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Abstract: Heart rate (HR) is an essential indicator of health in the human body. It measures the
number of times per minute that the heart contracts or beats. An irregular heartbeat can signify a
severe health condition, so monitoring heart rate periodically can help prevent heart complications.
This paper presents a novel wearable sensing approach for remote HR measurement by a compact
resistance-to-microcontroller interface circuit. A heartbeat’s signal can be detected by a Force Sensing
Resistor (FSR) attached to the body near large arteries (such as the carotid or radial), which expand
their area each time the heart expels blood to the body. Depending on how the sensor interfaces with
the subject, the FSR changes its electrical resistance every time a pulse is detected. By placing the FSR
in a direct interface circuit, those resistance variations can be measured directly by a microcontroller
without using either analog processing stages or an analog-to-digital converter. In this kind of
interface, the self-heating of the sensor is avoided, since the FSR does not require any voltage or
bias current. The proposed system has a sampling rate of 50 Sa/s, and an effective resolution of
10 bits (200 mΩ), enough for obtaining well-shaped cardiac signals and heart rate estimations in real
time by the microcontroller. With this approach, the implementation of wearable systems in health
monitoring applications is more feasible.

Keywords: wearable health monitoring; resistance-to-time interface circuit; force-sensing resistor;
direct microcontroller interface circuit; heart rate measurement

1. Introduction

Health monitoring parameters (such as heart and respiration rate) measured by non-
invasive sensing methods have been the object of study over the past decades [1]. In recent
years, portable personal monitoring systems or wearable systems have been developed for
monitoring the current state of a patient’s health in everyday situations [2]. In the same
way, methods for detecting physiological parameters have been designed by implementing
monitoring systems in objects of daily use, such as a bed, a toilet seat, a computer mouse,
or an electronic weight, to name a few. Furthermore, the integration of the Internet of
Things (IoT) into healthcare has led to intelligent applications such as remote healthcare
and intelligent healthcare monitoring systems.

Detecting cardiorespiratory signals using electromechanical sensors is a well-known
technique used to assess a subject’s health conditions. The mechanical reactions caused by
heartbeats and respiration bring about low stress levels, which can be detected by force
sensors attached to the body or placed in furniture, such as chairs, mattresses, and auto-
mobile security belts [2–10]. Formerly, Electromechanical Film (EMFi) and piezoelectric
sensors were used; nowadays, Force-Sensing Resistors (FSRs) are preferred because of
the simplicity of the interface circuits used to convert the resistance changes into output
voltage or current [3]. FSRs are based on piezoresistive sensing technology, which has
the advantage of providing an observable resistance change induced by minimal stresses.
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For this, Polymer Thick-Film FSRs have been implemented in wearable systems for ubiqui-
tous and long-term monitoring, such as sitting posture recognition and muscle contraction,
and to detect the cardiac activity from the foot sole [11–16].

To measure resistance changes in an FSR, it is common to use analog conditioning
circuits that convert these changes into an output voltage. The most common alternative
is to place the FSR into a voltage divider or Wheatstone bridge, the current excitation of
which depends on the non-actuated resistance of the FSR [9]. In those circuits, the output
voltage depends not only on the sensor’s resistance change but also on the excitation
voltage or current. Moreover, if the output voltage needed to suit the input range of an
analog-to-digital converter (ADC), some analog signal processing stages would need to be
implemented, such as amplification, level shifting, and filtering [17]. A more significant
number of conditioning stages increases the power consumption and instrumentation size,
which restricts the implementation of portable and low-power systems such as wearable
wireless sensor nodes for health monitoring.

A simplified circuit to interface resistive sensors has been proposed and widely ana-
lyzed [18–21]. This circuit connects the sensors directly to a microcontroller (MCU) without
using an analog signal conditioning path or ADC. In this topology, called Direct Interfaced
Circuit (DIC), the MCU excites the resistive sensor to obtain a time-modulated signal
digitized by a timer embedded into the MCU. Recently, DIC was used to obtain respira-
tory signals through a nasal thermistor [22] and by an FSR placed in the seat of a typical
chair [16]. This paper presents a novel sensing approach for heart rate monitoring by a DIC
(a single FSR connected directly to a low-cost MCU). The main benefits of this approach
over traditional skin electrodes and optical sensors are: (1) analog signal conditioning
stages can be omitted, which results in a compact and power-efficient HR system; (2) nei-
ther analog nor digital filters are needed due to the FSR-yielded, well-shaped, and noiseless
heartbeat signal. Hence, HR can be estimated in real time by a simple algorithm imple-
mented in the MCU without any additional digital signal processing. With this sensing
approach, wearable systems for ubiquitous health telemonitoring are more feasible.

2. Sensing Approach
2.1. Heartbeat Signal Detection

FSR is a flexible, very low-cost, and robust polymer thick film (PTF) sensor whose
resistance (Rs) changes with an increase in the force applied to the sensor’s surface.
Heartbeats can be detected by attaching the sensor to the skin in places near the big
arteries, which expand their area each time the heart expels blood to the body [23]. Figure 1
depicts the proposed system for sensing the heartbeats of a subject; the FSR is placed near
the radial artery with a Velcro wristband and changes its electrical resistance (∆Rs) every
time a pulse is detected. Hence, if DIC is able to measure such small-resistance variations
caused by cardiac activity, the HR of a subject can be measured. Moreover, the heartbeat’s
signal could be transmitted via Wi-Fi to a secured cloud server where any Wi-Fi device
could access the report server with proper credential authentication.

2.2. Direct Interface Circuit

Figure 2a shows the circuit proposed to measure Rs, which is the most basic direct
sensor-to-MCU interface circuit [18]. The MCU only needs to have an embedded digi-
tal timer and two input/output (I/O) digital pins with external interruption capability.
In summary, the DIC simultaneously performs a resistance-to-time conversion and a time-
to-digital conversion, resulting in a digital number proportional to Tdis and hence to Rs.
The MCU algorithm to obtain these measurements involves two stages: (a) charging stage
and (b) discharging and time measurement stage (see Figure 2b).
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Figure 2. (a) DIC to measure the FSR variations (∆Rs) caused by heartbeats; (b) digital state of PD1

and PD2 and the voltage across C during each measurement of Rs.

In the first stage, PD1 is set as an output providing a digital “1”, so PD1 generates a
step pulse from GND to Vcc (supply voltage of the MCU) or from “0” to “1” in the digital
domain. At the same time, PD2 is set as an input, offering a high impedance state “HZ”,
so C is charged towards Vcc through RO1, with a time constant τc = RO1C. RO1 represents
the internal resistance of PD1, whose value is about tens of ohms [18], small enough to
achieve a fast charging time. The charging stage must be at least Tchar = 5τc to ensure that
Vcap(t) reaches Vcc. In the second stage, PD2 is set as an output providing a digital “0”;
consequently, C is discharged towards GND through Rx, with a time constant τd = RsC,
while the embedded timer of the MCU starts to measure the time interval required to
do so. PD1 is configured as an input to interrupt the MCU on the falling edge. When
Vcap ≈ VTL (low threshold voltage of the Schmitt Trigger (ST) buffer embedded into PD1),
the ST triggers and the timer stops. The count of the timer Ndis is the digital equivalent to
the discharging time, Tdis, proportional to Rs as:

Tdis = NdisTosc = RsC ln
(

VCC

VTL

)
(1)

where Tosc is the period of the clock signal of the timer. Rs can be estimated from (1),
assuming that C, Vcc, and VTL are known. The variability of these parameters can be
compensated for by adding reference components and then applying auto-calibration
techniques [18–20]. In this application, the DIC (Figure 2a) does not require any reference
resistor because the information to be monitored (cardiac pulse signal) is contained in the
change in Rs, not in its absolute value, so the circuit’s accuracy is less critical. On the other
hand, the slew rate, SR, of the exponential discharging waveform at the trigger point is:

SR =
VTL

RsC
(2)

Ideally, the time-to-digital conversion has a resolution equal to Tosc. However, the
main uncertainty sources are the quantization of the timer and the trigger noise (the point
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when Vcap ≈ VTL and the timer stops is a noise-sensitive process) [24]. If only quantization
effects are considered, the resolution of the DIC in bits, M, or ohms, r, respectively, is:

M = lb
(

Tdis,max − Tdis,min

Tosc

)
(3)

r =
Rs,max − Rs,min

2M (4)

where Rs,min and Rs,max are the minimal and maximal resistance values that produce,
respectively, the discharging times to be measured: Tdis,min and Tdis,max.

From (1) and (3), a high resolution can be achieved by decreasing Tosc or increasing
C (thus τd). However, a high value of C increases the measuring time, thus reducing the
bandwidth of the measurement system. So, a C value that yields an optimal resolution
must be selected [25]. By replacing (1) in (3) for a particular application requiring M bits of
resolution, the C value should be:

C ≥ Tosc2M

(Rs,max − Rs,min) ln
(

VCC
VTL

) (5)

On the other hand, the trigger noise superimposed on the exponential discharging
voltage on VTL limits the resolution of the measurement system to an effective number of
bits (ENOB) lower than M. According to [24], the ENOB can be estimated by:

ENOB ≈ M− lb


√

u2(Tdis,max) + u2(z)

u(z)

 (6)

where u(Tdis,max) is the standard uncertainty of Tdis,max due to noise effects and u(z) repre-
sents the quantization uncertainty that can be estimated as the standard deviation of the
uniform distribution of width Tosc, that is:

u(z) =
Tosc√

12
(7)

The variability of Tdis can be analyzed by a statistical analysis of a series of obser-
vations. The histogram, the mean, and the standard deviation, s(Tdis,max), permit us to
characterize noise effects. So, u(Tdis,max) from k observations can be estimated by:

u(Tdis,max) =
s(Tdis)√

k
(8)

In summary, from (2), a small RsC yields large SR, so quantization effects predominate
over trigger noise, and the ENOB is equal to M. Conversely, a large RsC implies slow
SR, which makes the triggering process more susceptible to noise, increasing the count
dispersion and the standard deviation s(Tdis). So, there is a speed/resolution trade-off
that depends mainly on RsC. By establishing a measurement range, Rs,max–Rs,min, in a
particular application to achieve M bits of resolution, equation (5) can be used as a first
design rule to estimate C.

3. Materials and Method

The DIC (Figure 2a) was implemented by a D1 mini ESP32 module. This module
was designed for mobile electronics and Internet-of-Things (IoT) applications. It has an
MCU (ESP32 from Espressif Systems) that contains Wi-Fi and Bluetooth (BLE embedded)
and 520 kB of RAM. The module was powered by a rechargeable battery 5 V at 1 A and
2.2 Ah, and the MCU with Vcc = 3.3 V by a voltage regulator incorporated in the module.
Rs was an FSR-402 sensor (from Interlink Electronics) with a sensible area of 14.68 mm in
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diameter, a nominal thickness of 0.46 mm, Rs > 10 MΩ without force applied, and rise time
of <3 µs. To know the sensor response, known forces from 1 N to 16.5 N were applied
(Figure 3). In addition, the nominal Rs value was measured with a digital multimeter when
the FSR was placed in a Velcro wristband near the radial artery, the nominal value was
Rs = Rs,0 ≈ 5 kΩ.
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Figure 3. Experimental response of the FSR-402 when force is applied to the sensor’s surface.

The MCU program to measure Tdis (and so Rs) by following the sequence described in
Section 2.2 was implemented in C language. PD1 and PD2 (Figure 2a) were implemented by
GPIOs 13 and 14, respectively. (The MCU works at 80 MHz, so the digital timer measures
Tdis with a resolution of Tosc = 12.5 ns.) From each measurement of Tdis, Rs was obtained
from (1). The MCU parameters Vcc = 3.23 V, VTL = 1.56 V, RO1 = 32 Ω were obtained from
the procedures described in [18]. By considering ∆Rs,max = Rs,max − Rs,min ≈ 200 Ω and
M = 10 bits, from (5), the minimal value of C is 86 nF, a metallized polypropylene with C
= 150 nF was chosen. According to [25], a DIC with these values would be capable of a
maximum sampling rate of 1.75 kSa/s, more than enough for this application.

An adult’s regular resting HR ranges from 60–100 BPM, i.e., between approximately
1 and 2 beats per second. For a reasonable reconstruction of the heartbeat signal, a sampling
rate of Sf = 50 Sa/s was selected, which was configured and controlled by an internal digital
timer. Hence, the DIC takes a sample of Rs every 1/Sf = 20 ms and stores it in its RAM.
The acquisition time for Ns samples was defined as Tacq = Ns (1/Sf). For concurrent records
of 10 s (of heartbeat signal), the MCU was programmed to measure and save (in RAM)
500 samples of Rs. Simultaneously, the MCU calculates the heart rate from the samples in
real time by taking the period from two consecutive slopes, based on the abrupt downward
slope shown in each beat of the signal (see Figure 4c). Each record of 500 samples and heart
rate value was sent via Wi-Fi to a secured cloud server.

The sensing approach for remote heart rate monitoring was experimentally tested
with five volunteers. Volunteers were asked to remain quiet during the measurement
(10 s approximately) to avoid motion artifacts caused by hand movements. The FSR was
attached with a Velcro band directly on the skin near the radial artery, as shown in Figure 4b.
A commercial heart rate monitor (pulse sensor from World Famous Electronics) was used
as a comparison to test the feasibility of the proposed system. This device combines a simple
optical heart rate sensor with amplification and noise cancellation circuitry, making it fast
and easy to obtain reliable pulse readings. Both signals were acquired by the same MCU:
the FSR signal was acquired by the DIC interface algorithm (blue curve in Figure 4c), and
the signals from the commercial monitor by the embedded ADC (green curve in Figure 4c).
The graphical visualization of both signals was realized in a PC program implemented in
Visual C#TM. The communication between the PC and the prototype for this test was via
Wi-Fi and USB.
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We used the Bland–Altman plot to examine the agreement between the proposed
wearable system and commercial heart rate monitor. Ten records of heartbeat signals
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were taken from each volunteer. As proposed in [26,27], the Limit of Agreement (LoA)
was obtained with a 95 % confidence interval as [µ − 1.96σ, µ + 1.96σ], where µ is the
average difference, and σ is the standard deviation. Pearson’s correlation between the two
measurement systems was also estimated.

4. Experimental Results and Discussion

Figure 3 shows the experimental response of the FSR-402 obtained from the character-
ization. It shows how the resistance (Rs) decreases nonlinearly as force is applied to the
sensor’s surface. Nonlinearity errors could modify the shape of the heartbeat signal but
not the HR estimation. Figure 4 depicts the wearable sensing approach for remote heart
rate monitoring: (a) FSR-402 placed directly on the skin, (b) FSR with a Velcro wristband
near the radial artery connected to a DIC, and (c) remote visualization of the heartbeats
signal and HR value.

Figure 5 shows how the MCU reconstructs the heartbeat signal by a sampling rate of
50 kSa/s and 500 samples (a record of 10 s). Simultaneously, the MCU calculates the HR by
taking the period from two consecutive abrupt slopes, beat per beat of the signal (Sawtooth
signal). In this case, HR was 79 BPM (see Figure 4c).
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Figure 5. Experimental heartbeat signal reconstruction and HR measurement by the downward slope shown in each signal
beat (the MCU implements the algorithm in real time).

Figures 6a and 7a show the resistance variations ∆Rs of the FSR measured by the DIC
(Figure 2a) of volunteers S1 and S2, respectively. In the same way, Figures 6b and 7b show
the voltage variations, ∆V, of the commercial HR monitor. Comparing the signals, a peak
resistance change on Rs occurs after a QRS complex, implying that the signal registered
with the DIC is related to cardiac activity. The heartbeat signal obtained from the FSR
system is consistently compared with that obtained from the commercial monitor. In all
cases, both signals match the number of beats. The FSR changes its electrical resistance
each time a pulse is detected, and this pulse rate refers to the contraction and expansion of
the artery when blood passes. Each time the heart expels blood into the body, the radial
artery expands its area, applying pressure on the FSR and causing a downward change
in the resistance of the FSR. Consequently, because the FSR is a sensor with a negative
force coefficient, the shape obtained by the FSR corresponds to an inverted cardiac pulse
signal. Since this is the natural response of the FSR sensor and does not affect the heart rate
estimation, nothing further was performed with this result. As a result, the DIC was able to
detect resistance changes caused by cardiac activity, enough to obtain well-shaped heartbeat
signals and HR estimation. These were small-signal resistance variations of around ±3.5 Ω
(for S1) and ±1.5 Ω (for S2). On the other hand, the sensitivity of the proposed method
relies on the sensor sensitivity. Since the FSR is not supplied by any constant voltage or
current, self-heating problems are avoided, and the sensitivity does not depend on any
polarization source, as usually happens in conventional signal conditioning systems.
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Figure 6. Experimental heartbeat signal from S1. (a) Resistance variations in FSR measured by the DIC when the sensor was
located near the radial artery; (b) voltage variations in the commercial heart rate monitor; (c) frequency spectrum of the FSR
signal; (d) frequency spectrum of the commercial monitor signal.
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Figure 7. Experimental heartbeat signal from S2. (a) Resistance variations in FSR measured by the DIC when the sensor was
located near the radial artery; (b) voltage variations in the commercial heart rate monitor; (c) frequency spectrum of the FSR
signal; (d) frequency spectrum of the commercial monitor signal.
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Figure 6c,d show the frequency spectrum of the heartbeat signal for S1; in both figures,
there was a fundamental peak at 1.31 Hz (79 BPM). In the same way, Figure 7c,d show the
frequency spectrum of the heartbeat signals for S2; in both cases, there was a fundamental
peak at 1.19 Hz (72 BPM). These results demonstrate that the proposed wearable system is
able to detect cardiac activity beat by beat, and it is also able to detect different heart rates.
Furthermore, the FSR signals have a negligible contribution of noise, which facilitates the
estimation of HR.

The Bland–Altman plot that compares the heartbeat signals (peak to peak) measured
from the five volunteers (500 records) by the DIC and by the commercial monitor is shown
in Figure 8. The average difference, the standard deviation, and LoA were, respectively:
µ = 0.018, σ = 2.28, and [−4.45, 4.49] all in BPM. The histogram in Figure 9 shows a
normal distribution of the peak-to-peak differences from the HR measured by DIC and by
commercial monitor. As observed in the Bland–Altman plot, from 60 BPM to approximately
96 BPM there is a high agreement between the two measurement systems. The scatter plot
between the HR measured by the DIC and by commercial monitor is given in Figure 10.
The Pearson coefficient was 0.9817, which is a statistically significant correlation. Therefore,
it is shown that there is an excellent coincidence between the signals obtained with the DIC
and the commercial system.

A summary of wrist-type PPG methods for HR monitoring is presented in Tables 4 and 5
from [28]. To compare our proposed sensing approach for HR measurement, we selected
those techniques whose performance was evaluated by Bland–Altman analysis and Pear-
son’s coefficient. The experimental performance of our system (LoA: [−4.45, 4.49] BPM,
σ = 2.28 BPM, and Pearson coefficient of 0.9817) yielded similar results to six of the eleven
methods presented in Tables 4 and 5 from [28].

As is well known, the presence of motion artifacts (MA) in the analysis and interpre-
tation of cardiovascular signals, obtained by different methods ranging from mechanical
to electrical and optical systems, is inevitable [29]. This work aims to estimate the HR of
subjects in a quasi-stationary position avoiding MA caused by hand movement during the
measurement (10 s approximately). As shown in Figures 6 and 7, the FSR signals measured
by the DIC when the sensor was located near the radial artery have a negligible noise
contribution, which facilitates the estimation of HR. The experimental results prove that
it is possible to estimate the HR in real time using a DIC without any additional digital
signal processing.
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Figure 8. Bland–Altman plot that compares the HR measured by DIC and by the commercial monitor
peak to peak.
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Figure 9. Histogram of the peak-to-peak differences between the HR measured by the DIC and by
the commercial monitor.
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5. Conclusions

A force-sensing resistor, such as an FSR-402, placed in a wristband near the radial
artery and connected directly to a low-cost MCU yields a reliable, compact, and low-cost
heart rate monitor. The experimental results show that small-resistance variations caused
by the heartbeats of a subject bring well-shaped heartbeat signals from which it is possible
to estimate the HR in real time by a simple MCU algorithm without any additional digital
signal processing. Using this approach, wearable systems or wireless sensor nodes for
health monitoring with high power efficiency are feasible.
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