shows a strong correlation with
the actual electricity load. The remaining input variables are also positively related to the
electrical load.

Table 1. List of input variables for the proposed model.

Input Variable
Identifier Description (Type) Input Variable

Identifier Description (Type)

No.01 Month (numeric) No.11 Windchill index (numeric)
No.02 Day (numeric) No.12 Discomfort index (numeric)
No.03 Hour (numeric) No.13 D− 7 same point load (numeric)
No.04 Min (numeric) No.14 D− 6 same point load (numeric)
No.05 Day of the week (numeric) No.15 D− 5 same point load (numeric)
No.06 Holiday (binary) No.16 D− 4 same point load (numeric)
No.07 Temperature (numeric) No.17 D− 3 same point load (numeric)
No.08 Humidity (numeric) No.18 D− 2 same point load (numeric)
No.09 Wind speed (numeric) No.19 D− 1 same point load (numeric)
No.10 Wind direction (numeric)
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4. Methodology

In this section, we describe our two-stage MSA electricity load forecasting model.
Figure 3 illustrates the overall architecture of the model. In the first stage, the LightGBM-
based forecasting model performs a single-output prediction. LightGBM is a popular
ensemble learning algorithm. In the second stage, a forecasting model based on bidirec-
tional LSTM of the S2S architecture and the attention mechanism performs MSA prediction.
We used data from January 2015 to December 2018 as the training set and data from January
2019 to July 2020 as the test set. The training set and test set are about 71.75% and 28.25%
of the total dataset. The details are described in the following subsections.
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4.1. Single-Output Forecasting

In the first stage, single-output forecasting is performed using a LightGBM-based
forecasting model and the forecasting values are fed into the second stage as input variables.
The model was trained using four years of data. Specifically, for training, data from the
first year were used as training data and TSCV was performed on the data from the
next three years. Sections 4.1.1 and 4.1.2 describe how we constructed single-output
forecasting models.

4.1.1. LightGBM

LightGBM is a boosting-based algorithm that allows faster and more accurate fore-
casting compared to other boosting and bagging algorithms [39,40]. It is based on a
gradient boosting decision tree (GBDT) with gradient-based one-sided sampling and ex-
clusive feature-bundling technologies. Unlike the traditional gradient boosting machine
(GBM) tree splitting method, LightGBM uses a leafwise method to achieve higher accuracy
through more complex modeling. Therefore, it is better for time series forecasting, and
owing to the GBDT and leaf method, LightGBM has the advantage of low memory usage
and a fast training speed. LightGBM contains many hyperparameters, of which learning
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rate, number of iterations, and number of leaves are closely related to forecasting accu-
racy. In addition, LightGBM can prevent overfitting by adjusting colsample by tree and
subsample hyperparameters. LightGBM has been used for various time series forecasting
tasks, such as electricity load forecasting [41,42] and wind power forecasting [43], and its
single-output forecasting has been proven to be fast and accurate. As we need a fast and
accurate single-output forecasting model in the first stage, we construct it using LightGBM.

4.1.2. Time Series Cross-Validation

In general, to make a forecasting model, data are collected and split into a training set
and a test set. The training set is used to construct the forecasting model, while the test
set is used to evaluate its performance. Because single-output prediction is used as one
of the inputs to the second stage forecasting model, our single-output forecasting model
uses one year of training data. However, when the amount of training data is small, the
accuracy decreases as the forecasting points get farther away [44]. To mitigate this concern,
we used TSCV, which is a popular method when focusing on single-output forecasting in
the data set when the data have time series characteristics [45]. TSCV uses all data before
the forecasting point as a training set and forecasts the next forecasting point by setting it
as a test set, iteratively. However, if TSCV is performed at every point in time, an enormous
amount of time may be required for training and forecasting. To reduce this overhead, we
used monthly TSCV, as illustrated in Figure 4.
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4.2. Attention-BiLSTM Based MSA Forecasting

In the second stage, we constructed an MSA forecasting model of the S2S architecture
based on the attention mechanism and bidirectional LSTM. In addition to the configured
input variables, the model used the values of the single-output forecasting model in the
first stage as its input variable. In S2S bidirectional LSTM networks, information loss could
occur because the encoder compresses all the information into a fixed-length vector. To
avoid this, we applied an attention mechanism to the model.

4.2.1. Bidirectional Long Short-Term Memory

Traditional RNNs are trained using backpropagation through time [46]. However,
RNNs can exhibit the vanishing gradient problem for longer sequences of inputs [47].
LSTM [48], which was designed to mitigate this issue, is made by adding three gates to
each cell of traditional RNNs. The three gates are input, forget, and output. Figure 5
illustrates the architecture of the LSTM, and the LSTM cell calculation at time t for input
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x is given by Equations (4)–(9). Here, g is an update step, and c and h indicate the cell
memory state and hidden state, respectively.

ft = σ
(

Wh f ∗ ht−1 + Wx f ∗ xt

)
(4)

it = σ
(
Whi ∗ ht−1 + Wϕ ∗ xt

)
(5)

gt = tanh
(

Whg ∗ ht−1 + Wxg ∗ xt

)
(6)

ot = σ(Who ∗ ht−1 + Wxo ∗ xt) (7)

ct = ft � ct−1 + it � gt (8)

ht = ot � tanh (ct) (9)
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LSTM stores the information of the input data in a hidden layer by adding the concept
of time series. However, as the input information is stacked in the time sequence at the
hidden layer, the most recent input information is reflected in the result [49]. Bidirectional
LSTM (BiLSTM) is an extended version of the traditional LSTM that considers past and
future states to improve forecasting performance [50]. BiLSTM processes data into two
networks, i.e., the forward LSTM and the backward LSTM, and the outputs of the two
networks are merged at each time step. The architecture of the BiLSTM is illustrated
in Figure 6.
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4.2.2. Sequence-to-Sequence Recurrent Neural Networks

An S2S RNN contains two RNNs, an encoder and a decoder, as shown in Figure 7.
The general idea is to pass an input sequence vector x1, x2, . . . , xT one time step at a time
to the encoder RNN to obtain a context vector. A common approach is to use an encoder
RNN, as given by Equations (10) and (11).

hj = f ∗
(
xj, hj−1

)
(10)

→
c = q({h1, . . . , hT ) (11)
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Here, hj is the hidden state at time j, and f ∗ and q are nonlinear functions [51].
→
c is

generated from a sequence of hidden states. The context vector is an encoded representation
of the input sequence, passed to the decoder RNN, which extracts information at each
unraveled time step to obtain the output sequence

.
y1, . . . ,

.
yN . The S2S output is obtained

using Equation (12).
.
yN = g∗

( .
yi−1, . . . , h∗i−1

)
(12)

Here, h∗i is the hidden state of the decoder at time i and g∗ is a nonlinear function.
.
y0

is the context value (derived value from
→
c ) used as the initial input to the decoder. The S2S

RNN can enhance the continuous sequence forecasting and the temporal dimensions of
the inputs and outputs. This can improve the performance of electricity load forecasting.

4.2.3. Attention Mechanism

In a model of S2S architecture, the encoder compresses all the information of the
input sequence into a single context vector. For longer input sequences, the decoder
has difficulties extracting valuable information from this single vector. To address this
issue, attention mechanisms have been devised. Bahdanau et al. [18] and Luong et al. [19]
each added attention mechanisms to the S2S model for machine translation. Machine
translation is a very different task from predicting electricity loads. Nevertheless, various
studies [20,30] have shown that the attention mechanism benefits electricity load forecasting.
Our model adopts the Bahdanau attention mechanism (BA) for electricity load forecasting.
The S2S model with BA first obtains the hidden state of the current decoder at time i using
Equation (13). The forecasted value is then obtained using Equation (14).

hb
i = f b

([ .
yi−1; cb

i

]
+ hb

i−1

)
(13)

.
yi = gb

( .
yi−1, cb

i , hb
i

)
(14)

Here, b denotes the variable used in BA, and i and j denote the decoder and encoder
variables, respectively. In the equation, f b takes the previous output

.
yi−1, attention context

vector cb
i , and previous hidden state hb

i−1. f b and gb are the LSTM cell and nonlinear
function, respectively. Each encoder output hj contains information for the j-th part of the
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input sequence. The vector cb
i is calculated as the weighted sum of the encoder outputs, as

shown in Equation (15).

cb
i =

T

∑
j=1

αb
ijhj (15)

The attention weight αb
ij of each encoder output j is calculated using Equation (16).

αb
ij =

exp
(

eb
ij

)
∑T

k=1 exp
(
eb

ik
) (16)

The attention scores eb
ij are calculated using Equation (17).

eb
ij = S

(
hb

i−1, hj

)
(17)

Here, S is an alignment model that scores how well the inputs around time j and the
output at time i match. Attention weight αb

ij and attention score eb
ij reflect the importance

of each encoder output hj when generating the next hidden state hb
i and forecasting value

.
yi. This allows the decoder to pay attention to the important parts of the input sequence.

In the second stage, we combine the attention mechanism with the Sequence-to-
Sequence BiLSTM and construct an S2S ATT-BiLSTM-based MSA forecasting model that
performs MSA electricity load forecasting at 96 time points at 15 min intervals. To construct
the BiLSTM network, we considered several hyperparameters. The input layer of the
BiLSTM model consists of 20 nodes, and the hidden layer consists of 15 nodes per layer
by applying 2/3 of the input layer and the size of the output layer [34]. We used two
layers for the number of hidden layers. The fully connected layer activation function uses
a rectified linear unit (ReLU) to solve the gradient vanishing problem [52]. Huber loss [53]
was used as the loss function, and adaptive moment estimation (Adam) [54] was used as
the optimization algorithm. The learning rate and epochs were set to 0.001 and 350.

5. Results and Discussion

As our forecasting model is composed of two stages, each with a different predictive
model, we performed comparative experiments for each model. In the experiments, we
used electricity load data collected from four building clusters of a private university in
Seoul, Korea, at 15 min intervals through the i-Smart system. The clusters were determined
based on their use and location. We first investigated the electric load characteristics of four
clusters via box plot and various statistical analyses, as presented in Figure 8 and Table 2.
For statistical analysis, we used the descriptive statistical data analysis tool of Excel.
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Table 2. Statistical analysis of electricity load data by cluster (kWh).

Cluster A Cluster B Cluster C Cluster D

Training
Set

Test
Set

Training
Set

Test
Set

Training
Set

Test
Set

Training
Set

Test
Set

Mean 656.499 586.247 623.109 670.012 302.790 322.904 515.166 489.349
Standard error 0.954 1.418 0.587 0.929 0.205 0.323 0.35 0.515

Median 553.4 462.7 543.8 593.3 292.3 311.8 478.2 447.3
Mode 271.2 265.9 454.1 518.4 259.9 275.8 413.4 414.9

Standard deviation 357.686 333.674 220.187 218.575 76.902 76.172 119.92 121.328
Sample variance 127,939.5 111,338.3 48,482.45 47,775.23 5914.042 5802.298 14,380.87 14,720.47

Kurtosis −0.721 −0.758 0.352 0.434 0.375 0.233 −0.597 −0.225
Skewness 0.676 0.736 1.076 1.096 0.689 0.716 0.673 0.871

Range 1529.7 1350.2 1104 1017.1 541.8 476.9 586.8 556.5
Minimum 195.4 181.4 296.2 383.2 114.1 130.7 300.6 292.5
Maximum 1725.1 1531.6 1400.2 1400.3 655.9 607.6 887.4 849

Sum 92,204,063 32,417,138 87,514,440 37,049,022 42,526,339 17,855,317 60,336,352 27,059,063
Count 140,448 55,296 140,448 55,296 140,448 55,296 117,120 55,296

To reflect all data with the same degree of importance, the input data were prepro-
cessed by min–max normalization, defined by Equation (18). In the equation, x represents
the original data, and xmin and xmax represent the minimum and maximum values of the
original data, respectively. Finally, all the values are normalized to between 0 and 1.

xnorm =
x− xmin

xmax − xmin
(18)

To evaluate the forecasting performance of the proposed model, we used four met-
rics: mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
square error (RMSE), and normalized root mean square error (NRMSE), as given in
Equations (19)–(22). Here, At and Ft represent the actual and forecasted values, respec-
tively, at time t. n indicates the number of observations, and A represents the mean of the
actual values.

MAE =
1
n ∑n

t = 1|At − Ft| (19)

MAPE =
100
n ∑n

t = 1

∣∣∣∣ |At − Ft|
At

∣∣∣∣ (20)

RMSE =

√
∑n

t = 1(Ft − At)
2

n
(21)

NRMSE =

√
∑n

t = 1(Ft − At)
2

n

A
× 100 (22)

In the experiment, Intel (R) Core (TM) i7-10700 CPU, Samsung 32 G DDR4 memory,
and NVIDIA Geforce GTX 3090ti were used, and the operating system was Windows 10.
Electricity load forecasting of our proposed model was performed in Python 3.7. The
ensemble learning models in the first stage were constructed using scikit-learn (v.0.22.1)
and tuned using a grid search [55]. The RNN-based model in the second stage was
constructed using Pytorch 1.7.1 [56]. The experiments and their results for each stage are
illustrated in the following subsections.

5.1. Single-Output Forecasting Results

In the first experiment, we compared our single-output forecasting model with other
popular machine learning models. For fair comparison, TSCV was also applied to the
machine learning-based forecasting models. Table 3 summarizes the hyperparameter
values determined for the models by the grid search. In total, 365 days of data were used
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for initial training, while 1674 days in clusters A, B, and C, and 1430 days in cluster D,
were used as test data. The comparative experimental results of single-output forecasting
models are presented in Table 4.

Table 3. Selected hyperparameters for each single-output forecasting model. Selected values are bold.

Model Cluster A Cluster B Cluster C Cluster D

LightGBM

Learning rate: Learning rate: Learning rate: Learning rate:
0.01, 0.05, 0.1 0.01, 0.05, 0.1 0.01, 0.05, 0.1 0.01, 0.05, 0.1
No. of iterations: 500,
1000

No. of iterations: 500,
1000

No. of iterations: 500,
1000

No. of iterations: 500,
1000

No. of leaves: 64 No. of leaves: 64 No. of leaves: 64 No. of leaves: 64
Subsample: 0.5, 1.0 Subsample: 0.5, 1.0 Subsample: 0.5, 1.0 Subsample: 0.5, 1.0

XGBoost

Learning rate: 0.01,
0.05, 0.1

Learning rate: 0.01,
0.05, 0.1

Learning rate: 0.01,
0.05, 0.1

Learning rate: 0.01,
0.05, 0.1

No. of iterations: 500,
1000

No. of iterations: 500,
1000

No. of iterations: 500,
1000

No. of iterations: 500,
1000

Subsample: 0.5, 1.0 Subsample: 0.5, 1.0 Subsample: 0.5, 1.0 Subsample: 0.5, 1.0
Colsample by tree: Colsample by tree: Colsample by tree: Colsample by tree:
0.5, 1.0 0.5, 1.0 0.5, 1.0 0.5, 1.0

NGBoost No. of iterations: 500,
1000, 1500

No. of iterations: 500,
1000, 1500

No. of iterations: 500,
1000, 1500

No. of iterations: 500,
1000, 1500

Random Forest
No. of trees: 64, 128 No. of trees: 64, 128 No. of trees: 64, 128 No. of trees: 64, 128
Random state: 32, 64 Random state: 32, 64 Random state: 32, 64 Random state: 32, 64

MLP

No. of layers: 4, 5, 6, 7 No. of layers: 4, 5, 6, 7 No. of layers: 4, 5, 6, 7 No. of layers: 4, 5, 6, 7
Activation function:
ReLU

Activation function:
ReLU

Activation function:
ReLU

Activation function:
ReLU

Optimizer: Adam Optimizer: Adam Optimizer: Adam Optimizer: Adam
Learning rate: 0.001 Learning rate: 0.001 Learning rate: 0.001 Learning rate: 0.001

Table 4. The comparative experimental results of single-output forecasting models.

Evaluation Metric Model Cluster A Cluster B Cluster C Cluster D

MAPE (%)

LightGBM 7.01 4.74 6.98 4.98
MLP 12.06 7.03 7.61 5.67
RF 7.53 4.98 7.24 5.38

XGBoost 7.22 5.12 7.52 5.29
NGBoost 9.64 5.44 7.73 5.90

MAE (kWh)

LightGBM 40.71 32.00 22.18 23.47
MLP 68.59 45.95 23.10 27.30
RF 43.81 34.09 23.46 25.49

XGBoost 41.81 32.81 24.76 24.81
NGBoost 54.25 37.04 24.85 29.21

RMSE (kWh)

LightGBM 61.31 49.01 30.81 36.26
MLP 119.07 75.39 32.5 41.11
RF 67.2 54.73 32.89 40.51

XGBoost 63.58 48.34 34.39 37.16
NGBoost 82.05 59.1 34.43 44.17

NRMSE (%)

LightGBM 9.37 7.63 9.78 7.25
MLP 18.91 11.74 10.32 8.22
RF 10.67 8.52 10.45 8.10

XGBoost 10.09 7.53 10.92 7.43
NGBoost 13.03 9.21 10.93 8.83

The experimental results show that the LightGBM model outperformed other forecast-
ing models in all metrics in most clusters. Therefore, we used the LightGBM forecasting
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values as the new input variable for the second stage. Table 5 presents the PCC between
the single-output forecasting results of LightGBM and the actual electricity loads, which
indicates a strong correlation between them. Therefore, we use a single-output prediction
value for the second stage input to improve the MSA forecasting performance.

Table 5. PCC between single-output forecasting and actual electricity loads.

Cluster A Cluster B Cluster C Cluster D

0.984 0.978 0.923 0.957

5.2. Multistep-Ahead Forecasting Results

In order to evaluate the performance of the proposed model, we carried out extensive
experiments with various MSA forecasting models. As mentioned earlier, in the exper-
iments, we used data from January 2016 to December 2018 of clusters A, B, and C and
data from September 2016 to December 2018 of cluster D as the training set, and data
from January 2019 to July 2020 as the test set. To evaluate the validity of our forecasting
model, we compared it with basic deep learning, ensemble learning-based MSA forecasting
models, and other models including ATT-GRU [30], DALSTM [33], and COSMOS [34]. The
ensemble learning-based models require all input variables for 96 forecasting time points
for MSA forecasting. Therefore, we used 1824 input variables (i.e., 19 input variables × 96
forecasting points). The ensemble learning-based MSA forecasting models perform pre-
dictions on multiple outputs using the MultiOutputRegressor module in scikit-learn. The
hyperparameter configurations of comparative forecasting models are presented in Table 6.

Table 6. Selected hyperparameters for each multistep-ahead forecasting model.

Model Package Selected Hyperparameters

LightGBM LightGBM
Scikit-learn

Learning rate: 0.05
No. of iterations: 1000

No. of leaves: 32
Subsample: 0.5

Random Forest Scikit-learn
No. of trees: 128
Random state: 64

S2S BiLSTM Pytorch

No. of hidden nodes: 15
No. of hidden layers: 2

Activation function: ReLU
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 350

S2S ATT-BiLSTM Pytorch

No. of hidden nodes: 15
No. of hidden layers: 2

Activation function: ReLU
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 350

ATT-GRU [30] Pytorch

No. of hidden nodes: 15
No. of hidden layers: 2

Activation function: SELU
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 150
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Table 6. Cont.

Model Package Selected Hyperparameters

DALSTM [33]
Stage 1: LSTM

Stage 2: DARNN
Pytorch

LSTM
No. of hidden nodes: 15
No. of hidden layers: 2

Activation function: ReLU
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 350

DARNN
No. of hidden nodes: 64

Time steps: 96
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 150

COSMOS [34]
Stage 1: MLP
Stage 2: PCR

Scikit-learn

MLP
No. of hidden nodes: 15

No. of hidden layers: 4, 5, 6, 7
Activation function: ReLU

Optimizer: Adam
Learning rate: 0.001
No. of epochs: 150

PCR
Principal components: 1
Sliding window size: 672

Figures 9 and 10 illustrate the average of the four evaluation metrics of the forecasting
models for each cluster over the entire forecasting horizon. For instance, we can see
that the proposed model achieved the best NRMSE and MAPE across all clusters, with
one exception, as shown in Figure 9. That is, the LightGBM-based forecasting model
achieved the best NRMSE in cluster A with a narrow margin compared to the proposed
model. Similarly, the proposed model achieved the best performance for MAE and RMSE
across all clusters, with one exception, as shown in Figure 10. The LightGBM-based
forecasting model achieved the best RMSE in cluster A with a narrow margin compared to
the proposed model. Furthermore, from the evaluation results of S2S BiLSTM, S2S ATT-
BiLSTM, and the proposed model, it can be seen that attention and two-stage forecasting
can improve the forecasting performance. Figures 11–18 show the trends of the metric
values of the forecasting models over the entire forecasting horizon for clusters A, B, C and
D. In the figures, the X-axis represents forecasting time points, and the Y-axis represents
their forecasting errors.

Figures 11 and 12 illustrate the MAPE results for the four clusters over the entire
forecasting horizon. They show that the proposed model outperforms the other models for
all clusters. Similarly, Figures 13 and 14 show that the proposed model achieves the best
NRMSE for all clusters except cluster A. On the other hand, Figures 15 and 16 present the
MAE results for the four clusters, and the proposed model shows the best performance
out of all clusters. Lastly, Figures 17 and 18 illustrate the RMSE results, and the proposed
model shows the best performance for all clusters except cluster A.
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From the figures, we can see that the proposed model gives very stable and high-
quality prediction performance in terms of four evaluation metrics over the entire fore-
casting horizon for all clusters, compared to other forecasting models. On the other hand,
ATT-GRU [30] shows poor prediction performance because it cannot reflect a lot of in-
formation due to using a single network. Similarly, DALSTM [33] has poor forecasting
accuracy in the second stage because the DARNN model is unsuitable for multistep-ahead
forecasting. On the other hand, COSMOS [34] showed stable performance, as it used
only the predicted values as inputs for MSA forecasting. However, its performance was
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greatly affected by the first-stage prediction. The only exception was the LightGBM-based
forecasting model, which gave slightly better average RMSE and NRMSE for cluster A
only. Furthermore, we compared the proposed model with the S2SATT-BiLSTM-based
model to show that the proposed model combined with a single-output prediction can
reliably predict over the entire forecasting horizon. In addition, we compared the S2S ATT-
BiLSTM- and S2S BiLSTM-based models to verify the influence of attention mechanisms
on prediction accuracy.

6. Conclusions

In this paper, we proposed a robust two-stage MSA forecasting model that combines a
single-output forecasting model and a MSA forecasting model. To show the effectiveness of
the proposed model, we conducted extensive comparative experiments with other popular
forecasting models using electricity load data of four types of building clusters at a private
university. Overall, the experimental results showed that the forecasting performance
can be improved by combining the two models and by using an attention mechanism.
Nevertheless, the proposed model cannot explain the evidence of the output properly.
Hence, in future work, we plan to implement explainable artificial intelligence through
attention score analysis of attention mechanism. We will also investigate how to optimize
hyperparameters to improve forecasting performance.
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The following abbreviations are used in this manuscript
ICT information and communications technology
STLF Short-term load forecasting
AI artificial intelligence
MSA multistep-ahead
RNN recurrent neural network
LSTM long short-term memory
GRU gated recurrent unit
S2S sequence-to-sequence
ANN artificial neural network
ARIMA autoregressive integrated moving average
MLR multiple linear regression
PCR principal component regression
PCC Pearson correlation coefficient
WCI windchill index
GBM gradient boosting machine
ReLU rectified linear unit
MAE mean absolute error
RMSE root mean square error
NN neural network
DARNN dual-stage attention-based recurrent neural network
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ATT-GRU attention-based gated recurrent unit
LightGBM light gradient boosting machine
TSCV Time series cross-validation
BiLSTM bidirectional long short-term memory
ATT-BiLSTM bidirectional long short-term memory with attention mechanism
SVR support vector regression
RF random forest
FIR fuzzy inductive reasoning
MLP multilayer perceptron
CNN convolutional neural network
XGB extreme gradient boosting
ML machine learning
KMA Korea meteorological administration
DI discomfort index
GBDT gradient boosting decision tree
BA Bahdanau attention mechanism
Adam adaptive moment estimation
MAPE mean absolute percentage error
NRMSE normalized root mean square error
RICNN recurrent inception convolution neural network
DALSTM dual-stage attentional long short-term memory
COSMOS combination of short-term load forecasting models using a stacking ensemble approach

References
1. Atef, S.; Eltawil, A.B. Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity

load forecasting. Electr. Power Syst. Res. 2020, 187, 106489. [CrossRef]
2. Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938. [CrossRef]
3. Li, B.W.; Zhang, J.; He, Y.; Wang, Y. Short-Term Load-Forecasting Method Based on Wavelet Decomposition with Second-Order

Gray Neural Network Model Combined with ADF Test. IEEE Access 2017, 5, 16324–16331. [CrossRef]
4. Rana, M.; Koprinska, I. Forecasting electricity load with advanced wavelet neural networks. Neurocomputing 2016, 182, 118–132.

[CrossRef]
5. Dong, Y.X.; Ma, X.J.; Fu, T.L. Electrical load forecasting: A deep learning approach based on K-nearest neighbors. Appl. Soft

Comput. 2021, 99, 106900. [CrossRef]
6. Dodamani, S.; Shetty, V.; Magadum, R. Short term load forecast based on time series analysis: A case study. In Proceedings of the

2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 24–26 June
2015; pp. 299–303.

7. Song, K.-B.; Baek, Y.-S.; Hong, D.H.; Jang, G. Short-term load forecasting for the holidays using fuzzy linear regression method.
IEEE Trans. Power Syst. 2005, 20, 96–101. [CrossRef]

8. Taylor, J.W.; McSharry, P.E. Short-term load forecasting methods: An evaluation based on European data. IEEE Trans. Power Syst.
2007, 22, 2213–2219. [CrossRef]

9. Kelo, S.; Dudul, S. A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature.
Int. J. Electr. Power Energy Syst. 2012, 43, 1063–1071. [CrossRef]

10. Zhang, Z.C.; Hong, W.C.; Li, J.C. Electric Load Forecasting by Hybrid Self-Recurrent Support Vector Regression Model with
Variational Mode Decomposition and Improved Cuckoo Search Algorithm. IEEE Access 2020, 8, 14642–14658. [CrossRef]

11. Chen, Y.B.; Xu, P.; Chu, Y.Y.; Li, W.L.; Wu, Y.T.; Ni, L.Z.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support
Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670.
[CrossRef]

12. Yu, F.; Xu, X.Z. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural
network. Appl. Energy 2014, 134, 102–113. [CrossRef]

13. Yeom, C.U.; Kwak, K.C. Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge
Representation. Energies 2017, 10, 1613. [CrossRef]

14. Liu, T.X.; Zhao, Q.J.; Wang, J.Z.; Gao, Y.Y. A novel interval forecasting system for uncertainty modeling based on multi-input
multi-output theory: A case study on modern wind stations. Renew. Energy 2021, 163, 88–104. [CrossRef]

15. Pei, S.Q.; Qin, H.; Yao, L.Q.; Liu, Y.Q.; Wang, C.; Zhou, J.Z. Multi-Step Ahead Short-Term Load Forecasting Using Hybrid Feature
Selection and Improved Long Short-Term Memory Network. Energies 2020, 13, 4121. [CrossRef]

16. Sehovac, L.; Nesen, C.; Grolinger, K. Forecasting building energy consumption with deep learning: A sequence to sequence
approach. In Proceedings of the 2019 IEEE International Congress on Internet of Things (ICIOT), Milan, Italy, 8–13 July 2019;
pp. 108–116.

http://doi.org/10.1016/j.epsr.2020.106489
http://doi.org/10.1016/j.ijforecast.2015.11.011
http://doi.org/10.1109/ACCESS.2017.2738029
http://doi.org/10.1016/j.neucom.2015.12.004
http://doi.org/10.1016/j.asoc.2020.106900
http://doi.org/10.1109/TPWRS.2004.835632
http://doi.org/10.1109/TPWRS.2007.907583
http://doi.org/10.1016/j.ijepes.2012.06.009
http://doi.org/10.1109/ACCESS.2020.2966712
http://doi.org/10.1016/j.apenergy.2017.03.034
http://doi.org/10.1016/j.apenergy.2014.07.104
http://doi.org/10.3390/en10101613
http://doi.org/10.1016/j.renene.2020.08.139
http://doi.org/10.3390/en13164121


Sensors 2021, 21, 7697 24 of 25

17. Jarábek, T.; Laurinec, P.; Lucká, M. Energy load forecast using S2S deep neural networks with k-Shape clustering. In Proceedings
of the 2017 IEEE 14th International Scientific Conference on Informatics, Poprad, Slovakia, 14–16 November 2017; pp. 140–145.

18. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
19. Luong, M.-T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015,

arXiv:1508.04025.
20. Sehovac, L.; Grolinger, K. Deep Learning for Load Forecasting: Sequence to Sequence Recurrent Neural Networks with Attention.

IEEE Access 2020, 8, 36411–36426. [CrossRef]
21. Gollou, A.R.; Ghadimi, N. A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity

markets. J. Intell. Fuzzy Syst. 2017, 32, 4031–4045. [CrossRef]
22. Jalili, A.; Ghadimi, N. Hybrid Harmony Search Algorithm and Fuzzy Mechanism for Solving Congestion Management Problem

in an Electricity Market. Complexity 2016, 21, 90–98. [CrossRef]
23. Fan, G.F.; Peng, L.L.; Hong, W.C.; Sun, F. Electric load forecasting by the SVR model with differential empirical mode decomposi-

tion and auto regression. Neurocomputing 2016, 173, 958–970. [CrossRef]
24. Grolinger, K.; L’Heureux, A.; Capretz, M.A.M.; Seewald, L. Energy Forecasting for Event Venues: Big Data and Prediction

Accuracy. Energy Build. 2016, 112, 222–233. [CrossRef]
25. Jurado, S.; Nebot, A.; Mugica, F.; Avellana, N. Hybrid methodologies for electricity load forecasting: Entropy-based feature

selection with machine learning and soft computing techniques. Energy 2015, 86, 276–291. [CrossRef]
26. Zhang, X.B.; Wang, J.Z.; Zhang, K.Q. Short-term electric load forecasting based on singular spectrum analysis and support vector

machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270–285. [CrossRef]
27. Zheng, J.; Xu, C.; Zhang, Z.; Li, X. Electric load forecasting in smart grids using long-short-term-memory based recurrent neural

network. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA,
22–24 March 2017; pp. 1–6.

28. Marino, D.L.; Amarasinghe, K.; Manic, M. Building energy load forecasting using deep neural networks. In Proceedings of the
IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 7046–7051.

29. Kim, J.; Moon, J.; Hwang, E.; Kang, P. Recurrent inception convolution neural network for multi short-term load forecasting.
Energy Build. 2019, 194, 328–341. [CrossRef]

30. Jung, S.; Moon, J.; Park, S.; Hwang, E. An Attention-Based Multilayer GRU Model for Multistep-Ahead Short-Term Load
Forecasting (dagger). Sensors 2021, 21, 1639. [CrossRef] [PubMed]

31. Kuo, P.-H.; Huang, C.-J. A high precision artificial neural networks model for short-term energy load forecasting. Energies 2018,
11, 213. [CrossRef]

32. Park, S.; Moon, J.; Jung, S.; Rho, S.; Baik, S.W.; Hwang, E. A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead
Combined Cooling, Heating and Power Scheduling. Energies 2020, 13, 443. [CrossRef]

33. Siridhipakul, C.; Vateekul, P. Multi-step power consumption forecasting in Thailand using dual-stage attentional LSTM. In
Proceedings of the 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), Pattaya,
Thailand, 10–11 October 2019; pp. 1–6.

34. Moon, J.; Jung, S.; Rew, J.; Rho, S.; Hwang, E. Combination of short-term load forecasting models based on a stacking ensemble
approach. Energy Build. 2020, 216, 109921. [CrossRef]

35. Nie, H.; Liu, G.; Liu, X.; Wang, Y. Hybrid of ARIMA and SVMs for short-term load forecasting. Energy Procedia 2012, 16, 1455–1460.
[CrossRef]

36. Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A deep neural network model for short-term load forecast based on long short-term memory
network and convolutional neural network. Energies 2018, 11, 3493. [CrossRef]

37. Xie, Y.; Ueda, Y.; Sugiyama, M. A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and
Multilayer Perceptron. Energies 2021, 14, 5873. [CrossRef]

38. Oliveira, M.O.; Marzec, D.P.; Bordin, G.; Bretas, A.S.; Bernardon, D. Climate change effect on very short-term electric load
forecasting. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011; pp. 1–7.

39. Park, J.; Moon, J.; Jung, S.; Hwang, E. Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting
Machine: A Case Study of Jeju Island. Remote Sens. 2020, 12, 2271. [CrossRef]

40. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.

41. Wang, Y.; Chen, J.; Chen, X.; Zeng, X.; Kong, Y.; Sun, S.; Guo, Y.; Liu, Y. Short-term load forecasting for industrial customers based
on TCN-LightGBM. IEEE Trans. Power Syst. 2020, 36, 1984–1997. [CrossRef]

42. Park, S.; Jung, S.; Jung, S.; Rho, S.; Hwang, E. Sliding window-based LightGBM model for electric load forecasting using anomaly
repair. J. Supercomput. 2021, 77, 12857–12878. [CrossRef]

43. Huang, H.; Jia, R.; Liang, J.; Dang, J.; Wang, Z. Wind Power Deterministic Prediction and Uncertainty Quantification Based on
Interval Estimation. J. Sol. Energy Eng. 2021, 143, 061010. [CrossRef]

44. De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing.
J. Am. Stat. Assoc. 2011, 106, 1513–1527. [CrossRef]

45. Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer
Perceptron. Energies 2018, 11, 3283. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2975738
http://doi.org/10.3233/JIFS-152073
http://doi.org/10.1002/cplx.21713
http://doi.org/10.1016/j.neucom.2015.08.051
http://doi.org/10.1016/j.enbuild.2015.12.010
http://doi.org/10.1016/j.energy.2015.04.039
http://doi.org/10.1016/j.epsr.2017.01.035
http://doi.org/10.1016/j.enbuild.2019.04.034
http://doi.org/10.3390/s21051639
http://www.ncbi.nlm.nih.gov/pubmed/33652726
http://doi.org/10.3390/en11010213
http://doi.org/10.3390/en13020443
http://doi.org/10.1016/j.enbuild.2020.109921
http://doi.org/10.1016/j.egypro.2012.01.229
http://doi.org/10.3390/en11123493
http://doi.org/10.3390/en14185873
http://doi.org/10.3390/rs12142271
http://doi.org/10.1109/TPWRS.2020.3028133
http://doi.org/10.1007/s11227-021-03787-4
http://doi.org/10.1115/1.4051430
http://doi.org/10.1198/jasa.2011.tm09771
http://doi.org/10.3390/en11123283


Sensors 2021, 21, 7697 25 of 25

46. Werbos, P.J. Backpropagation through Time-What It Does and How to Do It. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
47. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. Proc. Int. Conf. Mach. Learn. 2013, 28,

1310–1318.
48. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
49. Robinson, A.J. An Application of Recurrent Nets to Phone Probability Estimation. IEEE T Neural Netw. 1994, 5, 298–305. [CrossRef]

[PubMed]
50. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
51. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. arXiv 2014, arXiv:1409.3215.
52. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the Icml, Haifa, Israel,

21–24 June 2010.
53. Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992;

pp. 492–518.
54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
55. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
56. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An

imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703.

http://doi.org/10.1109/5.58337
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/72.279192
http://www.ncbi.nlm.nih.gov/pubmed/18267798
http://doi.org/10.1109/78.650093

	Introduction 
	Related Works 
	Data Collection and Preprocessing 
	Weather Data 
	Calendar Information and Historical Electricity Load 

	Methodology 
	Single-Output Forecasting 
	LightGBM 
	Time Series Cross-Validation 

	Attention-BiLSTM Based MSA Forecasting 
	Bidirectional Long Short-Term Memory 
	Sequence-to-Sequence Recurrent Neural Networks 
	Attention Mechanism 


	Results and Discussion 
	Single-Output Forecasting Results 
	Multistep-Ahead Forecasting Results 

	Conclusions 
	References

