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Abstract: Outdoor vision sensing systems often struggle with poor weather conditions, such as snow
and rain, which poses a great challenge to existing video desnowing and deraining methods. In this
paper, we propose a novel video desnowing and deraining model that utilizes the salience information
of moving objects to address this problem. First, we remove the snow and rain from the video by
low-rank tensor decomposition, which makes full use of the spatial location information and the
correlation between the three channels of the color video. Second, because existing algorithms often
regard sparse snowflakes and rain streaks as moving objects, this paper injects salience information
into moving object detection, which reduces the false alarms and missed alarms of moving objects.
At the same time, feature point matching is used to mine the redundant information of moving
objects in continuous frames, and a dual adaptive minimum filtering algorithm in the spatiotemporal
domain is proposed by us to remove snow and rain in front of moving objects. Both qualitative and
quantitative experimental results show that the proposed algorithm is more competitive than other
state-of-the-art snow and rain removal methods.

Keywords: video desnowing and deraining; saliency; adaptive filtering; outdoor vision sensing

1. Introduction

Outdoor vision systems in traffic and safety applications have greatly promoted the
development of society. Computer vision technologies, such as target tracking and human
detection, are widely used. However, these technologies often confront challenges, such
as heavy snow, rainstorms, strong winds and other poor weather conditions. Snowflakes
and rain streaks can obscure key information in the video, and strong winds can shake the
camera, which will make subsequent video processing more difficult. Therefore, removing
snow and rain is an important part of computer vision.

In the early days, the photometric properties of rain were used to detect raindrops [1].
Some researchers utilized the direction and time attributes of rain streaks to remove
rain [2,3]. However, the direction of snowfall is not consistent, so the direction attribute
is not suitable for snow detection. Then, many researchers adopted filtering methods
to remove snow and rain [2,4–7], but the cost of filtering is the loss of texture details in
the background. Dictionary learning was adopted by some researchers to obtain rain
dictionaries and non-rain dictionaries, but this method cannot completely remove rain [8].

Because the snowflakes and rain streaks in video do not cover the same pixels all the
time, some researchers removed snow and rain [9–11] through the redundancy attributes
between frames. However, the performance of this method is determined by selecting the
number of frames and background pixels. Although this method can remove most snow
and rain, it easily leaves holes and artifacts on moving objects.
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Recently, a patch-based Gaussian mixture model was used to reconstruct a clear
background [12], and the Markov random field (MRF) was used to detect moving objects
in videos [12–14], but through these methods, the edges of moving objects are distorted.
Low rank is an important attribute of snow and rain video. Some researchers use low-
rank matrix decomposition to remove snow and rain [13,15]. This method can accurately
restore the background. However, robust principal component analysis (RPCA), adopted
by Tian et al. [15], and MRF, adopted by Ren et al. [13], often fail to detect small moving
objects because these two methods have difficulty distinguishing between moving objects
and sparse snowflakes, often removing moving objects as snowflakes, or retaining sparse
snowflakes as moving objects. Although these methods [12–14,16] can deal with snow or
rain videos containing moving objects, none of them can effectively remove snow or rain
from moving objects.

To solve the above problems, this paper utilizes low-rank tensor decomposition to
remove snow and rain in the video, which makes full use of the spatial location information
and the correlation between the three channels of the color video. This decomposition is
more robust to heavy snow and rainstorm videos. Conventional moving object detection
methods [17,18] have difficulty in distinguishing between sparse snowflakes and moving
objects without rich textures. In this paper, saliency detection and moving object detec-
tion are combined to extract moving objects separately [19–21] because rain streaks and
snowflakes have no salience information in video.

To effectively remove snow and rain from moving objects, we utilize the sparsity of
snowflakes and rain streaks to remove snow and rain in front of the moving object for
the first time through the combination of feature point matching and adaptive minimum
filtering in the time domain. To achieve the best effect from removing snow and rain on
moving objects of different sizes, we utilize adaptive minimum filtering in the spatial
domain to obtain the final moving objects without snow and rain.

The main contributions of this paper are as follows:

• Due to the interference of rain streaks and snowflakes, the existing snow or rain
removal algorithms cannot effectively detect moving objects. We introduce a saliency
map into moving object detection, which improves the ability of moving object de-
tection in snow and rain videos because almost all moving objects in snow and rain
videos have salience information, while snowflakes and rain streaks do not.

• Because snow and rain in videos cannot cover the same pixels all the time, feature
point matching is utilized by us to address the time continuity of moving objects
in snow or rain videos and mine the redundant information of moving objects in
continuous frames. A dual adaptive minimum filtering method in the spatiotemporal
domain is proposed by us to remove snow and rain in front of moving objects.

• In contrast to matrix decomposition, our tensor decomposition makes full use of
the spatial location information and the correlation between the three channels of
the color video. In our decomposition, the background is relatively static, and we
uniformly regard sparse and dense snowflakes, rain streaks and moving objects as
sparse components.

The rest of this paper is organized as follows: Section 2 systematically introduces the
main related work in removing snow and rain. Section 3 describes the proposed method.
Section 4 presents the experimental analysis and results. Section 5 discusses the advantages
and disadvantages of our proposed method. Our summaries and prospects are arranged
in Section 6.

2. Related Work

We give a review on the methods of video snow and rain removal. The methods of
single image snow and rain removal are also introduced for literature comprehensiveness.
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2.1. Video Snow and Rain Removal Methods

Early researchers utilized the physical properties of snow and rain and the time
attributes of frames to remove snow and rain. Garg et al. [1] first discussed the photometric
characteristics of raindrops and developed a rain detection method based on a linear
spatiotemporal correlation model. Zhang et al. [2] introduced chromaticity and time
attributes to the intensity fluctuation of rain pixels, and k-means clustering was utilized to
distinguish background and rain in videos. However, these methods are not suitable for
rain videos with moving objects.

Later, some researchers utilized filtering methods to remove snow and rain. Park et al. [4]
adopted the Kalman filter to remove rain. Shen et al. [9] combined a saturation filter,
difference filter and white filter to detect snow particles. However, these methods lose the
texture details of the image.

The temporal correlation of frames was used by some researchers to remove snow and
rain. Based on the frame difference method, Huiying et al. [10] added the constraints of area
and bearing to improve the accuracy of snow detection. Yang et al. [11] combined the frame
difference method and L0 gradient minimization to remove snow. Brewer et al. [3] proposed
a method to distinguish between rain and moving objects based on the shape and angle of
the rain streaks, but it is difficult to remove heavy rain with it. Barnum et al. [22] believed
that snow and rain in videos obey blurred Gaussian distributions, but the robustness of
this method is poor. Bossu et al. [23] detected snow and rain through selection rules based
on photometry and size. However, when the directions of snow and rain are not consistent,
the result is not ideal.

Recently, some researchers have considered the time correlation of snow and rain
video frames. Kim et al. [16] took into account global motion, local motion and snowflakes
of various sizes in their snow removal algorithm. First, snowflakes are detected by the
correlation of frames, and then snowflakes and outliers are distinguished by sparse rep-
resentation and support vector machine (SVM). Finally, low-rank matrix completion is
utilized to reconstruct the video sequence. However, this method cannot effectively remove
heavy snow because only the correlation of five frames is taken into account. Ren et al. [13]
proposed an algorithm to remove snowflakes or rain streaks based on matrix decompo-
sition, which distinguishes moving objects from sparse snowflakes by setting threshold
values for the pixel intensity at specific locations in continuous frames. However, in some
experiments, moving objects are often missed. Tian et al. [15] first obtained a clean back-
ground by global low-rank matrix decomposition. Then, block matching based on the
average absolute difference and local low-rank decomposition were used to remove snow
in front of moving objects. However, the complexity of this method is too high. It is difficult
to extract the low-rank structure of moving objects, especially for nonrigid motion.

In addition, Islam et al. [24] proposed a hybrid technique, where physical features and
data-driven features of rain are combined to remove rain streaks in videos. Jiang et al. [25,26]
used the sparsity of rain streaks to remove rain in videos. Similarly, Li et al. [14] proposed
online multiscale convolutional sparse coding (MS-CSC) to remove snow and rain and
adopted the MRF to detect moving objects. An affine transformation operation was utilized
to update the background. In contrast to the previous MS-CSC model [27] designed for
rain removal in a prefixed length of video, this method adjusts the parameters according
to the correlation between previous and current frames to cope with streaming videos
with continuously increasing frames in real time. Wei et al. [12] proposed a patch-based
Gaussian mixture model, which uses MRF to distinguish moving objects from rain. On this
basis, Yi et al. [28] proposed an online patch-based Gaussian mixture rain removal model,
which can learn parameters adaptively.

2.2. Single Image Snow and Rain Removal Methods

Many researchers are working on using a single image to remove snow and rain. To
make the related work more comprehensive, we also introduce snow and rain removal
methods for a single image. Guided filtering is the main method of rain and snow removal



Sensors 2021, 21, 7610 4 of 18

for a single image [5–7,29]. However, guided filtering loses the details of the image when
removing snow and rain, which makes this method not suitable for images with rich
textures. Wang et al. [8] proposed an image decomposition method based on dictionary
learning and guided filtering to obtain a clean background by removing the imagery layer
where the snow and rain components are located. Unfortunately, this method still blurs
the texture details of the background.

Deep learning is widely used to remove snow and rain from a single image. Qian
et al. [30] injected the attention mechanism into the generation and discrimination network
to improve the rain removability of the network. However, this method may not always be
effective in removing rain streaks in complex scenes. Ren et al. [31] utilized a multi-stream
DenseNet to estimate the rain location map, a generative adversarial network to remove
the rain streaks and a refinement network to refine the details. Chen et al. [32] proposed a
snow removal algorithm based on the snow size and a transparency-aware filter consisting
of a snow size recognizer and a snow removal system that can identify transparency. A
transparency-aware module removes snow with different scales and transparency, and
a modified partial convolution algorithm removes nontransparent snow. However, the
background is easily distorted in the actual performance.

In addition, Jaw et al. [33] used a pyramidal hierarchical design with lateral connec-
tions across different resolutions. The high-level semantic features were combined with
other feature maps at different scales to enrich the location information. Liu et al. [34]
proposed a multistage snow removal network. The network is mainly composed of translu-
cency recovery (TR) and residual generation (RG) modules. The former is used to restore
the background obscured by translucent snow particles. The latter generates an area
obscured by opaque snow particles via the unoccluded area and the recovered area of
the former. Li et al. [35] designed a multiscale stacked densely connected convolutional
network (MS-SDN) to detect and remove snow. The network consists of a multiscale
convolution subnet for extracting feature maps and two stacked modified DenseNets for
snow detection and removal.

The main differences between our approach and previous methods are as follows:

• The previous desnowing and deraining algorithm cannot distinguish between sparse
snowflakes/rain streaks and moving objects in heavy snow/rainstorms. We uti-
lize saliency map to guide moving object detection, which can effectively avoid the
influence of snowflakes/rain streaks.

• The existing desnowing and deraining algorithms cannot effectively remove the
snowflakes and rain streaks in front of the moving object. Additionally, some methods
deform the moving object. To solve these problems, we combine feature point match-
ing and dual adaptive spatiotemporal filtering, proposed by us, to remove snowflakes
and rain streaks in front of moving objects.

3. Proposed Method

In this section, we regard the snow video as a tensor, remove snow in the video by
low-rank tensor decomposition, and then combine the saliency map with moving object
detection to eliminate the interference of sparse snow, while extracting accurate moving
objects. Finally, we utilize feature point matching and dual adaptive spatiotemporal
filtering to remove the snow in front of the moving objects. The flow diagram of our
proposed algorithm is shown in Figure 1.

3.1. Snow Video Background Modeling

The previous model converts snow video into the form of a matrix and then decom-
poses it into low-rank and sparse components. This decomposition can obtain a relatively
clean background, but a major disadvantage of the matrix decomposition is that it can only
deal with bidirectional (matrix) data, and the color snow/rain video data are a tensor.
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Figure 1. The flow diagram of our proposed algorithm.

The color frame is composed of three interrelated RGB channels. The matrix decom-
position only deals with the three channels separately, which cannot make full use of the
spatial location information, and the correlation between the three channels of the color
video. This operation not only destroys the inherent structure of the original tensor, but
also increases the computational cost of data analysis.

The natural advantage of the tensor is that one more dimension than the matrix can
be used to store the RGB three-channel data. When decomposing the tensor, defining
the tensor rank is an important problem. Unlike the rank of a matrix, researchers have
many different definitions of the tensor rank, such as the CANDECOMP/PARAFAC (CP)
rank [36], the Tucker rank [37], the tensor train (TT) rank [38], the tensor ring (TR) rank [39],
and the tensor tubal rank [40]. In the restoration of color images and videos, the tensor tubal
rank model based on the tensor–tensor product and tensor singular value decomposition
(t-SVD) shows better performance than other rank models. The definitions of the tensor–
tensor product, tensor singular value decomposition (t-SVD), tensor tubal rank, and tensor
nuclear norm can be found in [41,42].

For a video sequence with a frame size of h× w and k frames, we consider a three-
dimensional tensor M ∈ Rn1×n2×n3 , where R denotes the real number field. More precisely,
the snow video is reshaped into a three-dimensional tensor 3× (hw)× k. Throughout this
paper, we denote tensors by boldface Euler script letters. Our model is described as follows:

min
L,S
‖L‖∗ + λ‖S‖1

s.t. M = L+ S ,
(1)

where M is the reshaped input video, M ∈ R3×(hw)×k, L is the low-rank background, S
is the sparse component, ‖ • ‖∗ denotes the nuclear norm, and ‖ • ‖1 denotes the `1−norm.
Generally, λ = 1/

√
(hw)k.
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Then, the augmented Lagrangian function of (1) is as follows:

L(L, S , Λ, β) = ‖L‖∗ + λ‖S‖1 + 〈Λ, L+ S −M〉+ β

2
‖L+ S −M‖2

F, (2)

where Λ is the Lagrange multiplier, β is the penalty parameter, 〈•〉 denotes the inner
product, and ‖ • ‖2

F denotes the square of the Frobenius norm.
We iteratively solve the optimization problem through the framework of the alternat-

ing direction method of multipliers (ADMM) algorithm:

Lk+1 = argmin
L
‖L‖∗ +

βk
2 ‖L+ Sk −M+ Λk

βk
‖

2

F

Sk+1 = argmin
S

λ‖S‖1 +
βk
2 ‖Lk+1 + S −M+ Λk

βk
‖

2

F

Λk+1 = Λk + βk(Lk+1 + Sk+1 −M)
βk+1 = min(βk, βmax)

, (3)

The following equation serves as the stopping criterion for the above iterations:

min


‖Lk+1 + Sk+1 −M‖∞,
‖Lk+1 −Lk‖∞,
‖Sk+1 − Sk‖∞

 ≤ ε, (4)

where ε is a very small number, e.g., 1 × 10−6. Figure 2 shows the extracted low-rank
component L of a snow video.
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3.2. Moving Object Modeling

The conventional moving object detection methods have difficulty segmenting a
complete moving object, and sparse snow is often recognized as a moving object, which
results in snow that cannot be completely removed. To solve this problem, our proposed
method combines the advantages of moving object detection and saliency detection, which
introduces saliency items to form a new objective function. Specifically, we use a saliency
map to guide moving object detection to strengthen the detectability of moving objects
and weaken the impact of moving snow because snow tends to occupy most of the frame,
which is not salient, while the moving object is salient. With the combination of a saliency
map and the motion detection, a complete moving object can be extracted separately.

In snow videos, moving objects without rich texture are prone to not being detected.
To reduce false alarms and missed alarms, a saliency map is incorporated into an incre-
mental subspace analysis framework, more accurate moving objects can be extracted. Our
objective function systematically takes into account the properties of sparsity, low rank,
connectivity, and saliency. The imposed saliency map avoids the interference of snow, and
the connectivity plays a smooth role in the moving objects.
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In the snow video, c ∈ RN×1 denotes the current frame, where N is the number of
pixels in the frame, i.e., N = h×w. The goal is to find the locations of the moving objects in
the current image c. The moving object locations are represented by a foreground indicator
vector f ∈ {0, 1}N , where 0 denotes the background and 1 denotes the foreground. The
negative of the background indicator vector b is identical to the foreground indicator vector
f, i.e., f = 1− b, where 1 ∈ RN×1, and the elements are all 1. b is obtained by binarizing the
background vector b.

The background vector is obtained by the following minimization problem:

min
b,U,v

N

∑
i=1

[ 1
2 bi(Uiv− ci)

2+
β(1− bi)− αbi(1− si)

]
+ λ‖Db‖1, (5)

where U ∈ RN×m is a subspace matrix whose columns are orthonormal, m is the number
of columns of U, and Ui stands for the ith row of U. The coefficient vector v ∈ Rm×1 is
the low-dimensional representation of frame c in the subspace spanned by the rows of U.
s ∈ RN×1 is the saliency map obtained by some salient object detection algorithms, such as
those in [43–45], and si is the ith element of s. D = [Dh, Dv]

T is a difference matrix, and
Dh and Dv are forward finite-difference operators in the horizontal and vertical directions,
respectively. α, β and λ are the balancing parameters.

In Equation (5), Uiv is the reconstruction of the background, and Uiv− ci measures the
similarity between Uiv and ci. The second term (1− bi) makes the estimated foreground
much sparser to avoid the interference of snow. The connectivity term ‖Db‖1 is minimized
to smooth the foreground and background. Minimizing the object saliency term−bi(1− si)
increases the chances that the foreground contains salient objects.

We utilize the alternating minimization method to seek the optimal variables b, U and
v in turn. It is extremely difficult to seek the optimal solution of b directly. We let w = b
and h = Dw. Equation (5) can be described as follows:

min
b,U,v

N
∑

i=1

[
1
2 bi(Uiv− ci)

2 + β(1− bi)− αbi(1− si)
]
+ λ‖h‖1

s.t. w = b, h = Dw,
(6)

With the Lagrange multiplier, the constraint term in Equation (6) is converted into the
following unconstrained form:

min
b,U,v,h,w

N
∑

i=1

[
1
2 bi(Uiv− ci)

2 + β(1− bi)− αbi(1− si)]
]
+ λ‖h‖1+

µ
2 ‖w− b‖2

2 + xT(w− b) + µ
2 ‖h−Dw‖2

2 + yT(h−Dw),
(7)

where µ/2‖w− b‖2
2 and xT(w− b) are obtained by converting w = b into the uncon-

strained optimization function, and the vector x is the Lagrangian multiplier. Similarly,
µ/2‖h−Dw‖2

2 and yT(h−Dw) are obtained by converting the constraint h = Dw into
the unconstrained optimization function, and the vector y is the Lagrangian multiplier.

We solve the optimization problem (7) alternately to obtain the optimal variables.
We update b when U, v, h, w, x and y are fixed, as follows:

bi =
β + µωi + xi − 1

2 (Uiv− ci)
2 + α(1− si)

µ
, (8)

We update h when b, U, v, w, x and y are fixed, as follows:

h = argmin
h

λ

µ
‖h‖1 +

1
2
‖h−Dw + y/µ‖2

2, (9)
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The optimal solution is given by the following equation:

h = Sλ/µ

(
Dw− y

µ

)
, (10)

We update w when b, U, v, h, x and y are fixed as follows:

w = argmin
w

µ

2
‖w− b‖2

2 + xT(w− b) +
µ

2
‖h−Dw‖2

2 + yT(h−Dw), (11)

Equation (11) is a quadratic function of w. Hence, the unique solution is the following:

w = (I + DTD)
−1
[

DT(h +
y
µ
) + b− x

µ

]
, (12)

We update x and y when b, U, v, h and w are fixed as follows:
x + µ(w− b)→ x
y + µ(h−Dw)→ y
dµ→ µ

, (13)

where d is a parameter and its empirical value is 1.25.
We update U when b, v, h, w, x and y are fixed as follows:

U = argmin
U

∑i
1
2 bi(Uiv− ci)

2

s.t. UUT = I,
(14)

where I is the identity matrix.
v is the low-dimensional representation of c, which is given by the following:

v = UTc (15)

3.3. Feature Point Matching and Dual Adaptive Spatiotemporal Filtering

In the adjacent frames, the change of the moving object is very small, but the snow
moves very fast, which makes the feature point matching accurately match the moving object.

We utilize the scale invariant feature transform (SIFT) matching method to match
moving objects in snow videos. The SIFT matching algorithm is robust to changes in object
translation, brightness and scale. It includes five steps: (1) We construct scale space and
detect extreme points to obtain scale invariance. (2) Unstable feature points are filtered
for accurate positioning. (3) We extract feature descriptors from feature points and assign
direction values to feature points. (4) Feature descriptors are utilized to find matching
points. (5) The Euclidean distance of the feature vector is used as a similarity measure of
key points in two images. As shown in Figure 3, the SIFT matching we adopt can accurately
match moving objects in different frames.

We paste the detected moving objects back into a low-rank background. When using
feature point matching to remove snow in front of moving objects, one problem is that
the number of matching frames directly determines the quality of snow removal in front
of moving objects. To improve the robustness of the proposed method, we adaptively
select the appropriate number of matching frames according to the speed of the moving
object to strike a balance between over-smoothing and snow removal effects. General
moving objects (such as pedestrians and cars) will produce unpleasant deformations in
the spatiotemporal domain. If we measure the speed of the moving object according to
the proportion of the coincident part of the moving object in the adjacent frame to the
frame, there is a great error in the video with different resolutions. Therefore, we choose
the proportion of the coincident part of the moving object in the adjacent frame to itself.
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Each frame of the snow video reshapes a vector c ∈ RN×1. We set the pixel coincidence
rate between the moving object in the target frame co and the moving object in the previous
frame co−1 to χo−1. Similarly, the coincidence rate of the next frame is set to χo+1. When
the coincidence rate is less than 80%, subsequent frames are no longer matched:

co+i =

{
0, if χo+i < 80%
1, if χo+i ≥ 80%

, i = · · · ,−2,−1, 1, 2, · · · (16)

where 0 indicates that the current frame co refuses to match co+i, 1 indicates that the current
frame co agrees to match co+i.

If there are E and F frames matching co successfully forward and backward, respec-
tively, then the reshaped matrix after matching is RN×(E+F+1). We select the smallest
element value in each row as the result of time domain minimum filtering.

cõ = min[co−E, · · · , co−1, co, co+1, · · · , co+F], (17)
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where cõ represents the result of adaptive minimum filtering in the time domain after the
SIFT matching.

Because the time domain minimum filtering utilizes the correlation between frames,
even if most of the moving object is covered by sparse snow, it can be recovered accurately.

In some cases, there are still unpleasant snow noises in the images after SIFT matching
and minimum filtering in the time domain. To achieve a better snow removal effect, we
introduce adaptive spatial domain minimum filtering:

H̃(i,j) = min



H(i−n,j−n), · · · , H(i−n,j), · · · , H(i−n,j+n)
...

...
...

H(i,j−n), · · · , H(i,j), · · · , H(i,j+n)
...

...
...

H(i+n,j−n), · · · , H(i+n,j), · · · , H(i+n,j+n)


, (18)

where H represents the pixel on the moving object, and i and j represent the horizontal
and vertical coordinates of the target pixel, respectively. H̃ is the result of spatial domain
minimum filtering. The size of the sliding window depends on the size of the moving object.

4. Experiment

To show the superiority of our proposed method objectively and fairly, quantitative
and qualitative evaluations are carried out in synthetic snow and rain videos, respectively.
To further demonstrate the robustness of the proposed algorithm, the real snow and rain
comparison scenes include heavy snow, rainstorms and dynamic background videos.

Our method is compared with state-of-the-art algorithms for removing snow and rain.
The method of Kim et al. [16] was published in Transactions on Image Processing (TIP) in
2015 and not only effectively removes snow and rain, but it also has high robustness for
dynamic scenes. The method of Wang et al. [8] was published in Transactions on Image
Processing (TIP) in 2017, and it can remove snow and rain from a single image well. The
algorithm of Li et al. [14] was published in Transactions on Image Processing (TIP) in 2021.
Because this method updates parameters according to continuously increasing frames in
real time, it can effectively remove snow and rain from dynamic scenes. The algorithm of
Chen et al. [32] was presented at the European Conference on Computer Vision in 2020 and is
currently the best snow removal method based on deep learning. All experiments were
implemented on a PC with an i7 CPU and 32 GB RAM.

4.1. Comparation on Synthetic Snow and Rain Videos

We select two videos in CDNET database [46]. One of the scenes is called pedestrians,
and the other is a challenging traffic intersection. Different degrees of snow and rain are
added to the two videos. First, we qualitatively evaluate the snow and rain removal effect
of the proposed algorithm and the four comparison algorithms. Then the quantitative
evaluation results are given by comparing the peak signal-to-noise ratio (PSNR), the struc-
tural similarity (SSIM) [47], the feature similarity containing the chrominance information
(FSIMc) [48] and the visual information fidelity (VIF) [49].

As shown in Figure 4, the method of Kim et al. [16] does not remove dense snowflakes
and blurs the pedestrian’s legs. There is still much snow in the results of Wang et al. [8] and
Chen et al. [32]. Among the four comparison methods, the performance of the method of
Li et al. [14] is the best, but there is still snow in the result. There is little snow in our result.
In Figure 5, the method of Kim et al. [16] still blurs the moving car. The methods of Wang
et al. [8] and Chen et al. [32] do little to remove rain. Similar to the result in Figure 4, there
is still a little rain left in the result of Li et al. [14]. Our snow removal effect is still the best.
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To compare the snow removal effects of the five methods more objectively, Tables 1 and 2
show the quantitative evaluation indices, such as PSNR, SSIM, FIMc and VIF, of each
method. We calculate the average objective value of 200 frames of the above two videos.
Our results are the best in every evaluation index, mainly because our proposed algorithm
can effectively distinguish background from snow and rain. The method of Wang et al. [8]
blurs the background, and the method of Chen et al. [32] distorts the background, which
leads to the decline of their indices.

Table 1. Quantitative performance comparison of synthetic snow videos. All the results are the
average of 200 frames.

Algorithm
Pedestrians

PSNR SSIM FSIMc VIF

Kim et al. [16] 32.952 0.986 0.986 0.842
Wang et al. [8] 28.940 0.933 0.917 0.462

Li et al. [14] 35.395 0.987 0.988 0.832
Chen et al. [32] 25.963 0.898 0.916 0.506

proposed method 36.287 0.988 0.989 0.858

Table 2. Quantitative performance comparison of synthetic rain videos. All the results are the average
of 200 frames.

Algorithm
twoPositionPTZCam

PSNR SSIM FSIMc VIF

Kim et al. [16] 35.725 0.984 0.988 0.803
Wang et al. [8] 31.255 0.930 0.952 0.521

Li et al. [14] 37.848 0.982 0.984 0.795
Chen et al. [32] 23.698 0.837 0.895 0.501

proposed method 38.694 0.986 0.988 0.816

4.2. Comparation on Real Snow and Rain Videos

To further test the snow removability of our algorithm, in this section, we compare
the proposed method with the four methods in real snow and rain videos.

Figure 6 shows a heavy snow scene, and Figure 7 shows a rainstorm scene. Although
the methods of Li et al. [14] and Chen et al. [32] remove dense snow and rain, they cannot
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remove sparse snowflakes and rain streaks. The result of Kim et al. [16] is much better than
the first two, but some snow and rain remain. Wang et al. [8] only removes dense snow
and rain at the expense of image texture details. Because the main idea of this method
is to remove snow and rain by filtering, the loss of background details is inevitable. In
contrast, our method not only removes sparse and dense snow and rain, but it also restores
a clear background.

Figure 8 is taken from the snow scene with a pedestrian passing by the static camera,
and the snow in front of the black clothes is very obvious. None of the four comparison
algorithms remove the snow in front of the background. The method of Kim et al. [16]
removes almost all the snow in the background, but unfortunately, the snow in front of the
moving object is not removed. The method of Chen et al. [32] can effectively remove snow
in front of the moving object, but this method causes distortion of the ground and sky. Our
method can truly restore the background and moving objects.
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Figure 9 shows a rainfall scene. The dark background highlights the bright rain streaks,
which makes it more difficult to remove the rain. Because the rain streaks are very dense,
the matrix completion of Kim et al. [16] cannot remove the dense rain streaks. The method
of Li et al. [14] removes the dense rain streaks but does not completely remove the sparse
rain streaks. The method of Wang et al. [8] limits the sparse rain streaks removability. Our
proposed method removes almost all dense and sparse rain streaks.

Figure 10 is taken from the snow video containing swinging branches and a girl
wearing a breathing mask. The slight swing of branches and the deformation of pedestrians
pose a great challenge to snow removal. The method of Kim et al. [16] only uses the
correlation between five frames to remove snow; the lack of the ability to identify moving
objects leads to the wrong removal of the white bag, and the lack of an effective graph
cut algorithm blurs the pedestrians. The methods of Wang et al. [8], Li et al. [14] and
Chen et al. [32] cannot remove all of the snow in front of the pedestrian. In this scene, our
results are still the best of the five methods.

Figure 11 is taken from a surveillance video. There are still some rain streaks left in
the results of Kim et al. [16] and Li et al. [14]. The method of Wang et al. [8] seriously blurs
the background because of its inherent limitations. Our method removes almost all of the
rain streaks.

The sparse rain streaks in Figure 12 pose a great challenge to the desnowing and
deraining algorithms. The methods of Wang et al. [8], Li et al. [14] and Chen et al. [32]
cannot remove the sparse rain streaks. The method of Kim et al. [16] limits its capability
to address this continuous rain streaks. Comparatively, our proposed method still attains
promising visual effect in rain removal.
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4.3. Time Complexity Analysis

In this section, we discuss the runtime of our proposed algorithm and two video
desnowing and deraining algorithms [14,16] for dealing with the synthetic snow video
(Figure 4) and the real rain video (Figure 11). The resolution of the synthetic snow video is
360× 240, and the resolution of the real rain video is 640× 480. The number of frames in
both videos is 100.

As can be seen from Figure 13, the method of Kim et al. [16] takes the longest time,
mainly because it needs to calculate the snow or rain mask maps of each frame before
removing the snow or rain. It takes about 50% to 70% of the whole time to calculate the
snow or rain mask maps. The runtime of the method of Li et al. [14] is only lower than
that of Kim et al. [16]; one of the main reasons is that it needs to learn parameters online.
Whether the processing object is the real rain video or the synthetic snow video, our method
is the most efficient.
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5. Discussion

In contrast to the tensor decomposition in the literature [25], where the direction prop-
erty of rain streaks is considered, because snowflakes do not have directional properties,
our decomposition method uniformly regards sparse and dense snow and rain as sparse
components when decomposing tensors. It can remove snowflakes and rain streaks at the
same time since the snowflakes and rain streaks are always intrinsically sparser than the
static and quasi-static backgrounds.

From the comparative experiments, it can be seen that the method of Wang et al. [8]
is not suitable for snow samples with rich texture in the background. Regardless of
how delicate the filtering is, the texture details of the background will be lost, and the
dual adaptive spatiotemporal filtering proposed by us is no exception. The failure of
Wang et al. [8] lies in global filtering. Unlike their method, our filtering works locally.
Generally, the moving object occupies a very small part of the image, and the structure of
the moving object is singular, which greatly avoids the loss of texture information caused
by filtering.

We tested the performance of the method in over 30 different complex snowfall and
rainfall scenes, including different light intensities and different intensities of snowfall
and rainfall. The overall performance is good, but there are still three limitations. First,
our algorithm works very well with videos taken by stationary or slow-moving cameras
(such as surveillance), but it cannot address videos taken by fast moving cameras, due
to the lack of video frame alignment technology. Second, when there are other saliency
objects in the video background, the quality of the saliency image is reduced, and then
the accuracy of moving object detection is affected. Furthermore, when the photometric
similarity of moving objects and snowflakes is too high, snowflakes tend to be detected
as moving objects. Third, if the moving object’s speed is too high, the SIFT matching may
only match three to four frames, and the effect of the time domain minimum filtering is not
good. In addition, too small moving objects may also lead to the failure of moving object
detection. We will further endeavor on these degenerated cases for video snow and rain
removal in our future research.

6. Conclusions

With the existing video snow and rain removal methods, it is difficult to meet the
demands of outdoor vision sensing systems; one of the main reasons is that, using them, it
is difficult to distinguish between sparse snowflakes/rain streaks and moving objects. To
solve this problem, in this paper, we utilize tensor decomposition to remove sparse and
dense snowflakes and rain streaks from the background, which makes good use of the
spatial location information and the correlation between the three channels of the color
video. Moving objects without rich texture information are easily confused with sparse
snowflakes. By introducing salience information, the ability of moving object detection
is improved. We use feature point matching to obtain the redundant information of the
moving object between continuous frames, and then remove snow and rain in front of the
moving object by the dual adaptive minimum filtering in the spatiotemporal domain. The
experimental results show that our proposed method is superior to other state-of-the-art
snow and rain removal methods.

In future research, we will seek more subtle saliency maps to further improve the
ability to detect moving objects in snow and rain videos. The existing video snow and rain
removal methods cannot effectively address snowfall and rainfall scenes with dynamic
backgrounds. We will try to introduce video frame alignment technology [50] to address
the snow and rain videos captured by mobile cameras.
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