
sensors

Article

RootLogChain: Registering Log-Events in a Blockchain for
Audit Issues from the Creation of the Root

Juan Carlos López-Pimentel 1,* , Luis Alberto Morales-Rosales 2 and Raúl Monroy 3

����������
�������

Citation: López-Pimentel, J.C.;

Morales-Rosales, L.A.; Monroy, R.

RootLogChain: Registering Log-Events

in a Blockchain for Audit Issues from

the Creation of the Root. Sensors 2021,

21, 7669. https://doi.org/10.3390/

s21227669

Academic Editor: Valderi R. Q.

Leithardt

Received: 18 September 2021

Accepted: 28 October 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico
2 Facultad de Ingeniería Civil, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo,

Morelia 58000, Michoacán, Mexico; lamorales@conacyt.mx
3 School of Engineering and Sciences, Tecnologico de Monterrey, Av. Lago de Guadalupe Km 3.5,

Atizapán de Zaragoza 52926, Edo. Mexico, Mexico; raulm@tec.mx
* Correspondence: clopezp@up.edu.mx; Tel.: +52-3313682200

Abstract: Logging system activities are required to provide credibility and confidence in the systems
used by an organization. Logs in computer systems must be secured from the root user so that they
are true and fair. This paper introduces RootLogChain, a blockchain-based audit mechanism that is
built upon a security protocol to create both a root user in a blockchain network and the first log;
from there, all root events are stored as logs within a standard blockchain mechanism. RootLogChain
provides security constructs so as to be deployed in a distributed context over a hostile environment,
such as the internet. We have developed a prototype based on a microservice architecture, validating
it by executing different stress proofs in two scenarios: one with compliant agents and the other
without. In such scenarios, several compliant and non-compliant agents try to become a root and
register the events within the blockchain. Non-compliant agents simulate eavesdropper entities that
do not follow the rules of the protocol. Our experiments show that the mechanism guarantees the
creation of one and only one root user, integrity, and authenticity of the transactions; it also stores all
events generated by the root within a blockchain. In addition, for audit issues, the traceability of the
transaction logs can be consulted by the root.

Keywords: blockchain; audit; root creation; security protocols; smart contracts

1. Introduction

Auditing is an independent and objective activity to add value to an organization,
evaluating the efficiency or efficacy of its processes. A key requirement of auditing is to
provide data integrity throughout the system’s life cycle to be audited since stored data
can be vulnerable to manipulation in good or bad faith, especially when the data are in the
cloud. Data integrity mechanisms aim to protect information against modification, be it by
an intruder, software malfunctioning, or simply user negligence.

Implementing strict auditing is challenging on any distributed system, particularly
for servers deployed in a hostile environment. For auditing, things are not different: if
logs are not secured, the history of events can be altered [1]. Audit logs are used to keep
track of important events about system activities and are a fundamental mechanism for
digital forensics because they provide information about past and current events and
hence, the path of states of a system [2]. The need for protecting logs from attackers was
already stated by various researchers in different contexts, in the context of hardware [3];
systems [4,5]; file systems [6]; databases [7]; and secure logging protocols [8]. Companies
are currently attracted to migrate to cloud computing services [9]. Although cloud comput-
ing opens a new horizon of computing for IT organizations [10], it also opens more oppor-
tunities for criminal activity. Current research has focused on audit logging in distributed
systems [2,10–14]. It is known that distributed systems work on the internet platform,
which was built as a means to guarantee communication, not to ensure information security

Sensors 2021, 21, 7669. https://doi.org/10.3390/s21227669 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7844-3261
https://orcid.org/0000-0002-4753-9375
https://orcid.org/0000-0002-3465-995X
https://doi.org/10.3390/s21227669
https://doi.org/10.3390/s21227669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227669
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227669?type=check_update&version=1

Sensors 2021, 21, 7669 2 of 28

properties. That is why most solutions deployed over the internet notably raise concerns in
terms of trust and privacy.

Blockchain has emerged as a native technology that works strongly in terms of trust
for critical applications, such as logging applications. This technology has transformed
the way data are stored, giving them greater security and better quality and confidence.
Chowdhury et al. presented an analysis, reporting that blockchain can be applied to more
critical scenarios [15]. Due to the transparency offered by blockchain technology, there is an
increasing number of new mechanisms that use this technology for audit logging [1,16–20].
We have found that these solutions, however, do not show enough detail about how the
transactions are formed through smart contracts. In addition, we have identified that
blockchain solutions on audit logging have not focused on detailing aspects about how
the phase of creating the first user in a system, so-called the root, is created and how these
creation events are recorded in logs. The root typically has access rights to create other
users. The creation of the root account is critical, especially nowadays, where the trend is
the development of cloud applications. Unlike former times, it is very common to remotely
create the first user of a distributed system. Yet, in the middle of the network (i.e., the
internet), an attacker, for example, an eavesdropping attacker, could be present and take
advantage of a root creation action to then launch a data integrity attack. Hence, we must
track and store all the activities in a reliable technology to first guarantee a reliable start
and then further traceability for auditing issues.

The main objective of this research is to introduce RootLogChain, a secure mechanism
for the initialization phase of a system, from which we can establish that logs are secure,
even from root creation. This initialization phase consists of two stages: in the first stage,
a security protocol is run to permit the creation of the root, regardless of it being in a hostile
distributed system; the root creation is stored in a blockchain through an Audit Server.
Blockchain is used to guarantee the integrity of the events that are stored using smart
contracts. In the second stage, our mechanism catches all events generated by the root, and
stores them in the smart contract generated in the first stage. With such a smart contract,
we can ask queries regarding any events that are logged. This provides data integrity,
guaranteed by the strength of the blockchain.

We have implemented RootLogChain in a prototype. It works in a distributed con-
text, using a microservice architecture, implementing the Ethereum infrastructure on the
blockchain side. We have developed various security experiments in our setting. We have
verified from our implementation that our mechanism allows the creation of a unique root,
and that the log events are stored in a blockchain from the first event that the root was
created and for subsequent events.

We summarize the main contributions of this work as follows:

• Ensure a secure mechanism for creating the root (first and unique user) in a distributed
environment that allows to record and secure the transactions generated with smart
contracts using blockchain.

• Provide a mechanism for auditing issues in the initialization phase of a system guar-
anteed by blockchain’s strengths concerning integrity and authenticity.

• Perform traceability of each of the transactions carried out by the root through secure
logs in distributed environments.

The paper is organized as follows: Section 2 gives an overview of some of the technolo-
gies above mentioned and outlines related work. Section 3 describes the methodology, the
general scenario and describes the main system requirements. Section 4 explains in detail
root creation through the use of a security protocol. Section 5 explains how events of the
root are stored in the blockchain. The details about how the smart contracts work within
the blockchain are explained in Section 6. Section 7 describes a prototype. The experiments
and validations of our mechanism are reported in Section 8. Finally, conclusions drawn
from our research are summarized in Section 9.

Sensors 2021, 21, 7669 3 of 28

2. Background and Related Work

This section is split into three sections. In the first one, we argue the crucial nature
of the correct design of a security protocol; then, in the second subsection, we provide
an overview of proposals for implementing an audit system; in the last subsection, we
elaborate on auditing issues but in a more specialized area—the blockchain.

2.1. Security Protocols

When developing distributed applications, we must consider that active and passive
attackers are always present on the network; attackers are able to see and manipulate any
message sent over the network. Accordingly, any non-encrypted message transmitted on
the internet, for example, is considered unsafe. Therefore, if we want to provide a security
guarantee, it is necessary to use security mechanisms, including security protocols.

A security protocol, also known as a cryptographic protocol, is a set of rules and
conventions whereby one or more agents agree about each others’ identity, usually ending
up in possession of one or more secrets [21]. Each protocol is defined in two parts: the
first states initial knowledge of the participants, and the second enumerates a set of steps,
where participants exchange messages. Apart from sending or receiving a message, a
participant can perform some computations (which can be dependent on the previously
received message).

Security protocols are used to provide a wide variety of security services, including
key distribution, data confidentiality, authentication, and non-repudiation [22]. Although
security protocols consist of only a few messages, their design is amazingly error prone.
This explains the interest of the formal methods community in providing mechanical proofs
of their properties [23–25]. Recently, this community has also given attention to justifying
the formal verification on blockchain systems by the added security [26], focusing, in
particular, on smart contracts [27].

2.2. Audit Based Systems

Audit logs are used to keep track of events of interest about system activity, such as
program execution/computer crash, data modification, and user activities. They are a
fundamental digital forensic mechanism to provide information about the current and past
states of a system [2]. Audit logs are themselves a key target for an attacker who needs
to erase any trace of their malicious activities; otherwise, they may get caught and then
possibly prosecuted. The need for securing audit logging was raised already in different
contexts, including hardware [3]; systems [4,5]; file systems [6]; databases [7]; secure
logging protocols [8]; distributed systems [2,10–14]; blockchain [1,16–20]; and blockchain
hardware [28], as well as many others. In this section, we describe some pieces of research
in securing audit logging, with particular attention on distributed systems and cloud
computing; we describe blockchain-based mechanisms later in the following subsection.

Yavuz and Ning proposed a logging scheme for distributed systems, called blind-
aggregate-forward (BAF) [2]. It signs a log entry, using public-key cryptography. BAF aims
to provide low logger computational overhead, near-zero storage and communication over-
heads, public verifiability, and immediate log verification. Since secure logging mechanisms
based on public-key cryptography involve expensive operations, Yavuz et al. proposed
LogFAS [11]; LogFAS combines symmetric and asymmetric cryptography, yielding a more
efficient mechanism, both in terms of time and storage.

Nowadays, companies are attracted to migrating to a cloud computing environment.
This is because it offers cost benefits, as it does not require any local infrastructure setup.
Yet, cloud computing also comes with some risks [9,10], namely, it can be easily exploited
by attackers who run malicious code on machines inside that cloud. Cloud forensics poses
strong challenges to cloud service providers. For example, due to the decentralized nature
of data processing in the cloud, traditional approaches that gather evidence or provide
recovery services are no longer practical [29]. Accordingly, Zawoad et al. [10] proposed

Sensors 2021, 21, 7669 4 of 28

a mechanism called SecLaaS, which stores virtual machines’ logs and provides access to
forensic investigators, ensuring the confidentiality of cloud users.

Preserving the confidentiality and integrity of logs in distributed systems and cloud
services is also a key problem. To deal with this issue, mechanisms based on blockchain
were recently put forward.

Blockchain combines hashing and cryptography, along with a decentralized
structure, making it extremely difficult for any third party to manipulate information.
Chowdhury et al. [15] presented a comparative study of standard databases and those
based on blockchain technology. They developed a decision tree diagram that aims to
help practitioners and researchers choose the appropriate technology, depending on the
application. Their analysis concluded that blockchain can be applied to deal with more
critical scenarios. Blockchain technology has proven helpful in guaranteeing reliability
on critical platforms, such as audit logging and digital finance; however, its potential is
enormous in almost any area in which information transactions are involved [30–32].

2.3. Blockchain in Auditing

Blockchain technology, introduced by Satoshi Nakamoto [33], is described as a dis-
tributed data structure, where the information contained is allocated in blocks establishing
a chain. Each block in the chain contains the hash address of its predecessor and one or
more transactions, among other data. Blockchain is resistant to malicious data modification;
its distributed ledger design can record transactions between two or more parties in a
verifiable and permanent way. In the beginning, blockchain technology was developed
to guarantee integrity in crypto coins. However, it was recently used to provide other
security properties for different applications, such as data management, financial services,
cybersecurity, IoT, food science, healthcare industry, and brain research [30]. It is also
applied in the context of vehicles [34,35], e-voting [36] and Industry 4.0 [37].

Blockchain technology likely poses one of the most significant developments in infor-
mation technology in recent years. For example, Makridakis et al. [31] provided evidence
that blockchain is remarkable, and they argued that the importance of blockchain can be
evidenced by the number of papers published on the topic. They also argued that it will
change the way transactions are made. Their stance is based on blockchain’s ability to
guarantee trust among unknown actors and ensure the immutability of records while also
making intermediaries obsolete.

A blockchain can also hold programmed instructions, so-called smart contracts. Smart
contracts reside at a specific address on the blockchain, called smart contract address; they are
run by a miner and validated by all network miners. If anyone wants to change something,
it must be done via a smart contract, and the transaction has to be accepted by all miners.
Transactions are never deleted from a chain, and so any change can be verified by all
miners. Because of that, it is an appropriate technology for auditing.

Shigeya Suzuki et al. [1], for instance, proposed a blockchain mechanism used as a
request–response channel for a client–server system. There, the blockchain is used to record
transactions requested by clients and replied by the server. Both the clients and server must
continuously watch for any transactions sent to them. The duration of a transaction, while
the blockchain is acting as a channel, is one of their disadvantages, as the chain becomes
extremely slow.

Ahmad et al. [16] used a Hyperledger blockchain and proposed a system called
BlockAudit, which enables a system to avoid audit logs from being tampered with by adver-
saries. More recently, Ahmad et al. [17] provided a detailed account of how BlockAudit
works. In their scenario, they use a web application to generate logs, which are then
stored in a traditional database. Then, logs are sent to the blockchain in a format based on
JavaScript Object Notation (JSON). Each JSON packet is sent to the blockchain network as
a new transaction.

Putz et al. [18] proposed an architecture for log integrity preservation. It uses
blockchain to store log records generated by different sources, such as containerized

Sensors 2021, 21, 7669 5 of 28

applications, firewalls, or intrusion detection systems. They introduced a prototype based
on a SIEM reference architecture, whose inputs were collected from a web application.
The server part was implemented with Node.js and the Exonum blockchain. Their experi-
ments showed high storage cost, and they also did not detail how they implemented the
transactions within the smart contracts on the blockchain.

We have identified that previous research does not detail aspects of the initial phase
when a first user in a system is created and how these first events (in log presentation)
are recorded in the blockchain. In addition, we have identified that these solutions do not
show enough detail about how transactions are constituted through smart contracts.

3. The General Design Model

Our research consists of an application of design science research in the information
systems area. In particular, we have followed the methodology proposed by Peffers et al. [38],
which is commonly applied in engineering (and so it should be applicable to software
engineering).

The methodology is composed of the following steps: (a) problem identification and
motivation, (b) definition of the objectives for a solution, (c) design and development,
(d) demonstration, and (e) evaluation. We have already dealt with steps (a) and (b) (see
Sections 1 and 2.) In this section, we explain the general design of our method, providing a
detailed elaboration below (see Sections 4–6). We outline our prototype in Section 7 and
provide a summary of the results yielded from its validation in Section 8.

3.1. A General Design of Users Creation in Distributed Systems

Traditionally, a root user in an operating system is the account that has access to
all files and to all commands (hence, it has access rights to create other user accounts).
It runs under other names, including superuser, or administrator (often called admin,
for short). Henceforth, we shall refer to it as the root user, or simply the root. We now
introduce RootLogChain, which is capable of creating the root in a distributed environ-
ment and recording and securing any transaction via smart contracts in a blockchain.
Figure 1 depicts our working scenario, which has two phases: initialization and deploy-
ment. RootLogChain is concerned with the initialization phase only. Each phase contains
one or more steps, denoting a number enclosed by a solid circle. Overall, the workflow is
as follows:

Initialization phase: This phase comprises all events related to root creation and those
derived from root executing a number of commands, following its creation. A
distributed system could be composed of different client–server systems, each of
which may be configured with traditional or federated databases. Any of these
systems must have their own root user. In this initialization phase, anyone who
is to become the root must run a protocol with a remote server (see step 1 in
Figure 1). Depending on the system, root privileges can be unlimited or limited
to creating other types of users (administrators with fewer privileges or simply oper-
ator users). After its creation, in step 2, the root creates one or more users (three, in
this case).

Deployment phase: This phase abstracts out a number of transactions executed by differ-
ent users in a system, including the creation of other users by an administrator (see
step 3 in Figure 1). Events caused by other users are not dealt with RootLogChain, but
by other solutions as explained in [39,40].

Sensors 2021, 21, 7669 6 of 28

Figure 1. General phases for the generation of users in computer systems based on the cloud; circle
numbers denote steps.

3.2. Internal Workings of the Initialization Phase

There are two key problems with remotely creating the root in the context of a client–
server model or a more complex distributed model. One is that an intruder might im-
personate any party involved in the process, and the other is that an intruder may alter
the audit logs used to convey root creation and any subsequent activity. Figure 2 depicts
our architecture protocol. It has two parts: the left-hand side part (the architecture itself,
explained in detailed in the next subsection) and the right-hand one, the protocol, where
four entities—agent A, Root, Audit Server (abbreviated as AS) and the Blockchain—are
engaged in a two-stage procedure. The stages are as follows:

Root creation: For this task, we propose a security protocol. Any user A wanting to be a
root plays a run of the protocol with AS; the result is the creation of the root, shown
in Figure 2 with a down arrow showing the transition of any user becoming the root.
In this stage, smart contracts are created in the blockchain and the logs corresponding
to such events are also stored.

Root events: Once a user is a root, he/she can send events, such as the creation of accounts
and sending coins to such accounts, among others. Such events are stored in a
blockchain as logs. From the smart contracts created in the first stage (root creation),
it is possible to consult any stored log by the root for audit purposes. We can
also validate the data integrity guaranteed by the strength of the blockchain. This
will allow to validate the integrity of the data, guaranteed by the strength of the
blockchain.

With this, we complete our description of how all events generated by root are
registered in the blockchain. These scenarios could be repeated with the creation of other
types of users.

Sensors 2021, 21, 7669 7 of 28

Figure 2. Architecture protocol and two stages played by four entities: agent A, the Root, AS and the Blockchain.

3.3. Assumptions and Security Requirements

Since building a security environment from scratch is complex, we make the follow-
ing assumptions:

1. The communication protocol: Considering the current world infrastructure where
almost all applications technologies are mounted on the internet, we assume the
TCP/IP protocol, where attackers might be present.

2. Tunneling: Since messages transmitted over the internet can be manipulated by an
attacker, we assume a tunneling secure communication using transport layer security
(TLS), respectively, secure socket layer (SSL).

3. Perfect cryptography: We assume that symmetric and asymmetric cryptography is
not vulnerable to cryptanalysis.

4. Collision free hash: We assume a perfect hashing function and so ignore the fact that
hash functions cannot easily provide collision resistance.

5. Secure blockchain and network communication: We assume that the blockchain net-
work is strongly secure and reliable. That is, our mechanism disregards any possible
attack in the blockchain mining process. We also assume that the communication
with the blockchain is carried out through tunneling as above mentioned.

6. Secure smart contract programming: We assume that the smart contract programming
is not vulnerable.

The existing internet infrastructure already comes with mechanisms that reify some of
these assumptions. So, our research meets the following requirements:

1. The security protocol must guarantee that the root must be created correctly and
securely in the AS. Although any user could become a root, the protocol guarantees
that one and only one root is created in the system.

2. The user requesting to be the root must have guarantees that the root creation was
successful.

3. The root’s smart contract must be created by a user account that has completed the
protocol run without anomalies.

4. All events (converted in logs) generated in the process of the root creation and pro-
duced subsequently must be stored in the blockchain through the root’s
smart contracts.

5. Only the root can execute transactions with its own smart contract in the blockchain.
This also includes consulting the root’s logs. This means that no other user can execute
transactions with the root’s smart contract.

The first three requirements rely on the security protocol run in the initial phase, while
the rest rely on the logs in the blockchain.

Sensors 2021, 21, 7669 8 of 28

4. First Stage: Root Creation Mechanism

First of all, we introduce the notation we use to describe a security protocol. Then,
in the following subsections, we explain the first stage of RootLogChain by providing a
general security protocol description; next, we describe the protocol, step by step. The
last subsection explains the communication interaction between the protocol with the
blockchain network.

4.1. General Notation

In symmetric cryptography, we use the same key to encode and decode a message;
by convention, symbol {|m|}K is used to denote that a message m is ciphered under the
key K. An agent is a computer process that uses client–server technology to establish
network communication. To understand the communication notation of the protocol,
see Table 1. The table describes a general Alice and Bob notation, which is used in the
definition of our security protocol through communication events. A protocol is formed by
two parts: the initial knowledge of the participants and a set of message steps. The initial
knowledge of each agent is denoted as a list of messages. The steps consist of sending
and receiving messages under the client–server technology; before sending a message, an
agent can execute an operation that depends on a previously received message as part of a
local process.

Table 1. Conventions of a security protocol.

Abbreviation Description

Initial knowledge:
A : [ik1, ik2] Initially agent A knows ik1 and ik2.

Message sending and receiving:
n.A→ B : m At step n agent A sends message m to agent B,

which B receives.

Local process by B: Between steps n and n2, B calculates m2 from
m2 = f (m) function f (m) as a local process.

n2.B→ A : m2 At step n2 agent B responds to A with message
m2, which A receives.

In Table 2, a short description of the notation used in the following sections is shown.

Table 2. Notation: short description.

Abbreviation Description

A Sender user wanting to become a root

B Receiver or target

AS Audit Server

Na Nonce, denoting a random non-guessable number

K A symmetric key

m Any general message

{|m|}K A cipher message, where m is encrypted with key K

To Token

Hash(m) Hash function with m as a parameter

Hd A hashed message to be stored in the blockchain, e.g., Hd = Hash(m)

Op Event or operation type, usually an HTTP method: GET,
POST, PUT or DELETE.

Sensors 2021, 21, 7669 9 of 28

Table 2. Cont.

Abbreviation Description

LogP Message composed by {Op, A, AS, To, Hd}

D A set of personal data, such as Gas, username, pass, etc.

M Message with information to create the root composed as
M = {LogP, D}

T Timestamp

Atr Transaction address

Asc Smart contract address

E Event message composed as {LogP, Asc, K+
p , Gas}

R Blockchain transaction answer compound as {Atr, Asc}

C Answer to the root after triggering an event composed as
{To, R}

K+
p Public key address

Gas The cost necessary to perform a transaction on the blockchain

L Answer message sent to the root after a consulting process,
composed as {To, log}

log Answer message received from the blockchain after a finding log
consulting process, composed as {R, Ablock, Asig, idEvent, LogP}

4.2. Protocol Specification
Following the experience reported in [41], and the design guidelines for security

protocols to prevent replay and parallel session attacks [22], we propose the following
security protocol:

AS : [A, AS, K]
A : [A, AS, K, D, Na = newNonce();]

1. A → AS : {|getInitialNonce; A; Na|}K
i f (!root){

Nb = newNonce();
skip to step 2

}
else{skip to step 2′}

2. AS → A : {|A; Na; Nb|}K
To = hash(Na, Nb)
skip to step 3

2′. AS → A : {|deny; A; Na|}K
protocol has f inished

3. A → AS : {|createRoot; D; To|}K
To = hash(Na, Nb)
i f (!root and valid(To)){

LogP = {A, AS, To, Hash(A, AS, To)}
M = {LogP, D}
R = createSmartContracts(M)
∃dx .dx ∈ D
skip to step 4

}
else{skip to step 4′}

4. AS → A : {|R; To; dx |}K
protocol has f inished

4′. AS → A : {|deny; A; To|}K
Accepted

In general, the above protocol describes how any user acting as A could become a root,
but if there already exists one in server AS, the protocol rejects such a request. When B
accepts A, then A becomes a root, and it is also created in the blockchain employing smart
contracts. Steps 1, 2, 3, and 4 denote a normal execution of the protocol without anomalies

Sensors 2021, 21, 7669 10 of 28

for any user wanting to become a root, while 2’ and 4’ are answers executed by AS rejecting
the creation of the root because there exists one in the system or because the requirements
are not met. The following subsection explains the protocol in detail.

4.3. Protocol Description

The explanation of the protocol comprehends the initial knowledge, normal execution of
the protocol without anomalies, and possible executions of the protocol identifying anomalies.

4.3.1. Initial Knowledge

AS : [A, AS, K]
A : [A, AS, K, D]

The protocol assumes that we have a previous key distribution protocol, such as TLS
or SSL. It means that any user, including an intruder, could establish tunneling with server
AS. Therefore, at the beginning of the protocol, both A and AS know themselves, and
they know the shared key, K, which was previously exchanged. All future messages are
ciphered using this key. We remark that A knows D, where D is a set of data denoting
root information, such as username, password, a public key of the user (wanting to become a
root), a gas indicating the cost necessary to perform the transaction on the blockchain, and
anything else important to be stored within the blockchain as an identity of the root.

A : Na = newNonce();

In addition, agent A at the start of the protocol creates a nonce Na as a challenge; it
denotes a freshness property for the protocol. A nonce is a random, unrepeatable number
of characters. Note that each instance of agent A should generate its nonce Na.

4.3.2. Steps without the Existence of a Root User

1. A → AS : {|getInitialNonce; A; Na|}K
i f (!root){

Nb = newNonce();
skip to step 2

}
2. AS → A : {|A; Na; Nb|}K

To = hash(Na, Nb)
skip to step 3

3. A → AS : {|createRoot; D; To|}K
To = hash(Na, Nb)
i f (!root and valid(To)){

LogP = {A, AS, To, Hash(A, AS, To)}
M = {LogP, D}
R = createSmartContracts(M)
∃dx .dx ∈ D
skip to step 4

}
4. AS → A : {|R; To; dx |}K

Step 1: Any user, acting as A, requests AS for a service called getInitialNonce and concate-
nates its identity A and the nonce Na previously created in the initial knowledge step,
all ciphered with shared key K. When agent AS receives the message and decodes
it, they assume that A is requesting the initial token because of the agent name A,
and assume that Na is the challenge. AS checks that root is not yet created; then,
they create a new nonce Nb, stores temporally these nonces and the requester A to
identify the transaction. Note that expression !root denotes true when the root is not
created yet.

Step 2: Agent AS, using shared key K, ciphers the agent name A, nonce Na received in the
previous step, and its new nonce Nb. Once received, agent A authenticates AS with

Sensors 2021, 21, 7669 11 of 28

nonce Na, accepts Nb and forms the initial token by hashing the nonces created by A
and AS (To = Hash(Na, Nb)), respectively. Agent A is ready to start step 3.

Step 3: Agent A, ciphering the message with K, requests to create the root in the blockchain
and attaches a set of data D denoting root information and the token. When AS
receives the message and decodes it, they assume that A is requesting to create the
root. AS checks if a root exists, verifies that the token received is valid by calculating
the hashing of Na and Nb, and then creates the root in the blockchain, R being the
answer obtained from the blockchain after having executed the remote function
createSmartContracts(M). Then, AS chooses data dx included within D to respond
to A.

Step 4: AS, using K, ciphers R as evidence that a root is created, including the token linked
to it and dx. Agent A confirms the participation of AS with the token and accepts the
root creation with R value. In this case, dx could be a hashed password or its email,
for example.

4.3.3. Steps Considering a Root User Existence
First scenario: starting the protocol when the root has already been created.

1. A → AS : {|getInitialNonce; A; Na|}K
i f (!root){

Nb = newNonce();
skip to step 2

}
else{skip to step 2′}

2′. AS → A : {|deny; A; Na|}K
protocol has f inished

Step 1: When agent AS receives the message and decodes it, they check whether the root
has already been created; if it is true, then they skip to step 2′.

Step 2’: Agent AS notifies agent A that such a request is denied by sending the string deny.
AS also includes in the message the agent name of A and nonce Na to specify which
nonce challenge and agent name were denied.

Second scenario: any user can start the protocol correctly but cannot become a
root user.

3. A → AS : {|createRoot; D; To|}K
To = hash(Na, Nb)
i f (!root and valid(To)){

LogP = {A, AS, To, Hash(A, AS, To)}
M = {LogP, D}
R = createSmartContracts(M)
∃dx .dx ∈ D
skip to step 4

}
else{skip to step 4′}

4′. AS → A : {|deny; A; To|}K
Accepted

• Steps 1 and 2: We assume that agent A has executed correctly steps 1 and 2 and
To = Hash(Na, Nb) is valid. Another assumption is that To may not be valid.

• Step 3: When AS receives the message checks the request, they verify whether root
has already been created; if it is true, then they immediately respond to A with step 4′.
Another consideration is that although the root is not created yet, if the token is not
valid, the answer is linked to step 4′.

• Step 4′: AS, using K, ciphers the notification that the root cannot be created with the
token. Agent A receives the message and accepts the notification.

Sensors 2021, 21, 7669 12 of 28

4.4. A Protocol Run and the Creation of the Root’S Smart Contract

Figure 3 illustrates the creation of the root without anomalies executing a protocol run;
all steps are specified with white circled numbers within the green rectangle, which means
that agent A, who is making the request, is who becomes the root. The figure illustrates
three distributed entities: agent A, server AS, and the blockchain. The internal process
of each entity is specified with its own rectangle. The two rectangles show examples of
the variables exchanged in the protocol run. Note that in the figure, A only sends two
different messages to be a root (steps 1 and 3); they also must accept messages from AS
(steps 2 and 4). As mentioned in Section 3.3, the protocol assumes that the communication
between AS and the blockchain is secured with a previous TLS/SSL protocol (pinpointed
with gray tunneling in the figure).

Figure 3. Root creation: a run of the protocol without anomalies and the interaction with the blockchain.

To create a root, AS must follow some interactions with the blockchain. For example,
the internal process, pinpointed with a circled 3a number in the figure, calls a function
createSmartContracts(M), which is composed of the following:

M = {LogP, D}

where LogP is composed of {Op, A, AS, To, Hd}; Op is an event or operation type, usually an
HTTP method (GET, POST, PUT or DELETE; in this particular case, it will be POST); and
Hd is a hashed message to be stored in the blockchain (here, it is Hd = Hash(A, AS, To)). Let
D be a set of data including the username, email, password and anything else important to
execute the transaction within the blockchain (more details in Section 6.5). Remote function
createSmartContracts(M) executes a transaction in the blockchain; specifically, the smart
contract’s so-called User generates an instance which is the Root with information M. The
transaction generates R = {Atr, Asc}, which is a tuple of two elements: (a) a transaction
address Atr denoting an identifier of the transaction of the smart contract; and (b) a smart
contract address Asc, which denotes an identifier within the blockchain. After AS receives
R, it is concatenated with the token and dx; in this case, dx is username. Then, it is ciphered
using K, to be returned to A, who accepts the protocol run and becomes the root.

5. Second Stage: Root Events

Once the system has a root user, as explained in Section 4, we explain how all events
generated subsequently are stored or consulted in the blockchain. Figure 4 illustrates the

Sensors 2021, 21, 7669 13 of 28

root events. On the left part, the communication is between the root and AS. On the right
part, the communication is between AS and the blockchain. The events are triggered by
the root, interpreted by AS, and stored or consulted in the blockchain; each includes a new
token previously negotiated as an authentication procedure between the root and AS.

Figure 4. Consulting and storing logs.

We have classified such events in two groups: (a) consulting logs for integrity issues;
and (b) storing new events. Note that in the following subsections, we refer to the requester
as the root.

5.1. Consulting Logs

In order to know how the log data are stored within the blockchain, AS has another
service, Consulting; see the consulting process in Figure 4. Let C = {R, To}. When the
requester sends getCon(C), they hope to receive L, which is composed of the following
tuple {To, log}; the first element is the token and the second element is log, which is
received from the blockchain having executed f indLog(R). log contains data sent by the
root by its creation or by events generated; details about what a log contains are described
in Section 6.3. In case C contains any information unable to be found in the blockchain,
then log = {”Error”}.

5.2. Storing Events

Figure 4 illustrates in the blue rectangle the logic of storing events. When root gener-
ates a new event (maybe because it is adding, updating, deleting, or consulting information
via off chain), it involves generating a new log in the blockchain.This log is generated
by executing addEvent(E) within server AS. Let assume that Root triggers an Event(E)
operation by sending a message E, which is composed of the following:

E = {LogP, Asc, K+
p , Gas}

LogP is composed by {Op, A, AS, To, Hd} as explained in Section 4.4. Here, Op could
be any HTTP method—GET, POST, PUT or DELETE; A denotes the source from where the
service is being requested; AS denotes the target Audit Server; To is a token user identifier
of such a specific transaction; Hd is a hashed message to be stored in the blockchain; Asc
denotes the smart contract of the user; K+

p means the user who is requesting the event; and
Gas denoting the cost necessary to perform this transaction on the blockchain.

Sensors 2021, 21, 7669 14 of 28

Function event(E) calls a remote function addEvent(E), returning R, which is concate-
nated with token To forming C = {R, To}, which is sent back to the Root. R, in this case, is
similar to that explained in Section 4.4.

6. The Smart Contracts within the Blockchain

Blockchain involves a wide concept to understand. It involves mining, miners, peer-to-
peer networks, how blocks are formed, etc. This section does not focus on the underlying
blockchain technology; rather, we concentrate on the smart contracts that live within the
blockchain.

6.1. Smart Contract Notation

We represent smart contracts as being similar to classes in object-oriented languages.
They contain public (+) and private (-) attributes and methods; prefix (*) denotes an
attribute with value that is auto-generated or internally calculated. A contract and its
methods need to be called by a user address or another smart contract. Private methods
can only be called within the contract, as long as public methods are still accessible from
other contracts. Abstract methods are those without implementation. If a smart contract
includes at least one abstract method, it is considered abstract and can only be instanced
when all abstract methods are implemented.

Figure 5 illustrates the smart contracts as class diagrams. Constructors are shown in
the figure with the same name as the contract. Some object-oriented characteristics of the
smart contracts we have used are abstraction, inheritance, and dependency, as shown in
the figure and explained in the following subsections.

Figure 5. Smart contracts illustrated as class diagrams.

Sensors 2021, 21, 7669 15 of 28

6.2. Objectcontract

Similar to the Java programming language, where the Object class is the parent of
all classes, we represent ObjectContract as the parent contract in our design. This contract
contains two attributes (transaction address Atr and the contract address Asc). Any contract
that is created will have these two attributes. If any user wants to change something in the
blockchain, they have to execute a transaction. As a result, it generates a new transaction
address Atr on a contract Asc. Contracts are referenced with their contract address. Hence,
contract and transaction addresses can be obtained by methods getContractAddress()
and getTransactionAddress(), respectively; the receipt of a transaction can be obtained by
getReceipt().

6.3. Log

Each event generated in the system and received in the blockchain is registered by
an internal smart contract called Log, inherited from ObjectContract; see Figure 5. A log
in the blockchain is composed of those private attributes inherited from smart contract
ObjectContract, and the following attributes:

∗Ablock: a block address in the blockchain.

∗idEvent: an event identifier. It is an autoincrement attribute identifying the current event.

∗Asig: a signature of the log.

*when: it is a timestamp T to know when the event has happened and when it was
submitted to the blockchain.

Op: to know the HTTP method (GET, POST, PUT or DELETE). POST is assigned automat-
ically the first time the root is created.

where: to know the source of the event

target: to know the target of the event

token: to know who has carried out the event for this specific event.

Hd: hashed message required to describe more about the event.

All of these attributes are stored within the blockchain when method Emit(E) is called.
Note that the attributes marked with ∗ are auto-generated within the smart contract;

the rest are LogP and obtained from E. This is an abstract method, which we must imple-
ment in a specialized smart contract; in our case, this was called Bitacora. A particular log
event can be obtained using getEvent(Atr), where Atr is the specific transaction address.

6.4. Bitacora

Each event in the system is registered by a smart contract called Bitacora. It inheritances
all attributes and methods of internal smart contract Log, as you can see in Figure 5. The
first time Bitacora is called, it creates its constructor Bitacora(M) (see Section 4.4 for more
details about M), from M, information is extracted to form E and it calls Emit(E).

Emit(E) is a private method, inherited from Log, which stores the received values in
the Log. This method can be called from constructor Bitacora(M) or Event(E).

setEvent(E) is another method, which can add events with information E by calling
Emit(E) to be stored in the Log. In addition, all log events can be obtained using the
method getEvents(), and we can obtain a particular log event by using the inherited
method getEvent(Atr).

Sensors 2021, 21, 7669 16 of 28

6.5. User: Root

A root user is created executing constructor User(M), which is as follows:

M = {A, AS, D, To}

M is a compound message, previously explained in Section 4.4; here, we crumble message
D with more details:

D = D1 :: D2

D is composed of two set of messages D1 and D2 respectively.

D1 = {K+
p , gas, credentials}

D1 is formed by the user public key K+
p who will be the owner of the smart contract, and the

key will be used to execute future transactions; gas denotes the cost necessary to perform
the transaction on the blockchain; credentials is related with secret information of the root,
such as username, email, and a hashed password. D2 is used to add more information about
the root and is required to be stored. It could be plain text or hashed data.

When the constructor of the smart contract User is executed, it creates its Bitacora and
the first Log (calling the corresponding constructors). Smart contract User also generates
the hashed message of all attributes, which are stored. These attributes can be accessed by
its corresponding getter method as indicated in Figure 5. As a result of this transaction is
generated R, which is as follows:

R = {Atr, Asc}

Smart contract address Asc denotes an identifier within the blockchain. It is required
to find the instance of this smart contract within the ocean of the blockchain. Transaction
address Atr denotes an identifier of the transaction within the smart contract. Note that
each transaction in a smart contract produces a transaction address, which is required to
find the transaction.

Smart contract User can add events, using method addEvent(E); E is detailed in
Section 5.2. This method calls method Event(E) of smart contract Bitacora. As a result of
this transaction, another R is generated. In this case, the smart contract address Asc is the
same as that sent within e since this method does not create a new smart contract.

In addition, to consult a bitacora and a specific log in the blockchain, this smart
contract contains methods getBitacora(C) and getLog(C) respectively, where the following
is true:

C = {|Atr, Asc, To|}

These methods call getEvents() and getEvent(Atr) from smart contract Bitacora.
Figure 6 depicts how are created instances of Bitacora by triggering events by a user.

The figure shows six events and all events are triggered by K+
P account; in the first event,

a user using public key K+
P creates smart contract Root, with address contract Asc; in this

case, the public key account and the smart contract address belong to the created root; such
an operation also creates BitacoraR with address AB, storing [L1] in Log1, whose transaction
address is TR1. Events 1 to 5, the root, using K+

P adds new events (GET, PUT, POST and
DELETE) to smart contract Root; in this case, BitacoraR adds [L2, L3, L4, L5] and creates the
respective log for each event TR2, TR3, TR4, TR5, respectively. The last event represents a
consult operation (obtaining a log); there, the root wants to find a specific log C, which
contains TR2.

Sensors 2021, 21, 7669 17 of 28

Figure 6. Events’ tree.

7. Prototype

To give a better idea about our mechanism, in this section, we provide a prototype
available via https://git.io/JwAXa (accessed on 1 October 2021). This section describes
how we have implemented the creation of the root with the protocol and its main proofs.
We explain how Audit Server was developed, the technologies being implemented and
how the smart contracts in the blockchain were generated.

7.1. Protocol Development

Figure 7 outlines the technologies used in the implementation of the security protocol
introduced in Section 4.2, which can be downloaded from https://git.io/JwAXa (accessed
on 1 October 2021). The figure shows three parts: the requester A, the server AS and
the blockchain.

Figure 7. Technologies implemented in the protocol.

https://git.io/JwAXa
https://git.io/JwAXa

Sensors 2021, 21, 7669 18 of 28

The requester part includes three different technologies that we used: Postman, Web,
and Java. Postman was used for the developing phase; Web was used to prove that
everything is interoperable and working correctly; and Java was used to test hundreds of
threads trying to become the root.

Considering that our solution can be implemented as an extension in systems requir-
ing data integrity evidence, we have found that the microservice architecture approach
has become more popular in recent years. It was introduced as a solution to solve the
monolithic problem, [42], developed as small, well-defined purpose and autonomous
services deployed independently [43,44]. Microservice architecture offers various benefits,
such as being small and focused, loosely coupled, language neutral, and having bounded
context [44].

We have implemented AS following a software scheme as a service using a microser-
vice architecture. The core base of the microservice (Microservice Tech in Figure 7) was based
on Docker version 19.03.8 with Ubuntu 18.04 bionic core system and configured with web
server NodeJS 10.15. We configured HTTPS to implement transport layer security (TLS)
protocol with the port 443 on NodeJS. We used Docker as an open platform to administrate
the services. Docker is known as a containers-as-a-service (CaaS) platform that uses a
union file system (UFS) to deliver software in packages called containers. All containers
are run by a single operating system kernel and therefore, use fewer resources than virtual
machines [45,46].

In Figure 7, AS is composed of the API-Gateway and the Audit microservice. The
API-Gateway is the main controller of the back-end. It receives operations requested by
the requester, communicates internally with different services (in this case, with the Audit
microservice), and emits a comeback answer. The API-Gateway follows the architecture of
Gadge et al. [47].

The Audit microservice communicates directly with the blockchain. Library web3.js
was used to connect with the blockchain. More details about the blockchain part are given
in Section 7.2.

Figure 8 illustrates two complete runs of the protocol without anomalies: the upper
part, using a web interface, and the bottom part, the messages exchanged using our
interface implemented in Java language programming. In the upper part of the figure, A
was our web implementation; all implemented functions, corresponding to A side, were
programmed in JavaScript programming language. The microservices on the server side
were programmed with NodeJS. The communication was ciphered with TLS protocol,
shown in the figure as https. At the bottom of Figure 8, you can also see a run of the
protocol executed with an interface we developed in Java programming language, and it
uses curl program to execute client requests; there you can see the sender (-n–>) and the
receiver (<–n-) messages, being n the step of the protocol.

Sensors 2021, 21, 7669 19 of 28

Figure 8. The complete protocol without anomalies.

7.2. Smart Contract Development

As you can see in Figure 7, the software component installed to execute the blockchain
was Ganache CLI v6.4.3. The smart contracts were implemented in Solidity programming
language (Solidity available via https://docs.soliditylang.org/en/v0.7.4/, accessed on
27 October 2021). The smart contracts can be downloaded from https://git.io/JRSFC
(accessed on 27 October 2021).

Figure 9 depicts smart contract User, which can instantiate any user to become a
root. To understand the complete syntax and semantic of Solidity can refer to https:
//solidity-es.readthedocs.io/es/latest/ (accessed on 27 October 2021). The smart contract
shows at lines 5–9 the private attributes; lines 11–19 shows the Bitacora, which forms the
set of logs of all events registered in the blockchain; lines 20 and 36 are private methods (for
spaces issues we have hidden them); lines 49–62 depict the constructor, formed the first
time when the smart contract is built, note that lines 53–57 validate automatically when
the smart contract must be instantiated as a root; lines 63–74 shows how to add events in
the smart contract, note that line 65 depicts how only the user who has created the smart
contract can execute such a method; lines 60 and 72 store the Bitacora and form the logs;
lines 75–84 are getters functions of the private attributes.

https://docs.soliditylang.org/en/v0.7.4/
https://git.io/JRSFC
https://solidity-es.readthedocs.io/es/latest/
https://solidity-es.readthedocs.io/es/latest/

Sensors 2021, 21, 7669 20 of 28

Figure 9. User smart contract in Solidity language programming.

7.3. Execution Events and Costs of the Transactions
Figure 7 illustrates a microservice called Audit (on the AS side), which has two services:

getLog and event(e). Their functionality is as described in Sections 5.1 and 5.2 respectively.
The next experiment reports the costs of the root creation and the four types of events
carried out in the blockchain via the API-Gateway and the Audit microservice. These
events are carried out after the root is created. The address values are as follows:

K+
P = 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2

Asc = 0xd9145CCE52D386 f 254917e481eB44e9943F39138

Table 3 illustrates the cost for each transaction (last two columns) and also illustrates
the events depicted graphically in Figure 6. Note that idEvent 1 denotes the creation of
the contract, resulting the contract address Asc, in this case, the POST event is deduced
internally in the constructor of the smart contract. Events 2–5 are executions of method
addEvent of smart contract Asc executed by K+

P . All transaction costs are denominated in

Sensors 2021, 21, 7669 21 of 28

Wei. Wei refers to the smallest denomination of ether (ETH), the currency used on the
Ethereum network. For instance, 1 ether (ETH) is equivalent to 1× 1018 Wei.

Table 3. Cost of the transactions of the events generated in Figure 6.

Internally Calculated Passed as Parameter Cost

Ex
ec

ut
or

C
on

tr
ac

t

Id
Ev

en
t

O
w

ne
r

Method When Event Source Token Data Type Transac- Execu-
Event tion tion

K+
P Constructor 1 1623331326 POST K+

P 192.168.0.1 XF12ADN2FF New Root created 1,101,920 72,2440

K+
P Asc addEvent 2 1623331327 K+

P 192.168.0.2 XF1FADNAFF Consult who is Root GET 43,090 16,954

K+
P Asc addEvent 3 1623331329 K+

P 192.168.0.2 XF1FADNAGF Updating Root Info PUT 43,031 16,959

K+
P Asc addEvent 4 1623331331 K+

P 192.168.0.3 XF1FADNBGF Admin user was created. POST 43,356 16,964

K+
P Asc addEvent 5 1623331332 K+

P 192.168.0.3 XFGFGDNBGF Admin user was deleted. DELETE 43,492 16,972

K+
P Asc getLog(C) 6 1623331339 K+

P 192.168.0.1 XFGFGDNACG

Event 6 refers to a consulting process to know a specific log; because of that, such
operation has no transaction and execution cost.

Figure 10 shows the result of consulting event 6. As can be seen, lines 13–19 of
Figure 10 show the log data; they are matched with lines 12–18 of Figure 9. The rest
of the fields shown in Figure 10 (after line 21) correspond to information related to the
blockchain location.

Figure 10. Log obtained from the blockchain.

8. Evaluation

This section provides two classes of validations carried out to our mechanism. The
first one consisted of setting two environments where different types of agents, such as
compliant and not compliant, are trying to become root users. The second is related to the
latency and processing time of the transactions carried out by these types of agents.

Sensors 2021, 21, 7669 22 of 28

8.1. Friendly and Hostile Environment

We designed two scenarios: a friendly and a hostile environment. The first one consists
of a set of compliant agents running the protocol steps trying to become a root. The second
one simulates an environment with non-compliant agents. Figure 11 illustrates, at the top,
a compliant agent, two types of not compliant agents and server AS, the left part shows the
steps of the protocol (described in Section 4.2) and at the center of the figure (pinpointed
with coloured arrows) shows different traces executed by each type of agent.

The type of agents are described as follows:

• Compliant agents: they follow the protocol rules. In Figure 11 you can see a complete
trace (black arrows) of a compliant agent becoming a root.

• Non-compliant agents: they do not follow the rules of the protocol and can send
anything. We derived two sub-classes of these agents:

(a) Those configured to send anything but always starting the protocol normally
(injection). You can see in Figure 11 how a non-compliant agent could also become
a root (blue arrows), but if the server already created a root, it should reject its
creation (red arrows); and

(b) Those non-compliant agents that can start the protocol in any step of the protocol
(injection). In Figure 11, you can see in green arrows this behavior. Note that
this type of not compliant agents could start the run of the protocol at step 1
or 3 asynchronously; Figure 11 illustrates the rejection of such requests with
red arrows.

Figure 11. Behavior of compliant and not-compliant agents.

To implement the behavior of Figure 11 we developed a tool with Java threads using
an interface as shown in Figure 12. The tool can be configured with the number of requests,
internally it creates N threads acting as A trying to become a root. Each request must
send the following data email, password, father and mother surname, name and the target, in
this case, the server ip. At the end of each run, the system must have a unique root in the
blockchain, as shown in Figure 12 with the red rectangle. The figure also shows an example
with 10 requests; 9 of them were rejected as the root (some of them with an underlined
red mark).

Sensors 2021, 21, 7669 23 of 28

Figure 12. User interface to test the creation of the root.

With this application, we can carry out multiple proofs. At the beginning, we identified
that some validations had been omitted in the implementation code related to the mutual
exclusion problem with the critical procedure root creation, causing the duplication of roots
(and consequently the duplication of smart contracts for the root). These problems were
solved by implementing shared variable locks when a message of step 3 of the protocol
arrived at AS. After repeating the proofs and making adjustments related to implementing
the protocol as it was specified in Section 4.2, we created the only root. A version of the
tool can be downloaded from GitHub: https://git.io/JRqCS (accessed on 27 October 2021).

8.2. Latency and Processing Time

Latency and processing time are important performance metrics when proving dis-
tributed applications because of the interactivity that an end-user can feel. In our proofs,
latency is the time a client request (GET, POST, PUT or DELETE) takes to reach its destina-
tion and return. The processing time is the time a server takes to execute a request since it
arrives until it is returned to the requester. The measurement related to these metrics are
regarded in milliseconds (ms).

We have carried out some tests with the requests of the different types of agents
introduced in the previous section. Table 4 shows a summary of one of the runs; there,
the first column states ten agents numbered from 1 to 10, and their agent type is shown in
the last column. The table is split in two: (1) the transaction latency from the client and
(2) the processing time within the server. The Start and End columns are expressed in epoch
time; and column Time expressed in miliseconds and it is the difference between End and
Start times.

https://git.io/JRqCS

Sensors 2021, 21, 7669 24 of 28

Table 4. Transaction latency from the client and processing time in the back-end.

Agent Latency A (Client) Processing Time in the Server AS
Agent Type

Number Start End Time (ms) Start End Time (ms)

1 1633651876243 1633651883000 6757 1633651882402 1633651884241 1839 Not-compliant sends something

2 1633651880123 1633651883900 3777 1633651882968 1633651884773 1805 Compliant

3 1633651876234 1633651883000 6766 1633651882640 1633651884419 1779 Not-compliant sends something

4 1633656003180 1633656005576 2396 1633651882758 1633651882764 6 Not-compliant begins any step

5 1633651876864 1633651883476 6612 1633651882399 1633651884004 1605 Not-compliant sends something

6 1633651876720 1633651896753 20,033 1633651882385 1633651897813 15,428 Compliant (Root)

7 1633651880065 1633651883663 3598 1633651883070 1633651884860 1790 Not-compliant sends something

8 1633651877244 1633651883863 6619 1633651882724 1633651884553 1829 Not-compliant sends something

9 1633651877141 1633651883332 6191 1633651882401 1633651884015 1614 Not-compliant sends something

10 1633651880769 1633651884332 3563 1633651883165 1633651884927 1762 Not-compliant sends something

From the table, we can analyze that agent number 4 is the fastest transaction because
the agent has not consumed time from the database and neither from the Blockchain,
since being a non-compliant agent starts the protocol in the third step; hence, the server
almost immediately rejects the request. On the other hand, agent number 6 is who becomes
the Root and is the agent that takes the longest to complete the transaction. It is worth
mentioning that this is the slowest transaction of all and involves processing in the off-
chain database and within the Blockchain (although network mining time is not being
considered due to the way Ganache CLI emulator works). In fact, out of registers from
agents 4 and 6, the rest of the requests are very similar concerning server processing time,
and their average processing time value is 1752 ms. This means 13,675 ms more time,
approximately, when the transaction is executed on the Blockchain (this data could vary
using another blockchain platform). The latency transaction time average on the network
was approximately 3685 ms; it includes agents 4 and 6. The IP server AS was 54.87.22.33,
and the transmission rate from the client was 1.76 Mbps upload and 17.97 Mbps download;
the server characteristics were 4 GB RAM and 2.3 GHz 2VCPUs.

Blockchain implementations should provide the trade-off of the following charac-
teristics: scalability, decentralization, latency, and security, as discussed in [34]. When
an application is mounted on a public blockchain, we must take into account that each
transaction generates high transaction costs, confirmed in Table 3. It also implies higher
latency and processing time as reported in Table 4. Scalability is achieved in the proposed
protocol by avoiding requests to the blockchain when an agent cannot become a root and
reducing the transaction cost by sending hashed messages to the blockchain. In Figure 2,
we show our decentralized cloud solution. In Figure 3 we show the interaction of at least
three participant entities, one of them is a blockchain that itself represents a decentralized
network. In Table 4, we show that our protocol shows a low latency speed when requests
don’t proceed to become root user. Finally, we remark that we focus the Security of the
proposed protocol on achieving the creation of a unique root user, as demonstrated in
Section 8.1. Therefore, as we discussed, the trade-off is concerning to assure high security
in the root creation, balancing the latency and decentralizing its design, and considering
the scalability.

9. Conclusions and Future Work

In this paper, we showed the following: (1) stated a secure mechanism for the creation
of the root in a distributed environment that allows to record and secure the transactions
generated by the root events through smart contracts using blockchain; (2) provided
a mechanism for auditing issues in the initialization phase of a system guaranteed by
blockchain’s strengths concerning integrity and authenticity; and (3) perform how to obtain
the traceability of the transactions logs stored in a blockchain.

Sensors 2021, 21, 7669 25 of 28

The mechanism consists of two stages: the first one is a security protocol that permits
the creation of a root user in a distributed system; the event of the root creation is stored in
a blockchain, through an Audit Server. The second stage catches all events generated by the
root, which are then stored in the blockchain through the smart contract generated in the
first stage. With the smart contract, we can consult and track any log previously stored by
the root.

RootLogChain can be adapted as an extension of systems requiring an audit character-
istic because it was thought to be embedded in architectures based on microservices. So,
we have adopted a microservice architecture in the back-end part with the aim that it can
be adapted to other systems. One of the microservices connects with the front-end and the
other with the blockchain network to store the events generated by the root.

For validating the functionality of our prototype, we have executed numerous security
tests to guarantee the creation of a unique root. We have developed a scenario simulating
compliant and non-compliant agents. For this, we have built a tool with java threads to
simulate various clients trying to become a root. During our experiments, we identified
many good programming practices that programmers often overlook (as we did) from the
protocol specification, which could result in duplicating the root creation, leading to an
incorrect implementation of the protocol (as we pointed out in the evaluation section.)

As shown in this research, we must consider that a distributed application mounted on
a public blockchain induces high transaction costs due to a longer latency and processing
time. So, the trade-off is to ensure high security in root creation while balancing efficiency.
We must prioritize decentralized design and consider scalability.

This is ongoing research and we are planning to report other research results. Although
here we have already reported some statistics regarding latency and processing time, we
are also considering to report the performance of transactions in terms of memory use and
energy expenses when it involves off-chain versus blockchain. In Section 3.1, we clearly
framed two general phases and narrowed down the scope of this research in the first—the
initialization phase of a distributed system. However, we are already working on the
deployment phase (the second) and we plan to report our research progress in future work.
Additionally, our current implementations were carried out on the Ethereum platform, so
we believe that a comparison with others, such as Hyperledger Fabric, could be interesting
for performance comparison.

Author Contributions: Conceptualization, J.C.L.-P.; formal analysis, J.C.L.-P., L.A.M.-R. and R.M.;
funding acquisition, J.C.L.-P. and R.M.; investigation, J.C.L.-P.; methodology, J.C.L.-P.; project ad-
ministration, J.C.L.-P. and L.A.M.-R.; resources, J.C.L.-P., L.A.M.-R. and R.M.; software, J.C.L.-P.;
supervision, J.C.L.-P., L.A.M.-R. and R.M.; validation, J.C.L.-P., L.A.M.-R. and R.M.; writing—J.C.L.-P.;
review and editing, J.C.L.-P., L.A.M.-R. and R.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partly funded by COECyTJAL, issued in FODECIJAL grant with code
8217-2019, under the fund to address state problems 2019; and it was partly funded by the Mexican
National Council for Science and Technology (CONACYT) through Research Project 613.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some implementations of this research are available online. The
security protocol implementation can be downloaded from https://git.io/JwAXa (accessed on 27
October 2021). The smart contracts can be downloaded from https://git.io/JRSFC (accessed on 27
October 2021). A version of the tool used for the stress proofs can be downloaded from GitHub:
https://git.io/JRqCS (accessed on 27 October 2021).

Acknowledgments: We thank the members of the GIEE-Machine learning models group at Tecno-
logico de Monterrey, for providing feedback on an earlier version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

https://git.io/JwAXa
https://git.io/JRSFC
https://git.io/JRqCS
https://git.io/JRqCS

Sensors 2021, 21, 7669 26 of 28

Abbreviations
The following abbreviations are used in this manuscript:

AS Audit Server
Root Root user
HTTP Hypertext Transfer Protocol
GET HTTP GET Method
POST HTTP POST Method
PUT HTTP PUT Method
DELETE HTTP DELETE Method
HTTPS Hypertext Transfer Protocol Secure
TCP/IP Internet Protocol Suite
TLS Transport Layer Security
SSL Secure Socket Layer
OOP Object-Oriented Programming
CaaS Containers-as-a-Service platform
API Application Programming Interface
Web World Wide Web
JSON JavaScript Object Notation
NodeJS Node JavaScript

References
1. Suzuki, S.; Murai, J. Blockchain as an Audit-Able Communication Channel. In Proceedings of the 2017 IEEE 41st Annual

Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 516–522. [CrossRef]
2. Yavuz, A.A.; Ning, P. BAF: An Efficient Publicly Verifiable Secure Audit Logging Scheme for Distributed Systems. In Proceedings

of the 2009 Annual Computer Security Applications Conference, Honolulu, HI, USA, 7–11 December 2009; pp. 219–228. [CrossRef]
3. Li, K.F.; Attarmoghaddam, N. Challenges and Methodologies of Hardware Security. In Proceedings of the 2018 IEEE 32nd

International Conference on Advanced Information Networking and Applications (AINA), Cracow, Poland, 16–18 May 2018;
pp. 928–933. [CrossRef]

4. Barabanov, A.; Makrushin, D. Security audit logging in microservice-based systems: Survey of architecture patterns. arXiv 2021,
arXiv:2102.09435.

5. Li, X.; Xi, Y.; Zhu, H.; Ling, J.; Zhang, Q. Infrastructure Smart Service System Based on Microservice Architecture. In Proceedings
of the International Conference on Inforatmion Technology in Geo-Engineering, Guimaraes, Portugal, 28 September–2 October
2019; pp. 131–143. [CrossRef]

6. Michael, N.; Mink, J.; Liu, J.; Gaur, S.; Hassan, W.U.; Bates, A. On the forensic validity of approximated audit logs. In Proceedings
of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020; pp. 189–202. [CrossRef]

7. Araújo, R.; Pinto, A. Secure Remote Storage of Logs with Search Capabilities. J. Cybersecur. Priv. 2021, 1, 340–364. [CrossRef]
8. Zeng, J.; Chua, Z.L.; Chen, Y.; Ji, K.; Liang, Z.; Mao, J. WATSON: Abstracting Behaviors from Audit Logs via Aggregation of

Contextual Semantics. In Proceedings of the 28th Annual Network and Distributed System Security Symposium, NDSS 2021,
virtually, 21–25 February 2021; The Internet Society: Reston, VA, USA, 2021. Available online: https://www.ndss-symposium.org/
ndss-paper/watson-abstracting-behaviors-from-audit-logs-via-aggregation-of-contextual-semantics/ (accessed on 27 October
2021).

9. Odun-Ayo, I.; Agono, F.; Misra, S. Cloud migration: Issues and developments. In Proceedings of the International Mul-
tiConference of Engineers and Computer Scientists, Hong Kong, China, 14–16 March 2018; Volume 1. Available online:
http://eprints.covenantuniversity.edu.ng/id/eprint/10685 (accessed on 27 October 2021).

10. Zawoad, S.; Dutta, A.K.; Hasan, R. SecLaaS: Secure logging-as-a-service for cloud forensics. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; pp. 219–230.
[CrossRef]

11. Yavuz, A.A.; Ning, P.; Reiter, M.K. Efficient, Compromise Resilient and Append-Only Cryptographic Schemes for Secure
Audit Logging. In Financial Cryptography and Data Security; Keromytis, A.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 148–163. [CrossRef]

12. Ray, I.; Belyaev, K.; Strizhov, M.; Mulamba, D.; Rajaram, M. Secure Logging as a Service—Delegating Log Management to the
Cloud. IEEE Syst. J. 2013, 7, 323–334. [CrossRef]

13. Zawoad, S.; Dutta, A.K.; Hasan, R. Towards Building Forensics Enabled Cloud Through Secure Logging-as-a-Service. IEEE Trans.
Dependable Secur. Comput. 2016, 13, 148–162. [CrossRef]

14. Tian, H.; Chen, Z.; Chang, C.C.; Huang, Y.; Wang, T.; Huang, Z.A.; Cai, Y.; Chen, Y. Public audit for operation behavior logs with
error locating in cloud storage. Soft Comput. 2019, 23, 3779–3792. [CrossRef]

http://doi.org/10.1109/COMPSAC.2017.72
http://dx.doi.org/10.1109/ACSAC.2009.28
http://dx.doi.org/10.1109/AINA.2018.00136
http://dx.doi.org/10.1007/978-3-030-32029-4_12
http://dx.doi.org/10.1145/3427228.3427272
http://dx.doi.org/10.3390/jcp1020019
https://www.ndss-symposium.org/ndss-paper/watson-abstracting-behaviors-from-audit-logs-via-aggregation-of-contextual-semantics/
https://www.ndss-symposium.org/ndss-paper/watson-abstracting-behaviors-from-audit-logs-via-aggregation-of-contextual-semantics/
http://eprints.covenantuniversity.edu.ng/id/eprint/10685
http://dx.doi.org/10.1145/2484313.2484342
http://dx.doi.org/10.1007/978-3-642-32946-3_12
http://dx.doi.org/10.1109/JSYST.2012.2221958
http://dx.doi.org/10.1109/TDSC.2015.2482484
http://dx.doi.org/10.1007/s00500-018-3038-8

Sensors 2021, 21, 7669 27 of 28

15. Chowdhury, M.J.M.; Colman, A.; Kabir, M.A.; Han, J.; Sarda, P. Blockchain Versus Database: A Critical Analysis. In Proceedings
of the 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018;
pp. 1348–1353. [CrossRef]

16. Ahmad, A.; Saad, M.; Bassiouni, M.; Mohaisen, A. Towards Blockchain-Driven, Secure and Transparent Audit Logs. In
Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services,
New York, NY, USA, 5–7 November 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 443–448.
[CrossRef]

17. Ahmad, A.; Saad, M.; Mohaisen, A. Secure and transparent audit logs with BlockAudit. J. Netw. Comput. Appl. 2019, 145, 102406.
[CrossRef]

18. Putz, B.; Menges, F.; Pernul, G. A secure and auditable logging infrastructure based on a permissioned blockchain. Comput. Secur.
2019, 87, 101602. [CrossRef]

19. Mustafa, M.; Rubasundram, G. Disrupting fraud: Auditing in the digital world—A block chain perspective. Test Eng. Manag.
2020, 82, 1109–1118.

20. Lu, N.; Zhang, Y.; Shi, W.; Kumari, S.; Choo, K.K. A secure and scalable data integrity auditing scheme based on hyperledger
fabric. Comput. Secur. 2020, 92, 101741. [CrossRef]

21. Paulson, L.C. The inductive approach to verifying cryptographic protocols. J. Comput. Secur. 1998, 6, 85–128. [CrossRef]
22. Jurcut, A.D.; Coffey, T.; Dojen, R. Design guidelines for security protocols to prevent replay & parallel session attacks. Comput.

Secur. 2014, 45, 255–273. [CrossRef]
23. López-Pimentel, J.C.; Monroy, R. Formal support to security protocol development: A survey. Comput. Sist. 2008, 12, 89–108.
24. Xiong, Y.; Su, C.; Huang, W. Verifying Security Protocols using Dynamic Strategies. arXiv 2018, arXiv:1807.00669.
25. Klenze, T.; Basin, D.; Sprenger, C. Formal Verification of Secure Forwarding Protocols. In Proceedings of the 34th IEEE Computer

Security Foundations Symposium (CSF 2021), Dubrovnik, Croatia, 21–25 June 2021; [CrossRef]
26. Matsuo, S. How formal analysis and verification add security to blockchain-based systems. In Proceedings of the 2017 Formal

Methods in Computer Aided Design (FMCAD), Vienna, Austria, 2–6 October 2017; pp. 1–4. [CrossRef]
27. Singh, A.; Parizi, R.M.; Zhang, Q.; Choo, K.K.R.; Dehghantanha, A. Blockchain smart contracts formalization: Approaches and

challenges to address vulnerabilities. Comput. Secur. 2020, 88, 101654. [CrossRef]
28. Mohanty, S.P.; Yanambaka, V.P.; Kougianos, E.; Puthal, D. PUFchain: A Hardware-Assisted Blockchain for Sustainable Simultane-

ous Device and Data Security in the Internet of Everything (IoE). IEEE Consum. Electron. Mag. 2020, 9, 8–16. [CrossRef]
29. Birk, D.; Wegener, C. Technical Issues of Forensic Investigations in Cloud Computing Environments. In Proceedings of the 2011

Sixth IEEE International Workshop on Systematic Approaches to Digital Forensic Engineering, Oakland, CA, USA, 5–6 May 2011;
pp. 1–10. [CrossRef]

30. Siyal, A.A.; Junejo, A.Z.; Zawish, M.; Ahmed, K.; Khalil, A.; Soursou, G. Applications of blockchain technology in medicine and
healthcare: Challenges and future perspectives. Cryptography 2019, 3, 3. [CrossRef]

31. Makridakis, S.; Christodoulou, K. Blockchain: Current challenges and future prospects/applications. Future Internet 2019, 11, 258.
[CrossRef]

32. Yang, Y.J.; Hwang, J.C. Recent development trend of blockchain technologies: A patent analysis. Int. J. Electron. Commer. Stud.
2020, 11, 1–12. [CrossRef]

33. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Decentralized Business Review; 2008; p. 21260. Available online:
https://bitcoin.org/bitcoin.pdf (accessed on 1 October 2021).

34. Javaid, U.; Aman, M.N.; Sikdar, B. A Scalable Protocol for Driving Trust Management in Internet of Vehicles With Blockchain.
IEEE Internet Things J. 2020, 7, 11815–11829. [CrossRef]

35. López-Pimentel, J.C.; Alcaraz Rivera, M. Secure Distributed Network Model to Store Vehicle Transaction Records Through
Blockchain Platform. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece,
2–6 November 2020; pp. 359–364. [CrossRef]

36. Giraldo, F.D.; Milton C., B.; Gamboa, C.E. Electronic Voting Using Blockchain And Smart Contracts: Proof Of Concept. IEEE Lat.
Am. Trans. 2020, 18, 1743–1751. [CrossRef]

37. Qu, Y.; Pokhrel, S.R.; Garg, S.; Gao, L.; Xiang, Y. A Blockchained Federated Learning Framework for Cognitive Computing in
Industry 4.0 Networks. IEEE Trans. Ind. Inform. 2021, 17, 2964–2973. [CrossRef]

38. Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems
Research. J. Manag. Inf. Syst. 2007, 24, 45–77. [CrossRef]

39. López-Pimentel, J.C.; Rojas, O.; Alcaraz-Rivera, M.; Sosa-Gómez, G.; Verteramo-Chiu, L. Automating the avocado supply chain
with Blockchain and Off-chain. In Proceedings of the 8th International Conference on Information Systems, Logistics and Supply
Chain, ILS 2020, Austin, TX, USA, 22–24 April 2020; pp. 292–298.

40. López-Pimentel, J.C.; Rojas, O.; Monroy, R. Blockchain and off-chain: A Solution for Audit Issues in Supply Chain Systems.
In Proceedings of the 2020 IEEE International Conference Blockchain, Blockchain 2020, Rhodes, Greece, 2–6 November 2020;
Volume 1, pp. 126–133. [CrossRef]

http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00186
http://dx.doi.org/10.1145/3286978.3286985
http://dx.doi.org/10.1016/j.jnca.2019.102406
http://dx.doi.org/10.1016/j.cose.2019.101602
http://dx.doi.org/10.1016/j.cose.2020.101741
http://dx.doi.org/10.3233/JCS-1998-61-205
http://dx.doi.org/10.1016/j.cose.2014.05.010
http://dx.doi.org/10.1109/CSF51468.2021.00018
http://dx.doi.org/10.23919/FMCAD.2017.8102228
http://dx.doi.org/10.1016/j.cose.2019.101654
http://dx.doi.org/10.1109/MCE.2019.2953758
http://dx.doi.org/10.1109/SADFE.2011.17
http://dx.doi.org/10.3390/cryptography3010003
http://dx.doi.org/10.3390/fi11120258
http://dx.doi.org/10.7903/ijecs.1931
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/JIOT.2020.3002711
http://dx.doi.org/10.1109/Blockchain50366.2020.00052
http://dx.doi.org/10.1109/TLA.2020.9387645
http://dx.doi.org/10.1109/TII.2020.3007817
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.1109/Blockchain50366.2020.00023

Sensors 2021, 21, 7669 28 of 28

41. Lopez P.J.C.; Monroy, R.; Hutter, D. On the Automated Correction of Security Protocols Susceptible to a Replay Attack. In
Proceedings of the Computer Security–ESORICS 2007, Dresden, Germany, 24–26 September 2007; Biskup, J., López, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 594–609. [CrossRef]

42. Chen, R.; Li, S.; Li, Z. From Monolith to Microservices: A Dataflow-Driven Approach. In Proceedings of the 2017 24th Asia-Pacific
Software Engineering Conference (APSEC), Nanjing, China, 4–8 December 2017; pp. 466–475. [CrossRef]

43. Newman, S. Building Microservices: Designing Fine-Grained Systems; O’Reilly Media, Inc.: Newton, MA, USA, 2015.
44. Jaramillo, D.; Nguyen, D.V.; Smart, R. Leveraging microservices architecture by using Docker technology. In Proceedings of the

SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–5. [CrossRef]
45. Mouat, A. Using Docker: Developing and Deploying Software with Containers; O’Reilly Media, Inc.: Newton, MA, USA, 2015.
46. Stubbs, J.; Moreira, W.; Dooley, R. Distributed Systems of Microservices Using Docker and Serfnode. In Proceedings of the 2015

7th International Workshop on Science Gateways, Budapest, Hungary, 3–5 June 2015; pp. 34–39. [CrossRef]
47. Gadge, S.; Kotwani, V. Microservice Architecture: API Gateway Considerations. GlobalLogic Organisations, Aug-2017,

2018. Available online: https://www.globallogic.com/wp-content/uploads/2017/08/Microservice-Architecture-API-Gateway-
Considerations.pdf (accessed on 1 October 2021).

http://dx.doi.org/10.1007/978-3-540-74835-9_39
http://dx.doi.org/10.1109/APSEC.2017.53
http://dx.doi.org/10.1109/SECON.2016.7506647
http://dx.doi.org/10.1109/IWSG.2015.16
https://www.globallogic.com/wp-content/uploads/2017/08/Microservice-Architecture-API-Gateway-Considerations.pdf
https://www.globallogic.com/wp-content/uploads/2017/08/Microservice-Architecture-API-Gateway-Considerations.pdf

	Introduction
	Background and Related Work
	Security Protocols
	Audit Based Systems
	Blockchain in Auditing

	The General Design Model
	A General Design of Users Creation in Distributed Systems
	Internal Workings of the Initialization Phase
	Assumptions and Security Requirements

	First Stage: Root Creation Mechanism
	General Notation
	Protocol Specification
	Protocol Description
	Initial Knowledge
	Steps without the Existence of a Root User
	Steps Considering a Root User Existence

	A Protocol Run and the Creation of the Root'S Smart Contract

	Second Stage: Root Events
	Consulting Logs
	Storing Events

	The Smart Contracts within the Blockchain
	Smart Contract Notation
	Objectcontract
	Log
	Bitacora
	User: Root

	Prototype
	Protocol Development
	Smart Contract Development
	Execution Events and Costs of the Transactions

	Evaluation
	Friendly and Hostile Environment
	 Latency and Processing Time

	Conclusions and Future Work
	References

