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Abstract: Video-based trajectory analysis might be rather well discussed in sports, such as soccer or
basketball, but in cycling, this is far less common. In this paper, a video processing pipeline to extract
riding lines in cyclocross races is presented. The pipeline consists of a stepwise analysis process to
extract riding behavior from a region (i.e., the fence) in a video camera feed. In the first step, the
riders are identified by an Alphapose skeleton detector and tracked with a spatiotemporally aware
pose tracker. Next, each detected pose is enriched with additional meta-information, such as rider
modus (e.g., sitting on the saddle or standing on the pedals) and detected team (based on the worn
jerseys). Finally, a post-processor brings all the information together and proposes ride lines with
meta-information for the riders in the fence. The presented methodology can provide interesting
insights, such as intra-athlete ride line clustering, anomaly detection, and detailed breakdowns of
riding and running durations within the segment. Such detailed rider info can be very valuable for
performance analysis, storytelling, and automatic summarization.

Keywords: pose estimation; sports; object detection; sports data analysis

1. Introduction

Over the past years, an exponential growth of cycling sensor-generated data has been
observed. In contrast, the impact of these new technologies on race reporting, coaching
and training, injury prevention, and safety is still limited. The main reason is that existing
applications just add an additional layer of raw sensor data on top of the live broadcast (this
is, for example, what Dimension Data/NTT/Velon has been doing over the past years [1,2]).
This data, however, is difficult to interpret, and does not tell what is really going on and just
shows, sometimes inaccurate, data and tells no real stories. Sports data science techniques
are needed to improve upon this. The real goal of sports-related storytelling is to really
understand what the raw sensor values mean, using a unique mix of feature engineering
and machine learning. It is not about identifying the power or speed difference between
Wout Van Aert and Filippo Ganna, but it is about the impact of that difference in power
combined with a particular context and considering all other available data that tell the
real story and help to understand the race dynamics.

In general, data about sports events are becoming more and more available. In last
year’s Tour de France, for instance, NTT showcased the potential of big data in cycling
by recording more than 35 million records per stage [3]. This raw data on its own is of
limited practicability and relevance for fans and sports stakeholders. The real power of the
generated data is uncovered when it is summarized. When this data is summarized on
a per-race level, historical race and performance insights are mostly used to predict race
outcome [4,5]. However, in disciplines, such as BMX, track cycling, cyclocross, or mountain
biking, data can also be summarized per lap or sector within a lap. This is especially useful
as these disciplines are often won or lost on a specific part of the racecourse. The digitally
collected lap or sector times can help to increase the overall sports experience of fans and
athletes themselves [6]. Although lap times in sport events are already very valuable and
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interesting, they only provide one part of global sector analysis. They are very good at
illustrating who needed the least time to go from point A to point B. However, it is not
only interesting to study how much time was needed, but also the path they followed
and how exactly they went from point A to point B in a certain amount of time. Rather
than just the raw timings, this extra meta-information might even help to understand why
one athlete went faster than another. In this paper, we present a video-based approach
providing an objective data-driven answer on the “why” part of the sector data analysis
question. A set of tools is proposed to present riding line insights to coaches and fans. The
methodology consists of a set of state-of-the-art building blocks that are brought together
to offer a solution to the riding behavior task at hand.

The remainder of this paper is organized as follows: in the related work section, we
discuss relevant work on sector timing and video-based ride performance analysis; under
methodology, we further elaborate on the video processing pipeline and the tracked riding
lines; next, the results section discusses the implementation and presents some practical
results of the proposed building blocks; in the final section, we briefly summarize our
main findings and contributions and point out some future work that is required to further
finetune the processing pipeline.

2. Related Work
2.1. Sensor-Based Tracking and Timing

To answer the first part (i.e., the timing aspect) of the sector analysis question, several
approaches have been suggested in the literature. Sector timing is often performed by
some kind of wireless communication protocol. Athletes or objects wearing an active or
passive tag pass through a checkpoint, which acts as a receiver or senses the tags at the
checkpoint. Ultra-high-frequency RFID is one of the more popular technologies uses in
sports, such as mountain biking, running, skiing, and road cycling or cyclocross. Kolaja
and Ehlerova [7] performed a field study to test this technology in various sports and
under various circumstances and found that this technology provides satisfactory results
to accurately record checkpoint crossings. They also proposed an architecture with a
backend database that (post)processes the raw data into actual checkpoint crossing timings.
The big advantage of this technology is its reasonable cost, resource effectiveness, and its
relative easiness to set-up [8]. Another technology that can be used for the gate crossing
problem is Bluetooth low-energy technology (BLE). Sun et al. [9] studied the accuracy of
this technology for gate crossing. They used a high-speed camera to quantify the accuracy
of the BLE technology in different running scenarios (BLE tags worn at different locations
and emitting at different signal strengths) and found that the timing error is always less
than 156 milliseconds. Fasel et al. [10] implemented a gate timing hardware setup in
downhill skiing based on magnetism. Magnets were placed in each of the ski gates on
the downhill track and athletes wore magnetometers that ultimately provide gate timings.
Timing information based on sensor information can also be very valuable for the video
analysis methodology discussed in this paper. For instance, and as presented in our work,
the gate-crossing and identification of riders within a segment can assist to further enhance
the information extracted from the video footage (i.e., identified detected objects on the
video stream).

2.2. Computer Vision-Based Tracking and Timing

In the previous paragraph, some available sensor-based solutions for tracking and
timing were discussed, but computer vision techniques could also be used to perform
performance analysis. Popular sports, such as soccer, tennis, basketball, or cycling, are
usually broadcasted on national television. Although video data cannot be directly used
for performance analysis, several computer vision techniques can be utilized to extract per-
formance data for further analysis. In basketball, for instance, Arbués-Sangüesa et al. [11]
proposed a methodology to extract and track the visual features of basketball players using
a combination of a pre-trained pose estimation model and an additional feature extraction
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network. Santhosh and Kaarthick [12] performed a similar workflow but used OpenCV
algorithms, such as HOG-descriptors, to detect and track players. Additionally, they also
defined a homography matrix to map the detected locations on the video frames on a
top-view representation of the basketball field, allowing interesting visualizations, such
as heatmaps. Chakraborty and Meher [13] suggested a video-based ball detection and
tracking methodology that facilitates extensive path analysis of the ball during basketball
long shots. Tracking skeleton and objects is a challenging task, especially if the tracked
objects are moving (e.g., jogging, walking, cycling) or brusque camera movements [14].

The fencing principle has already been extensively documented in non-sports-related
literature. Chen et al. [15] defined a fence around an area that needed digital surveil-
lance. Every time a human was detected that was entering the fence, an alert was raised.
Wang et al. [16] suggested a methodology to cluster and characterize different types of
trajectories of moving objects in a scene. Additionally, they also tried to semantically un-
derstand the behaviors represented by a certain trajectory (clusters). Seenouvong et al. [17]
proposed a similar architecture but used a region-of-interest in which they counted vehicles
with the help of computer vision algorithms.

In our ride line analysis, we will adopt a video-based approach to extract the ride
lines of cyclocross riders, but as further explained in the discussion section of this paper,
our approach might also benefit from additional sensor-based rider tracking. The pipeline
uses a set of individual state-of-the art building blocks, which can, when brought together,
perform the specific task at hand (i.e., ride line analysis). On top of these building blocks,
some extensions and case-specific modifications were made.

3. Materials and Methods

The proposed methodology, shown in Figure 1, consists of several consecutive steps
and ultimately produces a path that bicycle riders have followed through the defined fence.
In this section, we will further elaborate on each of the steps that are required to produce
this path info.
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Figure 1. Different steps in the video processing pipeline to produce segment path data.

The first step of the analysis consists of the decomposition and initial preprocessing of
the incoming video source. The pipeline accepts both recorded video clips and live video
data delivered by popular streaming formats, such as HTTP Live Streaming (HLS) and the
Newtek Network Device Interface (NDI) protocols. The video data is decomposed into
frames and based on the framerate of the recorded video, some frames are periodically
skipped for an optimal balance between accuracy and processing time. Experiments with
high-definition footage (1920 × 1080 pixels) at a framerate of 30 frames per second show
that processing every third frame gives the best balance between pipeline detection accuracy
and processing speed (tested on an Intel i7-10700F processor, 32 GB RAM, Nvidia RTX 2060
Super GPU). By processing every third frame, the video is processed in (near) real time. For
preprocessing, the frame can be cropped to leave out irrelevant background information
for further analysis (and further speed up processing times). Next, a rectangular fence is
defined within the cropped region. The fence is defined as the region of the video in which
movements and the behavior of riders are analyzed and is illustrated by the measurement
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zone rectangle in Figure 2. Only detections within this region will be considered in further
analysis (see post processing subsection).
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Figure 2. Illustration of the fence principle on a video frame of a cyclocross training session. The
red rectangle is the region of interest. Results of pose detection, tracking, and post processing are
illustrated by the yellow path within the fence.

In the following two steps, a combination of computer vision and machine learning
algorithms will gather more information about the riders that are present in the fence.
As a start, an Alphapose pose estimator [18] is run on the frame to detect the riders and
their body keypoints. To track riders through the frames, Alphapose offers various pose
tracking implementations (e.g., PoseFlow, Human ReID, or detector based). However, after
thorough experimentation with the different trackers and its parameter configurations,
we were not able to achieve satisfiable results. The trackers work great on pedestrians,
but on skeletons that are pedaling a bicycle, the tracking often fails. Our finding that
traditional tracking algorithms make considerable mistakes in a sports context is also
fortified in the literature [19,20]. The tracker can fail in two different ways: first, in a
tracking identifier swap, especially after partial occlusion of one skeleton behind the other.
Another tracking failure occurs when a new tracking identifier is assigned to an already
seen skeleton. However, for further path analysis we decided to position the camera in
such a way that it films the fence from not a frontal but an overhead camera angle. This has
the advantage that the fence more accurately represents the real-life coordinates and that
skeleton swaps are less likely to occur as there is a better unobstructed view of the riders
(e.g., riders will not be hidden after each other). With this extra prerequisite in mind, we
implemented a more straightforward yet purpose tailored spatiotemporally aware tracking
mechanism that mostly circumvents the mentioned shortcomings of the trackers included
within Alphapose. Full details of the tracking methodology can be found in Appendix A,
but we will briefly discuss the main working principles of the technique. The technique
keeps track of the skeletons seen in the last five frames with its last known coordinates
within the fence. When a new frame is processed, the distance matrix between the old
poses’ center locations and the new pose centers is calculated. The new pose matches with
an older pose if it has the minimum distance to that old pose and the distance is smaller
than 25% of its diagonal size of the bounding box around the new pose (see Figure 3 for an
illustration of this approach). Each time a new frame is processed, the poses older than five
frames ago are also removed from the pose match dictionary. This approach works very
well in cycling as cyclists travel from a starting to an end point within the fence (i.e., they
never go back in the fence), so the corresponding bounding boxes are also moving similarly
through the fence over time.
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Figure 3. Illustration of the pose matching methodology. The yellow dotted line is the 25% threshold
of the diagonal size. The poses on the left are matched between frame i and i + 1 as its distances
between bounding boxes are less than 25% of the diagonal size, and the right poses are too far away
to be matched.

In cyclocross, riders ride or run with their bikes, based on the technicality and surface
conditions. In the next step of the video processing pipeline, a clear distinction between
each of the ridemodi a rider can adopt is made. Technical sectors might, for instance,
be perfectly rideable for a rider with great technical prowess but might be completely
unrideable for another less technical rider. The barriers are a great example of such a
technical sector. If the barriers are relatively high and are placed at a challenging part of the
course (e.g., uphill or after a corner), some less technical riders will be forced to dismount
their bike and run over this course feature. Monitoring these differences among riders
within the video fence can be very valuable to help understand why, how, and where riders
are taking a certain line and to explain why one rider is slower than another. To answer the
riding mode question, a YOLOv5 neural network was trained to detect cyclists that are
either running or cycling and spectators. This knowledge is attached as metadata to the
previously detected poses and its tracked pose identifiers.

Another interesting metadata generator within the pipeline is the team (jersey) recog-
nition module. The team jersey recognition should be capable of detecting which team a
rider belongs to based on the team jerseys they are wearing. Team jerseys usually have
distinct patterns with some sponsors on them. If team jerseys do not change over the years,
it might be perfectly feasible to train a state-of-the-art object recognition model that has a
couple of hundreds of images for each team. However, in practice, team jersey designs,
sponsors, and even colors change usually every year (or sometimes even faster), which
makes this approach rather unfeasible. To overcome this limitation, a methodology that
only uses relatively few examples for each jersey class should be implemented. For this
purpose, a transfer learning approach was used [21]. In neural network transfer learning,
the trained knowledge of an existing neural network is reused to do the classification
or detection task for another unseen but related problem [22]. This is usually done by
removing the last output layer of the network and adding another one instead. All weights
of the original network are frozen (i.e., are not trained any further), but the last layer’s
weights are trained based on the (limited amount of) provided problem-specific training
data. For our team classification module, we trained a RESNET18 model, with its last
fully connected layer replaced by a linear layer that was retrained. In the first attempt of
preparing the training data, the team jerseys were rectangularly cropped from a larger
image. This introduced a lot of background noise in the image, which had a negative im-
pact on the trained predictor’s accuracy. This shortcoming was mostly solved by an extra
model that crops the relevant body parts from an image with background information [23].
For our model’s training data, we retrieved the torso from the humanparser’s generated
body part segmentation output. The model is a Resnet-101 backbone adopting the Context
Embedding with Edge Perceiving (CE2P) to segment the body in the different body parts.
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For our methodology, a network trained on the Pascal dataset to detect the following
body parts: ‘Background’, ‘Head’, ‘Torso’, ‘Upper Arms’, ‘Lower Arms’, ‘Upper Legs’, and
‘Lower Legs’. For our predictor, we are only interested in the torso as these contain the
logos and the distinct team patterns. The humanparser’s generated segmentation mask
is used to crop out the jersey from the original image (see Figure 4). This significantly
improved the model’s capability to accurately classify teams based on their jerseys. The F1
score on unseen validation data (different resolutions and view angles) increased from 68%
to 78% with background subtraction and only the torso that was analyzed.
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The next link in the video processing pipeline is the check of whether a rider is in
the fence. This is determined by the center of the bounding box (bbox) around the joints
that are detected by the Alphapose detector. If the center of the rider’s bbox is within the
fence’s box, the rider is considered in the fence.

After the previously mentioned pipeline elements have run, the post-processing step
can now be performed. The difference with the previous steps and the post processing step
is that the previous steps take place on a per frame level, but the post processing happens
across multiple frames. In the real-time path analysis scenario, the post processing is
initiated if the fence remains empty for 10 consecutive analyzed frames. In post-processing,
the actual paths travelled by the tracked skeletons are determined. If desired, the coordi-
nates of the paths can also be transformed into real life coordinates using a homography
perspective transformation [24]. The main challenge within this post-processing step is
the handling of the re-identification of the pose tracker. A pose is re-identified if the pose
tracker falsely assigns a new tracking identifier to a pose that was already seen in a previous
frame. The possible causes for re-identification can usually be reduced to two different
categories. The first is when the Alphapose estimator fails to map the skeletons for one
or more consecutive frames, which causes a jump in the subsequent positions, which is
too high for our geospatial pose tracker to link it to a previous pose instance. Another
culprit is when two poses are basically overlapping each other and both identifiers are
mistaken for each other. With these limitations in mind, a post processing strategy can
now be implemented to search and solve the re-identifications. The strategy exploits the
fact that in our fenced approach, the skeletons will always travel in a consistent direction
within the fence (e.g., left to right, right to left, top to bottom, or bottom to top). With this
added constraint, a straightforward yet powerful geospatially aware pose path merger
can be implemented. The merging process is illustrated in Figure 5 and will be briefly
discussed in the next paragraph.

In summary, the merging process consists of three steps. In the first step, the paths are
split based on jumps in frame numbers of the different tracks. A track is defined as a pose
that was tracked over time in the fence and was assigned a tracking identifier. Tracks with
non-subsequent frame sequences are split into separate tracks. This prepares the tracks for
step two of the merging process, where the tracks are attempted to be merged again based
on a spatiotemporal weighting function. As illustrated in Figure 5, a track has several
candidates that can be matched. The selected candidate is the one with the minimum
spatiotemporal distance and below a certain threshold that is set based on the fence’s
dimensions. In the last step, the spatiotemporally linked tracks are iteratively matched
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based on the index lists of frame numbers within a track. This process stops if all paths
have index lists that are non-overlapping.
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The proposed pose tracking methodology combined with the merging strategy pro-
duces a set of pose tracks that can be directly used in the following steps in the video
pipeline. In this next step, the pose tracks (or parts of the tracks) that are within the
boundaries of the desired fence’s coordinates are extracted. To check if a skeleton of a path
is within the fence, the center of the bounding box around its joints is used. Using this
approach, the tracked skeletons’ coordinates stay much more consistent and less spikey as
when a joint, such as the knee or foot, were used. The skeleton is considered within the
fence if this center coordinate is within the fence’s bounding box coordinates. This check is
performed for every frame in which the skeleton in the track was detected. A valid path in
the fence is defined as a rider that is entering and exiting the defined bounding box (and
has multiple detections within the fence).

Once the valid paths have been detected, all information is available to create insightful
statistics of the path a rider did follow within the fence. The extra metadata, such as the
rider modi and the team jersey recognition results, are used to annotate the path with a
major riding mode and the team probability scores of the rider. The combination of the
video (stream) frame rate and the start frame and end frame when the rider entered or
exited the fence also allows an estimate of how much time the rider did spend in that
zone. In the final step, the data of the tracked skeleton across different frames within
the fence is brought together and summarized, which in its turn can be published. In
our video pipeline, the fence data is published to a REST API, allowing easy retrieval for
other stakeholders within the cyclocross broadcasting world. As a final note, riders can be
identified with a MyLaps detection loop at the start and end of the fenced zone (as will be
further explained in the discussion section).

4. Results

In the methodology, the mechanism of the fencing framework was theoretically dis-
cussed. In this section, we will further elaborate on the implementation of the introduced
building blocks and some preliminary results will be showcased.
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An important metadata generator within our pipeline is the ride mode detector. To
train such a model, a training dataset of 869 images was constructed, with 747 cyclists that
are riding, 457 running, 116 crashing, and 1038 spectators. The dataset was split uniformly
across the categories in 75% for the training data, 20% for test, and 5% for validation. The
data was used to train a YoloV5 model (yolov5s variant) for 100 epochs and achieved a
mean average precision (mAP) of 68%. As can be seen in Figure 6, it is the spectator class
that is degrading the model’s overall performance quite a bit as it classifies most spectators
as background. This is not really a problem for this proposed methodology as we are only
interested in riders and the confusion matrix shows us that there is no confusion between
riders (either running or riding) and spectators. The real power of this detector is when it
is used on a video sequence. In combination with the tracking results of the rider skeletons,
the riders’ rider modi can be tracked over time. Figure 7 shows an illustration of the ride
mode model that was run on a sequence of a men’s pro cyclocross race. The ride mode
detector ran on each frame of this sequence and the color-coded arrows show the history
for that rider across the video sequence. The combination of the video framerate and the
fence analysis results can give an indication of the total time required to finish the sand
sequence and how they did it (i.e., riding and running ratio).
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effectiveness of this approach for the specific cycling use case. As team jerseys change at 
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Figure 7. Ride mode detector run on a video extract of the World Cup race of Koksijde. The arrows
show the history of the detected ride modi for that specific rider.

The next model that was trained to serve as the metadata generator in our ride line
pipeline was the team detector model. To prove the effectiveness and its relative easiness
to train with few sample images, a model was trained on five teams (see Figure 8 for an
overview of the corresponding jerseys). For each team, a total of eight images were used to
train the final output layer of the RESNET18 model. The training images were preprocessed
using a set of (random) image transformations randomly performing light condition
changes, horizontal flips, slight rotations, and/or cropping. The other three images were
used for testing purposes. The model achieved a 96% validation accuracy after 10 epochs
of training time. The model was further validated on a number of unseen images for each
team. The confusion matrix of this extra validation data is shown in Figure 9. As could be
seen, some teams are still mistaken for another, but the provided shots are from multiple
camera angles and zoom levels, so additional more clever cropping might still improve the
model’s prediction. This experiment with the five sample teams shows the effectiveness
of this approach for the specific cycling use case. As team jerseys change at least once a
season, the solution needs to be easily trainable and retrainable. The experiments show
that good results can be achieved with relatively few training samples. In the future work
section, we will discuss other possible improvements to make the model more performant
and adoptable.
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In the previous section, we introduced the full video processing pipeline. In this
paragraph, we will discuss some applications of the proposed pipeline. A first application
is the direct application and analysis of the riding lines within the fence. Figure 10a,b show
how this data can be visualized. As mentioned in the previous section, the coordinates of
the poses were first mapped on real-life coordinates to optimally represent the true shape
of the fence and paths that were followed. In the ride line graph presented in Figure 10b,
we can see that the blue and orange rider tend to better follow the flow of the course than
the green rider (i.e., the course curves to the right). This finding is further fortified by
the screenshots of the actual video footage Figure 10a. The green rider made a technical
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mistake in the sand, causing a deviation from the other riders’ lines, which were more
logical when the flow of the course is considered.
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As a final step in the processing pipeline, the raw ride line data is also published to an
API, so this information could also be used by video broadcasters to directly incorporate
these near-real-time stats in the live video feed (or in race summaries or recaps afterwards).
Another possibility we have been investigating is the publication of the ride line graphs
presented in Figure 10b to a REST API or a Twitter account.

5. Discussion and Future Work

The proposed pipeline in this paper is just the starting point for further analyses
and visualizations of riders’ lines and behavior on a small area on the racecourse. As
the pipeline is fully modular, (metadata) pipeline elements can be added or removed as
required. As an example, in sports, such as cyclocross and motocross, a MyLaps gate timing
solution is often used. When the riders wear a transponder and ride over a measurement
loop, their time of crossing is recorded on the MyLaps system. When such a setup is
installed at the start- and endpoints of the video fences, some extra meta-information
could be introduced in the video pipeline. With some post-processing and accurate time
synchronization of the MyLaps and video data, rider identification and fence timing could
be directly derived from the MyLaps measurements and linked to the detected skeletons in
the video fence.

An extra extension of the metadata collection could be the inclusion of wearable sensor
data. ANT+ is a protocol that facilitates the broadcasting and processing of sensor data,
such as power, heart rate, speed, or cadence. It can be easily consumed by a USB ANT+
dongle and with one of the available Software Development Kits. The combination and
time synchronization of sensor data with ride lines of the riders can provide more profound
insights, such as the average power during the ridden line, maximum power, or average
speed. Sensors have a distinct identifier so the pairing of a sensor with an identified rider
on the video stream can be achieved.

Lastly, it is also worth mentioning that the use cases of the core detector (i.e., the
skeleton detector and tracker) are not limited to cyclocross and other cycling disciplines
only. A similar methodology for all other sports where riders follow a course or path can be
compiled with the simple addition of sports-specific metadata generation models. As a side
project, the video processing pipeline was already reused to analyze a filmed ski downhill
run. The ride mode detector was changed by a ski pole and flag detector. The fencing
module was also removed from the pipeline but was replaced by a pipeline post-processing
element that looked at when the skier’s bounding box overlapped with the detected ski
flags bounding boxes. With this information, the path the skiers took could be recreated as
well as the timings of the segments between consecutive flags that were slalomed.

6. Conclusions

In this paper, we presented a video-based end-to-end modular and stepwise solution
for detection and analysis of cyclocross riding lines. As a first step, human poses are
extracted from a video frame. These poses are further identified by a ride modus and team
detector. The poses from an individual frame are merged and post-processed by the pose
tracker. In a final post processing stage, the ridelines are extracted from a static camera for a
certain region of interest (i.e., the fence). The pipeline outputs both the raw metadata output
(e.g., tracked skeletons and ride modi) and the processed rideline data. This approach was
tested on a static camera positioned on the sandpit sector of a professional cyclocross race.
The pipeline was able to detect and highlight irregular riding behavior. The produced
insights can be used for broadcasting storytelling purposes or can be directly pushed as
infographics to social networks (e.g., Twitter).
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Appendix A

1. last_id ← 0 //When a new skeleton is found it gets last id + 1 as its id
tracked_skeletons← [] //skeletons that were recently seen in video

2. n_frames_in_history← 5
3. for frame_nr in video_frames do
4. poses← frame_resuls[frame_nr][‘poses’]
5. pose_center_xy← [ [x,y] for pose[‘coordinates’] in poses ]
6. pose_ids, tracked_skeletons←map_poses(pose_center_xy, tracked_skeletons)
7. tracked_skeletons← cleanup_old_poses(tracked_skeletons)
8. //Distance between tracked and new pose skeletons (omitted for readability)
9. dist_matrix = build_distance_matrix(tracked_skeletons, pose_center_xy)
10. used_poses← []
11. mapped_ids← [null] * len(poses)
12. for tracked_key in dist_matrix do
13. min_index← index of minimum of dist_matrix[tracked_key]
14. min_distance← value of minimum of dist_matrix[tracked_key]
15. distance_threshold← 25% of diagonal length of the pose at min_index
16. if min_index not in used_poses and min_distance < distance_threshold do
17. tracked_skeletons[tracked_key][‘last_seen’] = frame_nr
18. tracked_skeletons[tracked_key][‘coordinates’] = pose_center_xy[min_index]
19. append min_index to used_poses
20. mapped_ids[min_index] = tracked_skeletons[tracked_key][‘idx’]
21. end if
22. end for
23. not_used_poses← indices of poses not in used_poses
24. end for
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