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Abstract: With rapid urbanization, awareness of environmental pollution is growing rapidly and,
accordingly, interest in environmental sensors that measure atmospheric and indoor air quality is in-
creasing. Since these IoT-based environmental sensors are sensitive and value reliability, it is essential
to deal with missing values, which are one of the causes of reliability problems. Characteristics that
can be used to impute missing values in environmental sensors are the time dependency of single
variables and the correlation between multivariate variables. However, in the existing method of
imputing missing values, only one characteristic has been used and there has been no case where
both characteristics were used. In this work, we introduced a new ensemble imputation method
reflecting this. First, the cases in which missing values occur frequently were divided into four
cases and were generated into the experimental data: communication error (aperiodic, periodic),
sensor error (rapid change, measurement range). To compare the existing method with the proposed
method, five methods of univariate imputation and five methods of multivariate imputation—both
of which are widely used—were used as a single model to predict missing values for the four cases.
The values predicted by a single model were applied to the ensemble method. Among the ensemble
methods, the weighted average and stacking methods were used to derive the final predicted values
and replace the missing values. Finally, the predicted values, substituted with the original data, were
evaluated by a comparison between the mean absolute error (MAE) and the root mean square error
(RMSE). The proposed ensemble method generally performed better than the single method. In
addition, this method simultaneously considers the correlation between variables and time depen-
dence, which are characteristics that must be considered in the environmental sensor. As a result, our
proposed ensemble technique can contribute to the replacement of the missing values generated by
environmental sensors, which can help to increase the reliability of environmental sensor data.

Keywords: missing data; environmental sensor; univariate and multivariate imputation; machine
learning; ensemble method

1. Introduction

The concept of a smart city has become a trend, with rapid urbanization occurring
worldwide. Accordingly, various technologies that are necessary for smart cities, such as
the Internet of Things, machine learning, and big data applications have been developed.
Among the various smart city technologies, interest in the deployment of applications for
environmental pollution monitoring is increasing [1,2]. In addition, the environment is
deteriorating due to economic activity, rapid urbanization, and increased energy consump-
tion [3]. The World Health Organization (WHO) announced that air pollution, soil quality,
and water quality are the biggest environmental risk factors for health. Air pollutants that
penetrate through the respiratory tract and blood vessels adversely affect the lungs, heart,
and brain [4,5]. As a result, people are increasingly interested in how the environment
affects their health. Accordingly, interest in and demand for environmental sensors that
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are capable of measuring air pollutants are increasing [6]. The reliability of environmental
sensors hinders the achievement of accurate measurements of environmental pollution.
Since one of the factors impairing this reliability is the occurrence of missing values, the
importance of the process of handling missing values has recently been highlighted [7].
Missing values mean that there is no data or that data is incomplete [8]. Missing values
can be caused by various reasons, such as unstable communication from the sensor and
errors in the sensor device (measurement range, rapid change in data), etc. [9,10]. Internet
of Things (IoT)-based environmental sensors always have a problem with data omission,
due to the inevitable instability of communication, which is due to dynamically changing
communication methods. With these data, biased parameter estimation in analysis and
predictive models can cause problems, due to low analysis quality and accuracy [11]. There-
fore, to increase reliability in IoT-based environmental sensors, it is necessary to consider a
method for processing missing values.

When a missing value occurs in the environmental sensor, there are two main ways of
dealing with it: deletion and imputation. First, deletion is literally a method of omitting
missing values. This procedure is usually only justified when large amounts of data are
available. In general, 5% or less of the total data are within the range that can be deleted [12].
In contrast, imputation is a method of replacing missing values with estimates [13]. Based
on the estimation method, various substitution methods exist, such as mean substitution,
regression, and last observation carried forward (LOCF) [14,15]. Since deletion has the
potential to cause losses in the final result, deletion is not suitable as a method of pro-
cessing missing values of environmental sensors, which require an improvement in data
reliability [16]. Therefore, it is necessary to establish a new and systematic process, related
to imputation, that is suitable for environmental sensors, which require a sensitive and
real-time performance.

To find an imputation method that is suitable for environmental sensors, 22 environ-
mental sensor devices were fabricated. These devices include a sensor that can measure 10
types of environmental substance, such as CO, CO2, PM2.5, PM10, TVOC, H2S, NO2, and
NH3, as well as temperature and humidity. These devices were separately installed in two
buildings within the university. Since a given indoor environment can change depending
on the measurement location, devices were installed separately to check whether the sensor
showed good linearity in different environments. Two devices showing linearity were
selected, and the experiment was conducted. The environment was set with one device for
reference and the other device for directly generating missing values.

The measured time series data of the environmental sensors had a continuous char-
acteristic and were sequentially collected [17]. These successive observations had an
autocorrelation with each other. In addition to this, the manufactured environmental
sensor measured various environmental substances at the same time in the form of an
integrated device, and the correlation between specific environmental substances could be
checked according to changes in the environment.

When imputing missing values in environmental sensor data, two methods can be
used, as follows: a method using time dependence and a method using correlations
between variables. The method that considers the time characteristics of univariate input
is called univariate time series imputation, and the method of imputation that considers
the dependency between other variables, when two or more are measured, is called
multivariate imputation [18].

In existing papers, the multivariate imputation method has been more frequently
used than the univariate imputation method (which has rarely been used), when dealing
with multivariate data [19–21]. However, since the time series characteristics of each
variable can be extracted from multivariate data, this paper attempted to use univariate
imputation and multivariate imputation simultaneously, in one piece of multivariate data.
This considered the environmental sensor characteristics and the correlation between time
series observations, as well as the dependency between variables. Since univariate and
multivariate characteristics are different for each datum, depending on the situation, it
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may be advantageous to use only one of the two methods, or it may be more appropriate
to substitute one, considering both methods at the same time. Therefore, the authors
attempted to create various cases in which missing values can occur, and suggest which
technique is appropriate for each case.

Therefore, we divided the cases where missing values occur into several categories.
We have measured these using environmental sensors since 2020 and identified the types of
missing values that occur frequently, using more than 22 devices. Considering this, the case
was first divided into two types: errors in communication and errors in the sensor itself.
Communication errors are divided into two types—periodic and aperiodic—considering
the period. In the case of sensor error, a case was added assuming a rapid change in data
and when the measurement range of the sensor itself was exceeded. We aimed to discover
and suggest an appropriate imputation method, according to these four situations.

In cases of missing values, the univariate imputation and multivariate imputation
techniques were applied, respectively. In univariate imputation, the existing univariate
imputation technique was applied as is. For univariate imputation, linear interpolation (LI),
spline interpolation (SI), last observation carried forward (LOCF), Kalman, and moving
average (MA) methods were used. In multivariate imputation, five machine learning
techniques were used, as follows: K-nearest neighbor (KNN), random forest (RF), linear
regression (Reg), support vector machine (SVM), and miss forest (MF).

In order to consider both the time dependence of the univariate and the dependence of
the multivariate on variables, an ensemble method was introduced, based on the predicted
values from the univariate and multivariate. Among the ensemble methods, the weighted
average and the stacking method were used. In the weighted average, different weights
were set for univariate and multivariate data to obtain a weighted average. In addition, in
the stacking, based on the values predicted by each model, the final meta-learner model
was predicted to replace the missing values, again.

The rest of the paper is organized as follows: Section 2 describes the experimental
environment, existing imputation model, proposed ensemble method, and evaluation
method. In Section 3, the authors aim to check the differences between models, according
to the evaluation method, and compare the models that were finally used. In Section 4,
the problem that occurred during the experiment and the points that were supplemented,
confirmed through the results, are described. The final section addresses the paper’s
conclusion.

2. Methodology
2.1. Experimental Setup and Dataset

We formed an experimental group in Soongsil University to measure environmental
sensors, as shown in Figure 1. This is because the indoor environment changes depending
on the measurement location. When measuring multiple places, there is a disadvantage, in
that the measuring range becomes excessively wide if it is measured from too far away [22].
Therefore, the environmental devices were placed in a line that could be controlled to some
extent. Then, we checked that the linearity of the sensor was maintained, even if these two
environments were slightly different. In Groups 1 and 2, places where people come in and
out and places where people do not enter were set to reflect the effects on ventilation and
movement.
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floor and had a well-ventilated environment, while Group 2 was on the 1st basement floor 
and had a humid and low-temperature environment. For the devices used in the experi-
ment that imputed missing values, 2 devices out of 12 were selected in Group 1. Two 
devices with linearity were selected: one device set for reference and the other device di-
rectly put into the situation of missing values. Experimental settings were created, as 
shown in Figure 2. The room size was 16 m2 and had an air conditioning system on the 
ceiling. This room was a meeting room, where people come and go. The obtained data 
were transmitted to the server using long-range (LoRa) communication, and the transmit-
ted data were used for analysis. 
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Figure 2. Experiment environment: (a) elevation view and (b) aerial view. 

Our dataset contains environmental data collected from 10 gas sensors deployed in 
Soongsil University. As shown in Figure 3, the sensor device was equipped with a total of 
10 environmental sensor modules, including those for temperature, humidity, CO, CO2, 
TVOC, PM2.5, PM10, NO2, NH3, and H2S. As a communication method, STM32F429ZIT 
MCU was used as a LoRa environmental sensor to collect information through a universal 
asynchronous receiver transmitter (UART), an inter-integrated circuit (I2C), and an ana-
log–digital converter (ADC) for various environmental sensors, and an external LoRa mo-
dem, which also communicated using a UART. The control unit used a remote calibration 
protocol and performed functions such as resetting the device and changing the cycle of 
the sensor. 

Figure 1. Location of the experiment sites in Soongsil University, divided into two groups: Group 1
and Group 2.

A total of 22 environmental sensor devices were used in the experiment. Twelve
devices were set in Group 1, and 10 devices were set in Group 2. Group 1 was on the
5th floor and had a well-ventilated environment, while Group 2 was on the 1st basement
floor and had a humid and low-temperature environment. For the devices used in the
experiment that imputed missing values, 2 devices out of 12 were selected in Group 1.
Two devices with linearity were selected: one device set for reference and the other device
directly put into the situation of missing values. Experimental settings were created, as
shown in Figure 2. The room size was 16 m2 and had an air conditioning system on the
ceiling. This room was a meeting room, where people come and go. The obtained data were
transmitted to the server using long-range (LoRa) communication, and the transmitted
data were used for analysis.
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Figure 2. Experiment environment: (a) elevation view and (b) aerial view.

Our dataset contains environmental data collected from 10 gas sensors deployed in
Soongsil University. As shown in Figure 3, the sensor device was equipped with a total of
10 environmental sensor modules, including those for temperature, humidity, CO, CO2,
TVOC, PM2.5, PM10, NO2, NH3, and H2S. As a communication method, STM32F429ZIT
MCU was used as a LoRa environmental sensor to collect information through a universal
asynchronous receiver transmitter (UART), an inter-integrated circuit (I2C), and an analog–
digital converter (ADC) for various environmental sensors, and an external LoRa modem,
which also communicated using a UART. The control unit used a remote calibration
protocol and performed functions such as resetting the device and changing the cycle of
the sensor.
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The data-collection period was measured from October 2020 to September 2021, and
the data used for the experiment were from 5 March 2021 to 5 April 2021. Regarding the
data interval, it was possible to secure about 16,000 pieces of data in 10 min intervals.
Using real time series data makes more sense than using simulation data. There is a clear
difference between real and simulated data [23]. This is because the data formation using
simulation data and the technique used to fill it can lead to a different result when empirical
data are received. The outline of specifications, according to the sensor type, are shown in
Table 1.

Table 1. Measurements of performance characteristics of the sensor used on the device.

Sensor Model Sensor Type Sensing Target Detection Range

SPS 30 Optical PM1, PM2.5,
PM4, PM10 1–1000 µg/m3

SVM 30 Semiconductor TVOC, CO2,
Temperature, Humidity

TVOC: 0~60 ppm,
CO2: 0~60,000 ppm,

Temperature: –20~85 ◦C,
Humidity: 0~100% RH

DGS-CO 968-034

Electrochemical

CO 0–1000 ppm
DGS-H2S 968-036 H2S 0–10 ppm
DGS-NO2 968-043 NO2 0–5 ppm

FECS44-100 NH3 0–100 ppm

2.2. Missing Data Imputation Methodology

In many papers, when dealing with missing values, a dataset is obtained first, and
then the missing values are generated. Missing values are randomly generated based on the
missing completely at random (MCAR) process; however, this paper differs from previous
papers, in that it considers the types of missing values separately and uses univariate and
multivariate imputation at the same time, as shown in Figure 4.

In this experiment, the missing data ratio was set to several levels [24,25]. In this
case, the reason for setting the missing data ratio differently was that each ratio had a
different degree of influence on the data. When the missing rate was less than 1%, the
effect was known to be negligible [26]. In addition, when the missing rate was between 1%
and 5%, the data corresponded to manageable or flexible sample data. From the moment
the missing rate reached 5% or more, a suitable solution was needed to handle missing
values in the data [26]. From a missing rate of 15% or more, the missing value clearly
affected the predictive model [27,28]. After generating missing values, various techniques
were used to process them. Univariate imputation and multivariate imputation methods
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are usually used, depending on the data type. In univariate imputation, mean, mode, LI,
SI, LOCF, Kalman, and MA methods are traditionally used. In multivariate imputation,
KNN [29], RF [30], regression [31], SVM, and SVD [32] are traditionally used. Finally,
using the above techniques, the missing data are usually processed by evaluation (MAE,
RMSE, etc.) through a comparison between the predicted missing value and the actual
value [33,34]. Since the data collected by the smart environmental sensors were time
series data, which were sequentially collected, and various environmental factors must
be considered together, we propose an algorithm that uses both methods together. The
predictions from each imputation were collected and the weighted average and stacking
algorithms were used to lower the evaluation values of the missing values.
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2.3. Missing Data Type

The types of missing values are usually classified into three mechanisms, defined by
Little and Rubin in 1987. These mechanisms are missing completely at random (MCAR),
missing at random (MAR), and not missing at random (NMAR) [9]. In addition to the
typical missing value types, defined by Little and Rubin, missing value cases were defined
considering the characteristics of each sensor type, identified in Section 2.1. As can be seen
in Table 2, we first divided the missing values into two cases: communication error and
sensor error. In the communication error cases, the types of missing value were divided
into two types: aperiodic and periodic. In the sensor error cases, the missing types were
divided into rapid change and measurement range.
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Table 2. Classified occurrence case of missing values.

Case Missing Type Missingness Mechanism

Communication error
Aperiodic MCAR
Periodic MCAR

Sensor error
Rapid change NMAR

Measurement Range NMAR

2.3.1. Communication Error Cases

Communication instability was the most common case of missing values. This is the
unavoidable task of IoT sensors operating in a wireless environment. As the device used
in our experiment also used a communication method called long-range communication
(LoRa), many errors were made in the communication terminal. LoRa has the advantages
of having low power and a wide range, but LoRa with a low-power, wide-area network
(LPWAN) has the disadvantage of a low transmission rate. In the experiment measuring
the controlling switch in Nur-A-Alam, a signal loss of 9% was produced [35]. In Basford’s
experiment, over 20 devices sent 135,000 messages, but only 72.4% were received by the
server [36]. By checking the transmission rate using the received signal strength indicator
(RSSI) in our sensor, it was confirmed that a similar problem occurred. A missing value
for communication errors occurred in the LoRa-based environmental sensor device in use,
as shown in Figure 5. As can be seen from Figure 5, the missing values occurred in two
periods, the first lasting about an hour and the second communication error lasting about
6 h. As such, defects in communication in actual sensors usually occur sporadically, and
one communication error often causes explosive communication errors.
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Figure 5. Missing values occur in real device using LoRa communication methods.

Aperiodic and periodic missing values were classified within the communication
errors category. It is common for missing values to occur completely randomly over time.
However, since missing values may appear periodically, due to any cause, it was considered
meaningful to devise a method to handle missing values in such cases. The periodic signal
was generated according to the missing rate. The initial missing points were randomized
and periodically generated.

The graph shown in Figure 6 is the result of introducing missing values to the
communication error case. This was the situation for CO2, and the missing rate was
10%. Figure 6a,b correspond to communication errors—periodic and aperiodic errors,
respectively—therefore, as shown in (b), it can be confirmed that missing values occurred
at regular intervals.
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2.3.2. Sensor Error Cases

The error types that occurred in the sensor itself are classified. First, missing values
occurred when the measured values of the sensor changed rapidly. This often occurs
in special circumstances, such as when someone smokes a cigarette. In consideration of
situations in which the sensor could not detect a sudden change in data, a missing value
was generated when the slope between the data was greater than or equal to a certain
value.

In addition, missing values can occur according to the measurement range of the
sensor. The most affected factor was CO2, and a problem could be found, where the range
of the CO2 sensor usually starts at 400 ppm. Since the lowest CO2 concentration in the
atmosphere is 400 ppm, values cannot be measured below 400 ppm. The detection range
of SVM 30—the CO2 sensor of the device we used—started at 400 ppm, and the same was
true of UA50-VOC, which was a separate measurement module. Figure 7 shows the SVM
30 module measurements from 2 September 2021, and it can be seen that the CO2 value
between 02:00 and 08:00 was fixed at 400 ppm.

In Figure 8a,b show when an error occurred in the sensor. This was the same situation
as seen above for CO2, among other environmental substances, and the missing rate was
10%. Figure 8a shows a case where a missing value occurred when a rapid change occurred
in the sensor, and Figure 8b shows a graph indicating when a certain measurement range
in a sensor was exceeded.



Sensors 2021, 21, 7595 9 of 22Sensors 2021, 21, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 7. SVM 30 CO2 sensor data. 

 

 
(a) 

 

 
(b) 

Figure 8. Missing values of CO2 with missing rate 10%: (a) Sensor Error (rapid change) and (b) Sensor Error (measurement 
range). 

The reason for dividing the cases like this is clear. First, it can be used as a background 
to select an appropriate imputation algorithm. Second, this knowledge helps to build a 
reasonable simulator that can eliminate missing values [18]. In addition to these cases, 
there were many cases where missing values occurred, but the four most frequent cases 

Figure 7. SVM 30 CO2 sensor data.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 7. SVM 30 CO2 sensor data. 

 

 
(a) 

 

 
(b) 

Figure 8. Missing values of CO2 with missing rate 10%: (a) Sensor Error (rapid change) and (b) Sensor Error (measurement 
range). 

The reason for dividing the cases like this is clear. First, it can be used as a background 
to select an appropriate imputation algorithm. Second, this knowledge helps to build a 
reasonable simulator that can eliminate missing values [18]. In addition to these cases, 
there were many cases where missing values occurred, but the four most frequent cases 

Figure 8. Missing values of CO2 with missing rate 10%: (a) Sensor Error (rapid change) and (b) Sensor Error (measurement
range).

The reason for dividing the cases like this is clear. First, it can be used as a background
to select an appropriate imputation algorithm. Second, this knowledge helps to build a
reasonable simulator that can eliminate missing values [18]. In addition to these cases,
there were many cases where missing values occurred, but the four most frequent cases
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were selected. It is also necessary to consider additional situations, such as the occurrence
of missing values due to human error or power supply.

2.4. Missing Value Imputation by Single Model

The method of imputation was divided into univariate imputation using time depen-
dence, and multivariate imputation using the correlation between variables. In addition,
the methods that were mainly used in each method are the traditional methods, because
the existing models are reliable, fast, and uncomplicated [37].

2.4.1. Imputation in Univariate Data

Univariate time series data form a sequence of single observations at successive
timepoints. Although usually considered a column of observations, time is actually an
implicit variable [18]. The methods used in this section were replacement methods using
time dependency. Therefore, as shown in Figure 9, the value of the autocorrelation function
(ACF) exceeded the upper limit, so there was an autocorrelation.
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The method of univariate imputation used here was as follows:

1. Linear interpolation: To estimate the missing value, the value of both endpoints was
used to linearly estimate the missing value, according to the linear distance. LI was
used to improve missing value replacement performance in the field of genotype
replacement and machine translation [38,39].

2. Spline interpolation: Estimate missing values, using low-order polynomials, by di-
viding them into subintervals. This is also used to replace solar data and is being
developed as a method for a distributed data modeling called thin-plate spline inter-
polation [40,41].

3. Last observation carried forward imputation (LOCF): Estimate missing values using
data gathered just before the occurrence of missing values. This method is often used
in longitudinal studies.

4. Moving average imputation: Estimate the missing value as the average of a window
of a certain size around the missing value. This technique is mainly used for time
series data.

5. Kalman imputation: Estimate missing values using Kalman smoothing. There was
also a recent study on the treatment of missing values for local climate informa-
tion [42].

2.4.2. Imputation in Multivariate Data

Multivariate data are data with multiple independent variables. The methods used in
this part were substitution methods, using dependencies between variables. Therefore, in
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our experimental data, we first examined the correlation between the variables using the
Pearson correlation coefficient.

As shown in Figure 10, it is possible to identify environmental substances with strong
correlations. For example, in environmental sensor data, there are high correlations, such
as CO-temperature, NO2-temperature, CO2-TVOC, and NO2-CO. Before multivariate im-
putation was performed for each variable, feature selection was performed with variables
showing a high correlation. This was because imputation with variables with clear correla-
tions would be more effective than including all 10 variables in multivariate imputation.
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The method of multivariate imputation used in this case was as follows:

1. K-NN imputation: The imputation of missing values using the k-values closest to the
missing values. Based on this technique, a number of new, modified missing value
imputation methods are emerging [43].

2. Multiple linear regression: Fitting a multiple linear regression model and replacing
missing values using this. This is used in the imputation method of missing values to
measure pollution concentration and air quality [44].

3. Random forest regression: Replacing missing values using the average predictions
of multiple decision trees. Similar to K-NN, there are many new, modified missing
value imputation methods based on random forest regression [45].

4. Support vector regression: A method using a support vector machine, which is used
to replace missing values.

5. Miss forest: This is a random forest-based model, which is used to replace missing
values. It can be used universally, regardless of continuous, categorical, or complex
interactions and non-linear relationships [46].

2.5. Ensemble Learning Method

In this paper, we propose a statistical technique and a machine learning technique,
respectively, as ensemble methods to consider the univariate imputation and multivariate
imputation methods at the same time. A weighted average method that is easy to use and
has a fast calculation speed was used as a statistical technique. A stacking method that
predicts the final result, by building a prediction model using the result predicted by each
substitution method, is used as a machine learning technique.

2.5.1. Weighted Average Method

The weighted average is one of the simple combination methods used in the ensemble
method [47]. A weighted average was set by setting weights, and a proposal was made
as a final result. High weights were given to methods with good performances, and
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low weights were set for methods with relatively poor performances. Weights were set in
inverse proportion to the evaluation methods (MAE, RMSE) obtained from each imputation
method. Equation (1) shows the result (ŷ) that was obtained after introducing the weighted
average algorithm.

ŷ =
e2

e1 + e2
ŷ1 +

e1

e1 + e2
ŷ2 (1)

In this case, ŷ is the final result prediction vector, and ŷ1 and ŷ2 are the predicted result
vectors in univariate imputation and multivariate imputation. e1 is the evaluation result
value derived from univariate imputation and e2 indicates the evaluation result value,
derived from multivariate imputation.

2.5.2. Stacking Method

The stacking method is a machine learning technique of the ensemble techniques used,
along with bagging and boosting techniques, to make another prediction based on the
data predicted by individual algorithms. This model considers the predictions of the base
learner as new data, and trains them as a meta-learner, which helps to obtain more accurate
predictions of the dataset [48]. A variety of base learner models can be applied to form a
stacking model, and we chose the univariate imputation technique and the multivariate
imputation technique for the base learner model. The basic performance of our stacking
algorithm can be seen in Figure 11.
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As can be seen in Figure 11, the original data for 10 types of environmental substances
entered the base learner’s input variable. The base-learner consisted of the models used in
Sections 2.4.1 and 2.4.2. Thereafter, one of the five techniques of univariate imputation was
selected to collect the missing value replacement values predicted by this technique. Multi-
variate imputation similarly collects the substitution value of one of the five techniques.
When collecting environmental sensor data, data on the reference device was also collected,
which was used as label data in the process of training the meta-learner. In conclusion, the
substitution value for each technique in univariate and multivariate imputation and the
sensor value in the reference device were integrated to enter the input variable (Mx3) of
the meta-learner. In this case, the size of the input variable varied according to the missing



Sensors 2021, 21, 7595 13 of 22

value ratio. Then, the meta-learner model and the linear regression model were selected
to predict the imputation value of the missing values. The predicted value was finally
compared with the original data.

Algorithm 1 was followed as the stacking algorithm. In this algorithm, D1 and D2
are univariate and multivariate data, respectively. First, D1 and D2 are trained using U,
which is a univariate imputer model used as a base learner, and M, which is a multivariate
imputer model. Re-training is performed using the stacking imputer S, using P1 and P2,
which are the predicted values of the learned data. In this case, R is used, which is a label
in the reference device. In conclusion, the final predicted value, P3, is obtained.

Algorithm 1. Stacking Method.

1: Step 1-1: univariate imputation
2: D1(m×1) = {yi}m

i=1: univariate missing data, U: univariate imputer model
3: P1(m×1) = {ŷi1}m

i=1: imputed by U
4: Step 1-2: multivariate imputation

5: T(n×(p+1)) =
{

yi, xi1, xi2, · · · , xip

}n

i=1
: multivariate data (no missing),

D2(m×p) =
{

xi1, xi2, · · · , xip

}m

i=1
: multivariate missing data,

M: multivariate imputer model
6: M train by T
7: P2(m×1) = {ŷi2}m

i=1: imputed by (M, D2)
8: Step 2: stacking method
9: Sd(m×2) = {ŷi1, ŷi2}m

i=1: stack P1 and P2, S: stacking imputer,
R(m×1) = {Yi}m

i=1: reference data
10: S train by (R, Sd)
11: P3(m×1) = {ŷi}m

i=1: imputed by S
12: P3: final prediction values

2.6. Evaluation Method

To prove the effect of missing data imputation when applied to environmental sensor
data, the evaluation method was measured with the mean absolute error (MAE) and the
root mean square error (RMSE). MAE and RMSE are the most widely used evaluation
methods for the imputation of missing values [49–52]. The formulas for these methods are
shown in Table 3.

Table 3. Evaluation method.

Evaluation Method Equation Perfect Score Data Distribution

Mean Absolute Error (MAE) MAE = 1
n ∑n

i=1|xi − x̂i| 0 Uniform distribution
Root Mean Square Error (RMSE) RMSE =

√
1
n ∑n

i=1|xi − x̂i|2 0 Normal distribution

In this case, xi is the actual value of the environmental sensor data, x̂i is the imputed
value of the environmental sensor data, and n is the number of samples. When using
RMSE, missing values are not biased and are used when the distribution is normal. On
the other hand, MAE is suitable for evaluating uniformly distributed missing values [24].
Unlike MAE, RMSE gives a large penalty for values with a large error. These two methods
performed different evaluations according to the distribution of and errors in the data. In
this experiment, four cases of missing values were set. At this time, missing values were
distributed differently for each case. Therefore, the distribution of errors was also expected
to be different for each case. Therefore, by checking the MAE and RMSE at the same time,
we could compare the performance regardless of the distribution of various errors by case.
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3. Results

When using the ensemble model, a total of 25 cases were confirmed by introducing
one technique each from 5 univariate techniques and 5 multivariate techniques. Among
them, when comparing the existing model and the proposed model, the model with the
best performance in the existing model was selected and compared.

3.1. Differences between Models According to Evaluation Method

Among the 10 environmental substances measured by the environmental sensor
device, CO2 was mainly used in the results. Other environmental substances showed
similar results, and CO2, which showed the clearest result, was selected. As mentioned in
Section 2.6, the RMSE evaluation method showed a greater penalty for errors that deviated
significantly from the MAE method. Through this, we tried to judge the characteristics of
the model considering both MAE and RMSE. If the RMSE value was higher than the MAE
value, this suggested that a large error has occurred for a specific missing value. Figure 12
is a graph showing the MAE and RMSE values of each technique, with a missing rate of
15%, and each of the four CO2 situations. As shown in Figure 12, univariate imputation,
multivariate imputation, and weighted average methods show that the RMSE value tended
to rise compared with the MAE value. On the other hand, the stacking method does not
show a tendency to increase the RMSE value compared with the MAE value. It can be
seen that stacking does not cause a large error. Looking at Figure 12a, when un ivariate
imputation was applied, the MAE value was 31.59 and the RMSE was measured to be 71.51.
When multivariate imputation was applied, the MAE was 48.36 and RMSE was 81.46, and
when a weighted average was used, MAE was 27.70 and RMSE was 58.78. On the other
hand, when stacking was used, the MAE was 31.92 and RMSE was 31.31; therefore, it can
be confirmed that RMSE derives similar values to MAE, unlike the above three methods.
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The error distribution for the four cases can be checked in Figure 13. There was a
large error in models, except for the stacking, and the distribution of errors in stacking
was more stable than in other models. This means that the stacking method showed no
significant deviations from the existing value, and it can be expected that the RMSE of the
stacking method will not soon increase with respect to MAE. This can be confirmed from
the stacking distribution of (a), (b), (c), and (d) of Figure 13.
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3.2. Performance Comparison between Models

First, the target variable was set as CO2 from 10 types of environmental substances,
and RMSE was set as the evaluation method. We aimed to compare the performance of
different models according to the occurrence of missing values. In addition, the model’s
performance was checked by varying the missing rate in to see the numerical values that
affected the model, according to the missing rate. Assuming that the missing rates were
5, 10, 15, 20, 25, and 30%, we checked whether our ensemble method was suitable for
use in diverse missing situations. As can be seen in Figure 14, it was confirmed that the
missing rate in the four cases did not significantly affect the performance between models.
In other words, it can be seen that the ensemble model performs better than the univariate
imputation model and the multivariate imputation model, which are existing models, even
if the missing rate changes. Looking at (a), (b), (c), and (d) in Figure 14, stacking performed
the best regardless of the missing value case. The model using the weighted average
performed better than the conventional method in Figure 14a, but slightly better than the
multivariate imputation model in Figure 14b,c, and slightly worse than the multivariate
imputation model in Figure 14d.
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Figure 15 shows the imputation figure for the occurrence of four cases. Figure 15
shows the 10% missing rate for CO2, and shows a graph connected by a dotted line,
based on the missing values imputed by each technique. In the sensor error cases shown in
Figure 15c,d, it is easier to see that the weighted average and stacking imputation follow the
existing graph well. As shown in Figure 15c, it can be seen that univariate and multivariate
imputation replaced the outliers from the existing graph, while weighted average and
stacking follow the existing graph. In particular, in Figure 15d, it can be seen that the
stacking technique learns using the numerical values of the reference device, so it can be
seen that the missing values are better predicted for the existing data.

Table 4 shows the RMSE evaluation result for CO2, and the missing rate was set as 10%.
The final prediction, derived from a weighted average chosen from the ensemble methods,
was better than or similar to the two methods of univariate and multivariate imputation,
and it was confirmed that the performance was somewhat lower in the measurement range
case compared with the sensor errors. On the other hand, when the stacking method
was chosen from the ensemble methods, it can be seen that, in all four cases, the RMSE
performance was better than the rest of the models.

Table 4. Comparison of RMSE between existing model and proposed model, according to the missing value occurrence case
for CO2, with missing rate 10%.

Case
Existing Model Proposed Model

Univariate Multivariate Weighted Average Stacking

Communication error (aperiodic) 71.51 63.57 40.48 23.00
Communication error (periodic) 106.73 59.52 56.82 42.33

Sensor error (rapid change) 348.51 173.37 165.97 88.53
Sensor error (measurement range) 515.92 255.14 298.88 124.31
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Table 5 shows the model execution time for CO2, and the missing rate was set to 10%.
The execution time of the existing model is the average execution time for 5 techniques,
and the proposed model is the average execution time for 25 combinations. There seems
to be no significant difference in execution time for each case. Comparing the existing
model with the proposed model, since the proposed model performs additional work after
executing two existing models, a longer execution time is required compared with the
existing model. However, the complexity of the model does not seem to be a big problem
as the time does not differ significantly compared to the existing model. In the proposed
model, the time in parentheses means the time it takes to do additional work.

Table 5. Comparison of average execution time between existing model and proposed model, according to the missing
value occurrence case for CO2, with missing rate 10%.

Case
Existing Model Proposed Model

Univariate (A) Multivariate (B) Weighted Average (C)
(C-A-B) Stacking (D) (D-A-B)

Communication error (aperiodic) 0.009 0.814
0.847 0.836

(0.024) (0.013)

Communication error (periodic) 0.009 0.814
0.837 0.842

(0.014) (0.019)

Sensor error (rapid change) 0.009 0.808
0.840 0.831

(0.023) (0.014)

Sensor error (measurement range) 0.008 0.807
0.826 0.836

(0.011) (0.021)

4. Discussion

When a missing value occurred in the environmental sensor, an ensemble imputation
method was conducted according to the appropriate case. As mentioned in Section 2.3,
we assumed the existence of four cases. This was derived from last year’s environmental
sensor data measurement, and the four most frequently occurring cases were selected. In
addition to this, several cases can be added for cases where missing values occur. Examples
include limitations in data collection and human error in the storage process [5,10]. In this
technique, errors in communication were divided only into errors in period. However, not
only periodicity, but also various errors, were detected for communication error situations.
For example, if one sensor causes a communication error on a device, other sensors are
affected, or once a communication error occurs, successive transmission failure leads to a
burst of losses. In order to develop such a more advanced technique, it is necessary to add
and subdivide cases that actually occur for communication errors.

In the sensor error (measurement range) case of Table 4, the RMSE performance of the
weighted average tended to be poorer than that of the other three cases. In the measurement
range case, since a certain sensor range is set and values that surpass this were judged
as missing, both univariate and multivariate imputation models tended to underpredict
compared with the original missing value. However, since the weighted average was an
ensemble technique that averaged the univariate and multivariate models by weighting
them without a separate training process, it was difficult to derive a value close to the
actual value. Therefore, as shown in Section 3.2, it can be seen that the weighted average
model performed poorly for multivariate imputation in the measurement range case.

When retraining with the meta-learner, while performing the stacking method, we
also considered which value should be set as a label. Unlike this study, if missing values
occur in real devices, there is no label value. Therefore, there is a problem in training
the stacking model at this time. We solved this problem through two devices, whose
linearity was confirmed when setting the sensor. The time series data of the corresponding
variable were obtained from a device with no missing values, and the ensemble method
was introduced in the device with missing values. If a sufficient number of missing sample
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values are learned in the device setting process, it is expected that missing values will be
properly replaced, even when missing values actually occur. This also solves the universal
problem of not being able to evaluate the replacement technique when applied to a real
device.

When operating an actual sensor, it is also necessary to consider whether the proposed
technique will be effective even in dynamically changing situations. In the actual environ-
ment, unexpected problems occur, such as continuous missing values for a certain period
of time, as shown in Figure 5. In order to introduce this technique in actual sensors, such
cases should be further subdivided and added to further strengthen the natural induction
of the correct replacement technique. In addition, if data is accumulated and learned for
sufficient time in a situation where missing is minimized, missing values can be replaced
well, even in situations that become dynamic in the future.

The ensemble method involves the application of the model based on the predicted or
evaluated values of the existing univariate and multivariate imputation models. Therefore,
we have no choice but to rely on the performance of univariate and multivariate imputation,
which means that the performance of a single model should support the method. In other
words, in order to increase the performance of the stacking algorithm, it is necessary to
improve the performance of univariate and multivariate imputation first. This problem
can be solved by boosting performance in our systematic confrontation process using the
latest high-performance techniques, rather than universal techniques.

5. Conclusions

Interest in the environment is growing and the reliability of environmental sensors
that can measure it has been emphasized. In the process of collecting sensor data, some
data may be lost, and it is important to deal with these missing values accordingly. Various
methods of handling missing values are being studied, but a new method is needed for the
more accurate replacement of missing values that can be applied to environmental sensors.
In the experiment, a new ensemble method that considers time dependence and correlation
with other environmental substances was proposed.

In this study, we first created four cases in which missing values can occur in envi-
ronmental sensors. For each situation, five traditional univariate imputation techniques
and five multivariate imputation techniques were applied. Then, weighted average and
stacking models were applied to the ensemble methods, based on the missing values were
predicted by each model. After that, we checked the difference between the actual value
and our predicted missing value, shown through MAE and RMSE. In this process, the
missing rates (5, 10, 15, 20, 25, and 30%) were changed to determine whether our ensemble
method was effective in various situations. The experiment was conducted based on CO2,
chosen from 10 environmental substances. As shown in Section 3.2, when the missing
rate is 10%, it could be seen that the stacking performance of the ensemble method was
measured more accurately than the other three models. It showed a good performance
in all four cases. In addition to this, it was confirmed that the stacking method had the
best performance among the ensemble methods, and the weighted average showed a good
performance, even when the missing rate was changed. As well as CO2, the ensemble
method was used for 10 types of sensor data to determine whether a good performance
could be derived for other environmental materials.

The most significant element to emphasize concerning the proposed technique is its
usability. This technique can be applied to all sensors using multivariate among time series
data. We tried to implement a lightweight, yet easy-to-implement, technique by using
the most common techniques in replacing missing values as base learners of ensemble
techniques. In addition, the base learner does not influence which technique is included;
therefore, it is a simplified algorithm that does not have a problem using the latest technique
for the base learner.

In addition, existing papers have not divided the situation in which missing values
occur when implementing an algorithm for missing value replacement. Usually, the
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existing papers were conducted only by changing the missing rate. However, we have
divided the situation in which missing values occur into four cases and established a
countermeasure against errors that actually occur frequently. These cases can be added
at any time, and by establishing a countermeasure against these cases, there is a process
of recommending and introducing appropriate confrontation techniques when missing
occurs.

The imputation of such missing values is required not only in environmental sensors,
but also in various fields such as the smart city. When missing values occur in the envi-
ronmental sensor, our new ensemble method that considers the time dependence and the
correlation between variables can be significantly contributed.
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