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Abstract: Evaluation of the initial stability of implants is essential to reduce the number of implant
failures of pedicle screws after orthopedic surgeries. Laser resonance frequency analysis (L-RFA)
has been recently proposed as a viable diagnostic scheme in this regard. In a previous study, L-RFA
was used to demonstrate the diagnosis of implant stability of monoaxial screws with a fixed head.
However, polyaxial screws with movable heads are also frequently used in practice. In this paper,
we clarify the characteristics of the laser-induced vibrational spectra of polyaxial screws which are
required for making L-RFA diagnoses of implant stability. In addition, a novel analysis scheme of a
vibrational spectrum using L-RFA based on machine learning is demonstrated and proposed. The
proposed machine learning-based diagnosis method demonstrates a highly accurate prediction of
implant stability (peak torque) for polyaxial pedicle screws. This achievement will contribute an
important analytical method for implant stability diagnosis using L-RFA for implants with moving
parts and shapes used in various clinical situations.

Keywords: orthopedics; pedicle screw; stability diagnosis; laser resonance frequency analysis

1. Introduction

With an aging population, the surgical use of orthopedic implants, such as pedicle
screws [1,2] and acetabular cups, has increased. In spine surgery, implant failure within
six months has become a serious problem, with an incidence as high as approximately
12% [3] and a reported reoperation rate of 40% [4]. In this regard, evaluation of the initial
fixation of the implant (implant stability) as a factor that contributes to loosening of screws
is essential to prevent implant failure [5,6]. Currently, parameters such as the pull-out
force [7] and insertion torque [5,8] are used to evaluate implant stability. The pull-out force
test has the limitation of being a destructive laboratory-based test that cannot be used in
clinical practice. In contrast, insertion torque can be measured clinically, but only once at
the time of insertion, and is affected by subjective factors attributable to each surgeon, such
as the speed of insertion and the amount of force applied in the direction of insertion.

Recently, laser resonance frequency analysis (L-RFA) has been demonstrated as a
viable method for evaluating implant stability for pedicle screws [9,10] and acetabular
cups [11]. L-RFA was developed to replace hammer testing for civil structures using remote
laser sensing technology [12,13]. In a hammer test, the condition of an evaluation sample
is determined using the vibrations produced by active excitation and by an inspector’s
judgement based on auditory perception of the sound propagated through air. In tunnel
inspection, the hammer test is used to inspect for defects inside the concrete wall and
to find loose anchorage bolts. L-RFA involves inducing vibration by laser ablation or
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thermoelastic waves [14], and measuring and analyzing the induced vibration using a laser
Doppler vibrometer or an acceleration sensor to realize high-speed, remote, and quantita-
tive inspection. Photoacoustic imaging (PAI) using ultrasonic waves generated by laser
pulse irradiation has been applied in diagnostic applications, and various developments in
this regard have been carried out globally [15]. However, L-RFA focuses on vibrations in
audible sound frequency that exist as natural frequencies of evaluated materials. Although
laser Doppler vibrometry is relatively expensive, wearable blood flow meters have been
reported [16] in recent years, and the technology is expected to be adopted more widely
in future.

A diagnosis scheme using RFA frequency was proposed in 1932 [17] and has been
studied by several researchers. To date, RFA without laser technology has only been
applied medically to dental implants; Osstell ISQ (Osstell) has been used as RFA for dental
implants by vibrating the implant with magnetic pulses [18–23]. The results are displayed
as a unique parameter, the Implant Stability Quotient (ISQ), which ranges from 0 (lowest
level of stability) to 100 (highest level of stability). The measured frequency is about
3000 Hz with an ISQ value of 0 and about 8000 Hz with an ISQ value of 100 [20]. There
are several laboratory and in vivo studies of noninvasive measurement of implant stability
in orthopedics [24–31]. Despite many studies, no methods have been available for use
in clinical orthopedic practice. These conventional methods have limitations, requiring
complex procedures and huge systems involving vibrators and accelerometers, and could
not be used clinically as quantitative methods.

Previous studies on L-RFA in orthopedic implants have evaluated the correlation
between implant stability and vibration frequency, which is defined by the highest peak in
the vibration spectrum obtained by fast Fourier transform (FFT) analysis (peak frequency).
In the index of implant stability, the insertion torque was used for pedicle screws and
the pull-down force was used for acetabular cups. The peak frequency refers to a natural
frequency, which is determined by the geometry, Young’s modulus, and density of the
evaluated sample. It has been found that the peak frequency obtained by L-RFA increases
with increasing implant stability [9–11]. This demonstration is a milestone in the diagnosis
of orthopedic implant stability. However, the pedicle screws in the previous studies were
of a monoaxial type, in which the pedicle screw has no moving parts, and there was
no mention of polyaxial pedicle screws with a movable head part. Polyaxial pedicle
screws are also frequently used in clinical settings. The movable head part of the polyaxial
pedicle screw influences natural frequency mode and frequency. Therefore, for the clinical
introduction of L-RFA, it is essential to determine the influence of the movable head part.

In this paper, we evaluated L-RFA diagnosis for polyaxial screws to reveal the char-
acteristics of laser-induced vibration. From the obtained results, we clarified the complex
vibration specific to polyaxial screws and evaluated the correlation between the conven-
tional peak frequency and insertion torque. A novel machine learning-based analysis
scheme for highly accurate diagnosis of implant stability is proposed. The analysis result
was predicted implant stability of polyaxial screw, which has not been verified before, and
this is demonstrated to have a high accuracy.

2. L-RFA Testing for Polyaxial Pedicle Screw

In Section 2, we characterize the results of L-RFA evaluation of polyaxial pedicle
screws. Section 1 describes the details of an experiment for L-RFA. Section 2 shows the
characteristics of the vibration spectra affected by the moving head part obtained from the
measurement results, and Section 3 clarifies the correlation between the vibration frequency
and the insertion torque, which is necessary to diagnose the implant stability.

2.1. Experimental Setup and Sample

Figure 1 shows the experimental setup for L-RFA evaluation of polyaxial pedicle
screws. A Q-switched Nd:YAG laser with a 1064-nm wavelength and 10-ns pulse width
(Dawa-300, Beamtech Optronics Co. Ltd., Beijing, China) was used to induce vibration in
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an experimental sample. The laser pulse energy was adjusted to 100 mJ by Q-switch timing
using a digital delay generator (DG645, Stanford Research Systems Inc., Sunnyvale, CA,
USA). The laser pulse was focused using a focusing lens (focal length f = 100 mm), and
the spot size was 250 µm in diameter, defined as 1/e2 values from the peak values of the
Gaussian fitting for the beam profile, where e is Napier’s constant. The impact laser pulse
was operated at a repetition rate of 10 Hz. A laser Doppler vibrometer (VibroOne, polytec
GmbH, Yokohama, Japan) was used as the detection laser for the measurement of the
induced vibration. The laser Doppler vibrometer measures the resonant vibrations induced
by laser irradiation, which are determined by the mechanical properties and shape of the
implant. Therefore, the measured frequency is constant regardless of the measurement
direction. On the other hand, the obtained vibration intensity varies depending on the
measurement direction. In this study, the effect is neglected by using the same irradiation
conditions for all evaluated samples. The laser-induced vibration is very small, on the
order of sub-micrometers in displacement. Laser Doppler vibrometers detect vibrations
at the focal point of the measurement laser on the order of nanometers and can measure
resonant vibrations with high accuracy. In this study, the experimental setup was installed
on an optical bread board, and the measurement is not affected by noise originating from
the measurement environment. As for the application in the clinical situation, handheld
pen-type measurement devices have been discussed in a previous study [9]. The irradiation
spot size of the detection laser was approximately 150 µm in diameter. Both lasers were
irradiated on the neck of the pedicle screw sample with a 1-mm distance of center for
each irradiation laser spot. The vibration signal from the detection laser system was
monitored using a data logger (GL7000Plus, Graphtec Co., Yokohama, Japan) with a
0.1-MHz sampling rate and 0.2-Mpoint sampling. This was synchronized with the timing
of laser pulse irradiation (Q-switch timing) and data were saved for 2 s, that is, data for
20 pulse irradiations. The obtained signal included laser-induced vibrations with 20 laser
pulses divided into individual pulse irradiations and averaged with all divided data. Data
acquired until 2 ms after laser irradiation among the analysis data were purged to obtain a
clear signal of the low-order natural frequencies. With a short period of impact, a laser pulse
width (10 ns) has the potential to induce a broad spectrum of vibrations until ultrasonic
vibration (~MHz). Finally, the purged analysis data were analyzed using FFT to obtain a
frequency spectrum with a rectangular window function.
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Figure 1. Experimental setup for L-RFA testing.

We used polyaxial pedicle screws (701M5535 and 701M6540, Zimmer Biomet) of
titanium alloy (Ti-6Al-4V) with lengths of 35 mm and 40 mm and outer threaded diameters
of 5.5 mm and 6.5 mm, as shown in Figure 2a. Using an awl, we made a small hole in
the target area where an artificial bone was to be inserted at the center of the material.
Before insertion, a 2 mm drill bit was used to drill a pilot hole in the material. Then,
tapping was performed with a diameter of 1 mm. The pedicle screw was inserted, and the
root of the screw was left at 5 mm depth. Insertion of the screw head should be avoided
until it comes into contact between the bone and the flange. The screw head causes bone
destruction and reduces the fixation force [32]. Therefore, the technique used in our study
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did not allow the screw head to come into contact with the specimen, which is similar
to the situation in practical clinical settings. All screws were inserted at the same depth
using a consistent depth gauge. Subsequently, detailed implant stability measurements
using insertion torque procedures were performed, as previously described [33]. Four
types of solid rigid polyurethane forms (biomechanical test materials, SAWBONES, Pacific
Research Laboratory, Inc.) were prepared as biomechanical material to represent the diverse
human vertebrae, as shown in Figure 2b. The densities of the artificial bones were 10 pcf
(0.16 g/cm3), 15 pcf (0.24 g/cm3), 20 pcf (0.32 g/cm3), and 30 pcf (0.48 g/cm3). These
densities of the artificial bones can cover human cancellous and cortical bones. They were
stacked 40 mm × 35 mm × 60 mm and conformed to the American Society for Testing and
Materials (ASTM) standard. In this study, different artificial bones were used to obtain
different insertion torques. The densities of the artificial bones used in each of the total
57 times L-RFA measurements were 10, 15, 24, and 26 times for 10, 15, 20, and 30 pcf,
respectively. A digital torque gauge (HTGA-5N, IMADA Co. Ltd., Toyohashi, Japan) was
used to measure the insertion torque. The specifications of this torque gauge were as
follows: accuracy = ±0.5% full-scale ± one digit, and sampling rate = 2000 data/s. We
measured the insertion torque (Nm) while advancing the screw into the artificial bone, and
it was reported to progressively increase with an increase in the number of penetrating
screw threads as the screw advanced. Thus, maximum torque was achieved when the
screw was inserted to the appropriate length. The surgeon felt the maximum torque to be
the strength of the screw fixation, defined as the peak torque [33–35]. However, since the
torque varies depending on the speed of fastening and the length of implantation (distance
between implant head and bone), it depends on the surgeon and is difficult to obtain a
stable value.
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Figure 2. Experimental sample: (a) polyaxial pedicle screw, (b) artificial bone.

2.2. Influence of Screw Head Mobility of Polyaxial Pedicle Screws

In order to reveal the influence of the movable head in a polyaxial screw on laser-
induced vibration, the head was intentionally tilted in different directions and L-RFA
was conducted. Figure 3 shows the tilt directions of the four tilting types of heads:
(a) center position, (b) horizontal tilt, (c) vertical tilt, and (d) skew tilt, were each evaluated.
We defined the center position as the situation when the movable head stands in the per-
pendicular direction, the horizontal tilt as the situation when it is tilted coaxially with the
laser irradiation direction, the vertical tilt as the situation when it is tilted perpendicular
to the laser irradiation direction axis, and the skew tilt as the situation when it is tilted
diagonally. Figure 4 shows the vibration frequency spectra of a polyaxial pedicle screw at
different head directions, in different tilting types: (a) center position, (b) horizontal tilt,
(c) vertical tilt, and (d) skew tilt, with a diameter of 6.5 mm, length of 40 mm, set in a 15 pcf
artificial bone at 1.05 Nm insertion torque. When the head was in the center position, a
frequency peak appeared at approximately 6740 Hz. When the head was tilted, the peak
vibration frequency was decreased for the horizontal tilt and increased for the vertical tilt.
In the case of skew tilt, an intermediate trend was indicated between the horizontal and
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vertical positions. Additionally, as a troubling characteristic of the polyaxial screw, Figure 5
shows the variation in the laser-induced spectra at skew tilt when tilted repeatedly. It is
clear from the figure that the L-RFA results do not have the same spectrum at the same
skew tilt. These results show that the movable head of the polyaxial pedicle screw affects
the laser-induced vibration spectrum. This effect on the spectrum can be attributed to three
factors: first, the tilt direction influences the center of gravity of the polyaxial pedicle screw
and affects the shape of natural modes. Second, a change in the tilt direction of the head
leads to a change in the overall shape of the polyaxial pedicle screw, which causes a change
in natural frequency. Third, the shape of the polyaxial pedicle screw head does not have an
exact circular head for the placement of a fixation rod. Therefore, it is difficult to obtain
a constant tilt condition because of the complex shape. These three factors are difficult
to control with the surgical technique making the performance impractical to use L-RFA
in clinical settings. In other words, it is essential to obtain an analytical method that can
evaluate implant stability from spectra measured at random head orientations of polyaxial
pedicle screws.
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2.3. Relationship between Insertion Torque and Natural Frequency in Polyaxial Pedicle Screws

Figure 6 shows the results of the correlation between the peak frequency and the peak
torque of a polyaxial screw with a diameter of 5.5 mm and a length of 35 mm, with a
random tilt direction of the movable head. A similar trend to that of previous studies in
which the peak frequency was increased with increasing peak torque was obtained, but
the variability in the data was very large. This can be seen from the fact that the coefficient
of determination for the logarithmic fitting of the monoaxial screw in the previous study
was R2 = 0.867 [10], while the coefficient of determination for the logarithmic fitting of
the results in Figure 6 was lower (R2 = 0.301). In clinical practice, it is assumed that the
results of L-RFA measured intraoperatively will be converted to implantation torque by
substituting the pre-determined logarithmic approximation formula. This results in an
error of approximately ±1000 Hz even for the same peak implantation torque; furthermore,
if the L-RFA results are obtained at 5000 Hz, the implantation torque could range from
0.5 Nm to 6.8 Nm, making it impossible to make a reliable diagnosis.
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3. Machine Learning-Based Diagnosis for L-RFA

In Section 3, we explain and demonstrate the machine learning-based diagnosis of
pedicle screws. Section 1 describes the details of proposed analysis scheme using machine
learning. Section 2 shows analysis results with previously experimental result using
monoaxial screw to characterize of the proposed scheme, and Section 3 describes the
demonstration for the polyaxial pedicle screw described in Section 2.

3.1. Analysis Scheme with Machine Learning

To address the technical difficulty faced with polyaxial pedicle screws in L-RFA, we
adapted machine learning to diagnose implant stability, that is, peak torque, which was
previously evaluated by focusing only on the peak vibration frequency. Figure 7 shows the
installation of the machine learning scheme in the analysis flowchart. In the L-RFA analysis
process, the obtained time-domain vibration waveform (i.e., the voltage signal from the
laser Doppler vibrometer) is converted into a frequency-domain vibration spectrum via
FFT analysis. The frequency with the most potent vibration is extracted from the laser-
induced vibration frequency spectrum in the conventional method. Then, the correlation
with the insertion torque, which is an implant stability index, is obtained by logarithmic
approximation. This study developed an analytical method that can obtain implant stability
with high accuracy by introducing a machine learning-based analysis scheme as part of
the analytical process. In general, deep learning requires a large amount of high-quality
training data. However, insufficient training data is a limiting factor because it is impossible
to acquire data repeatedly in a clinical situation. Therefore, it was essential to consider a
machine learning scheme that can be expected to have high accuracy even with a small
amount of training data.
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Our proposed machine learning-based analysis process was constructed using two
schemes. The first scheme introduces Lasso [36,37] as an explanatory variable selection
method. Previously, the correlation was evaluated by a logarithmic approximation of
the peak torque using an individual peak frequency in a limited frequency range in the
spectrum. In the vibration frequency spectrum, many explanatory variables, such as its
intensity and variance, are spread over the entire measurement frequency band. Therefore,
it is possible to divide the frequency band in which the analysis is conducted and extract
each explanatory variable for each range. However, a regression estimation with many
unnecessary explanatory variables often leads to low regression accuracy and overlearning.
It is difficult to select only essential variables from many explanatory variables using
manual analysis methods. Lasso is a method used to estimate a sparse linear regression
function by the L1 regularization. Lasso adjusts the coefficients of unnecessary explanatory
variables to zero to avoid overfitting the estimated function for the training dataset. The
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use of linear regression in the variable selection is expected to enable the investigation of
essential parameters for the basic tendency that the peak torque increases with an increase
in certain variable parameters, and this led to the suppression of overlearning. In the
proposed method, this Lasso based variable selection is introduced with the bootstrap
method. The bootstrap method was used to generate a large number of samples by
performing data recovery and extraction, random sampling with replacement, to allow
the estimation of the sampling distribution of almost any statistic using random sampling
methods. This helps in improving the accuracy of explanatory variable selection. As
a specific procedure, normalization was performed to flatten the order of explanatory
and objective variables. To determine an adequate regularization parameter, Lasso was
performed 2000 times to extract 40 explanatory variables and determine the regularization
parameter in the best case of a determination coefficient in Lasso regression. Using the
determined regularization strength, the important explanatory variables were ranked by
sorting them in the order of the number of times they were selected.

The second scheme uses support vector regression (SVR) for nonlinear regression.
SVR is an adaptation of a support vector machine (SVM) [38,39], a pattern recognition
method to detect deterioration, and can be adapted to nonlinear problems by incorporating
kernel functions. In this study, we used a Gaussian kernel (RBF kernel), which is known
to be faster than other kernels in terms of computation time and accuracy. As with Lasso,
SVR was normalized to flatten the order of the explanatory and objective variables. The
hyperparameters were determined using grid search for training SVR, and the ranges were
2−20–29 for the epsilon-insensitivity loss function ε, 2−10–210 for the regularization constant
C, and 2−15–29 for the RBF kernel function γ. These hyperparameters were obtained in
the training case with the highest determination coefficient on three-fold cross-validation.
Finally, for the validation of unknown data, the trained SVR was adapted for regression,
and the predicted value of the implant stability (peak torque) was presented.

3.2. Characterization of Machine Learning-Based Diagnosis Method

The L-RFA results were evaluated in a previous study [10] for a monoaxial screw
(CMS05135, Kyocera Medical Corporation) with a length of 45 mm and a diameter of
5.5 mm placed in an artificial bone and were re-analyzed to clarify the effectiveness of
the machine learning-based analysis. Figure 8 shows the laser-induced vibration spectra
measured by L-RFA in the previous study [10]. In this study, eight variables (peak fre-
quency, peak intensity, centroid frequency, centroid intensity, average intensity, dispersion,
kurtosis, and skewness) were extracted in eight frequency ranges (30–150 Hz, 150–500 Hz,
500–1000 Hz, 1000–5000 Hz, 5000–10,000 Hz, 10,000–15,000 Hz, 15,000–20,000 Hz,
30–20,000 Hz), resulting in a total of 64 explanatory variables. Here, the dispersion V,
kurtosis K, and skewness S in each frequency range were calculated with equations:

V =
1
n

n

∑
i=1

(xi − x)2 (1)

K =
n(n + 1)

(n − 1)(n − 2)(n − 3)

n

∑
i=1

(xi − x)4

s4 − 3(n − 1)2

(n − 2)(n − 3)
(2)

S =
n

(n − 1)(n − 2)

n

∑
i=1

(
xi − x

s4

)3
(3)

where, n is the number of data, xi is the intensity of the ith datum, x is average intensity, and
s is standard deviation. The dashed lines in Figure 8 show the frequency range where the
variables were extracted, and the divided range was determined manually so that several
characteristic peaks could be separated. Table 1 shows the explanatory variables extracted
in more than 50% of the samples in trials using Lasso. The regularization parameter was
0.03, the coefficient of determination was 0.289, and the average number of explanatory
variables extracted per trial was 8.4. The most frequently extracted variable in the Lasso
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results was the peak frequency of 1000–5000 Hz, indicating that the same explanatory
variable as in previous studies is the most important. The outcome of using these results
to verify the performance of the machine learning-based diagnosis by SVR using eight
explanatory variables selected by Lasso is shown in Figure 9. Datasets of 31 from the
previous study obtained, which were separated into 30 training datasets and one validation
dataset left out for cross-validation. The validation dataset was assumed as unknown
data to predict the implant stability, that is, the peak torque. This is intended for clinical
applications where measured anonymous data are fed into a learning model. The blue plot
inevitably outputs exactly the same prediction results as the training data. In contrast, the
red plot shows validation data that were not used for training. When the results of the
validation data, as shown with the red plot, converged with the linear line defined with
equation y = x, represented by the blue plots, a more accurate prediction was observed.
Figure 9 shows the results with different validation data to reveal the characteristics of
the proposed machine learning-based diagnosis method. Figure 9a,f show the analysis
results at the minimum and maximum peak torques. Figure 9b–e show the typical analysis
results in between. From the validation results, two characteristics of the proposed machine
learning-based diagnosis were revealed. First, it is sensitive to extrapolated data. The upper
left and lower right graphs in Figure 9 show the results when the lowest and highest peak
torque results are used as the validation data. It can be seen that the prediction accuracy
of the unknown data outside the training data range is significantly inferior. Second, a
homogeneous and large amount of training data is required. The bottom center graph
shows that the prediction accuracy decreased in areas where the amount of training data
was small, and the plot is sparse, although it was not extrapolated data. In contrast, as
shown in the upper center graph, the prediction accuracy was extremely high when the
plots were dense with a large amount of training data. From Figure 9b–d, it is possible
to predict the results with accuracy within a 20% margin of error in the range of 0.06 Nm
to 3.00 Nm. This indicates that we are able to measure the ambiguous region of implant
stability that cannot be judged by a surgeon in clinical practice as being too weak or strong
enough. The fastening torque of 3 Nm is the standard for M5 bolts specified in Japanese
Industrial Standards. Therefore, since the torque required for industrial bolts has been
obtained, it can be considered that the torque has been measured to a sufficient level.

Table 1. Result of explanatory variable selection by Lasso for monoaxial pedicle screw reported in
the previous study [10]. These explanatory variables extracted more than 50% of the samples of trials.

Number of Selections Frequency Range (Hz) Explanatory Variable

2000 1000–5000 Peak frequency
1618 500–1000 Dispersion
1553 500–1000 Skewness
1510 150–500 Centroid frequency
1490 5000–10,000 Average power

3.3. Demonstration of Diagnosis for Polyaxial Pedicle Screw

The proposed method was subsequently adapted to polyaxial screws, which are
difficult to assess using conventional analysis schemes. Since the resonant frequency
is determined by the mechanical properties and shape, the vibration spectrum to be
measured by L-RFA depends on the implant. Therefore, the frequency ranges used in
machine learning-based analysis need to be optimized for each implant. To perform Lasso,
the analysis frequency range was defined manually from the frequency spectrum ob-
tained by L-RFA in six frequency bands for the polyaxial screw: 0–1500 Hz, 1500–6500 Hz,
6500–11,500 Hz, 11,500–15,000 Hz, 15,000–25,000 Hz, and 0–25,000 Hz. The same eight
variables as for the monoaxial screw were used; thus, a total of 48 explanatory variables
were prepared. The explanatory variables extracted more than 50% of the samples in trial
using Lasso results are shown in Table 2. The average number of extracted variables was
8.3 at a regularization strength of 0.03, and the maximum coefficient of determination
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was 0.269, which is the same as that of the monoaxial screw. In contrast, in the polyax-
ial screw, the number of explanatory variables extracted more than 1000 times was four,
which is less than that of the monoaxial screw. Additionally, the maximum number of
selected explanatory variables was lower (1455) than that for the monoaxial screw (2000).
Thus, compared to monoaxial screws, polyaxial screws are less concentrated on certain
explanatory variables and are more difficult to explain with a few distinct variables. The
frequency range of the selected variables includes values greater than 10,000 Hz, which is
not important for the monoaxial screw, indicating that the influence of the moving head
extends over the entire analysis frequency range. This may be due to the fact that the
vibration frequency spectrum obtained from the laser-induced vibration changed several
explanatory variables owing to the influence of the head moving part of the polyaxial
screw, resulting in fluctuations that appear as if they were random. However, as shown
in the vibration frequency spectra in Figures 4 and 5, it should be noted that the noise
components are not completely random, as represented by white noise, and cannot be
easily removed manually.
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(e) 4.395 Nm, and (f) 5.038 Nm.

Table 2. Results of explanatory variable selection by Lasso for polyaxial pedicle screws. These
explanatory variables extracted more than 50% of the samples in the trial using Lasso.

Number of Selections Frequency Range (Hz) Explanatory Variable

1455 1500–6500 Peak frequency
1388 1500–6500 Centroid frequency
1344 0–25,000 Skewness
1290 0–25,000 Centroid frequency

We next discuss the results of Lasso in SVR. To verify the effectiveness of SVR, we
performed cross-validation, in which we split the data to train and verify each other.
Figure 10a shows the classification of the 56 plots in Figure 6 into three folds. Fold 1,
including the minimum and maximum peak torque data, was used as training data to
prevent the analysis of extrapolated data. For the other data, we sorted the data in the
order of peak torque and prepared data sets with the jth, j + 1st, and j + 2nd data so that the
peak torques contained in each fold are evenly distributed. Figure 10b shows the results of
the cross-validation for Fold 3 data using Fold 1 and Fold 2 as training data. In contrast,
Figure 10c shows Fold 2 data using Fold 1 and Fold 3 as training data. The SVR results were
obtained using 30 variables extracted by Lasso, including a large number of variables with
less than half the number (1000 times) of uses that are not shown in Table 2. In Figure 10b,c,
the solid line indicates the correct value, that is, the measured value equals the predicted
value, while the dashed line indicates the line of ±20% of the correct value. Figure 10b,
which was validated with Fold 3, is the highlight of this study. The prediction accuracy
was very high: 16 out of 18 data points (approximately 89%) fell within the ±20% range,
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with a coefficient of determination R2 of 0.816, a correlation coefficient of 0.964, and an
error of the mean square of 0.00601. The coefficient of determination for this regression is
comparable to the results of logarithmic fitting in a previous study on monoaxial pedicle
screws [10], demonstrating that the same level of regression can be obtained for polyaxial
pedicle screws. It is noteworthy that this prediction performance was achieved with a
limited number of training data (38 points). In addition, even data showing a shallow
peak frequency at a peak torque of approximately 2 Nm, as shown in Figure 10a, could be
analyzed. The proposed diagnosis scheme can provide information on implant stability,
even for measurement data that would be evaluated as false by conventional methods. In
contrast, the accuracy of the Fold 2 data (Figure 10c) was lower than that for the Fold 3
data (Figure 10b), with a coefficient of determination R2 of 0.316, a correlation coefficient
of 0.878, and an error of mean square of 0.0182. Because the dispersion of the Fold 2 data
is larger than that of the Fold 1 and Fold 3 data, it is possible that when Fold 2 data are
used for training data, a better SVR can be provided, but when the Fold 2 data are used for
validation, the diversity brought by the variance is not reflected in training, resulting in
deterioration of the validation results. The three-fold cross-validation revealed features
that affect predictive accuracy depending on the training data characteristics of machine
learning-based analysis. Currently, this machine learning-based diagnosis is a limitation
with respect to usage in clinical situations and needs to be demonstrated in the future.
However, in a previous study using a monoaxial screw, a good correlation between the
implantation torque and L-RFA was obtained not only in the artificial bones but also in
the cadaver bones [10]. This indicates that implant stability diagnosis using the vibration
frequency spectrum obtained from L-RFA is also useful in a clinical situation. In clinical
practice, the results in Figure 10 can be used as training data for Fold 1 to 3 data, as shown
in the discarded cross-validation in Figure 9. Therefore, we can expect the performance as
shown in Figure 10b.
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In machine learning and deep learning, it is essential to use high-quality training data.
As a limitation of the proposed diagnosis scheme, the implant stability evaluation shown in
Figure 10b needs to be improved by accumulating more data. In particular, it is important to
verify diagnostic performance when new conditions are added. For example, the location
where the L-RFA is used is an important factor. Clinical and biological environments
where various devices exist and noise is associated must be considered in the L-RFA
analysis. In addition, it is necessary to optimize the analysis scheme for each type of
implant because of natural frequencies and modes depending on the physical properties
and shape, which are the measurement principles of L-RFA. However, a highly robust
and usable diagnosis scheme can be obtained by accumulating and learning with a high-
quality database in diverse conditions for L-RFA measurement. In this study, to compare
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with the conventional L-RFA analysis method, we performed machine learning-based
analysis using only explanatory variables obtained from laser-induced vibration spectra
and showed good analysis results. Furthermore, in clinical situations, the accuracy can be
improved by clinical data, such as bone density, age, and gender, as explanatory variables.

4. Conclusions

In this study, we evaluated a polyaxial pedicle screw using L-RFA to reveal the
influence of the movable head part on the vibration spectrum. We found that the laser-
induced vibration frequency spectrum of the polyaxial screw was affected by the movement
of the head. In such a situation, the spectrum obtained using the conventional method of
correlation evaluation with a peak frequency in the spectral characteristics is difficult to
analyze. Therefore, we developed a new machine learning-based diagnosis method. This
diagnosis scheme divides the vibration frequency spectrum into multiple frequency ranges
and extracts multiple spectral variables to prepare a large number of explanatory variables.
A large number of explanatory variables were prioritized in terms of importance by Lasso,
and highly accurate nonlinear regression analysis was performed even with a limited
number of training data using SVR. The proposed machine learning-based diagnosis
method demonstrated a highly accurate prediction of implant stability (peak torque) for
polyaxial pedicle screws. Based on the achievement in the previous demonstration using
artificial and cadaver bones with the analysis using only laser-induced vibrational peak
frequency [10], the proposed machine learning-based analysis method has the potential to
be used in clinical situations. Additionally, the experiments in this study were conducted
using artificial bones covering human trabecular and cortical bones. The diagnosis scheme
has the potential to be adapted not only for pedicle screws but also for other orthopedic
implants and fasteners used in industry and architecture. We believe that the results of
this study will prove to be an essential milestone in the practical application of L-RFA for
implant stability diagnosis.
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