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Abstract: Geostationary optical remote sensing satellites, such as the GF-4, have a high temporal
resolution and wide coverage, which enables the continuous tracking and observation of ship targets
over a large range. However, the ship targets in the images are usually small and dim and the
images are easily affected by clouds, islands and other factors, which make it difficult to detect
the ship targets. This paper proposes a new method for detecting ships moving on the sea surface
using GF-4 satellite images. First, the adaptive nonlinear gray stretch (ANGS) method was used to
enhance the image and highlight small and dim ship targets. Second, a multi-scale dual-neighbor
difference contrast measure (MDDCM) method was designed to enable detection of the position
of the candidate ship target. The shape characteristics of each candidate area were analyzed to
remove false ship targets. Finally, the joint probability data association (JPDA) method was used
for multi-frame data association and tracking. Our results suggest that the proposed method can
effectively detect and track moving ship targets in GF-4 satellite optical remote sensing images, with
better detection performance than other classical methods.

Keywords: geostationary orbit satellites; GF-4 satellites; ship detection; ship tracking; visual saliency;
data association

1. Introduction

The surveillance of sea-surface ships is highly significant for the economic develop-
ment of sea areas, marine environmental protection, marine ship management and fishery
safety supervision [1]. With the rapid development of aerospace, sensor and computer tech-
nologies, satellite remote sensing technology has also developed rapidly and has become
an important means of monitoring maritime ships [2]. For many years, synthetic aperture
radar (SAR) images have been used to detect and track ships, since these images are not
affected by weather or time. Compared with SAR satellite images, optical satellite remote
sensing images better reflect the shape of ships, which makes them easier to recognize
and interpret manually. In this respect, high-resolution optical remote sensing images
from low Earth orbit (LEO) satellites have been used in recent years to detect and identify
ships on the sea [3–8] since they provide rich information on the shape and texture of ship
targets. However, LEO satellites only provide limited coverage and have a long revisit
period, which means that they cannot enable the real-time and continuous monitoring of
ship targets moving on the sea surface. In contrast, geostationary orbit (GEO) satellites can
continuously observe a large area and have other significant advantages, such as a wide
observation range and a short observation period [9]. They can thus be used for the near
real-time monitoring and tracking of maritime ships to obtain dynamic motion information,
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such as the position, heading, speed and trajectory of moving ships [10]. In 2015, China
launched GF-4, a medium-resolution optical remote sensing satellite, in the geostationary
orbit and this has multiple observation modes, such as a gaze mode and cruise mode and
it can also conduct near real-time observations of ship targets moving on the sea [11–14].

At present, the mainstream methods used to detect targets in optical remote sensing
images include analyzing the gray statistical features and employing deep learning meth-
ods and methods based on visual attention mechanisms. In this respect, gray statistical
feature methods [3,14,15] are based on identifying the gray value of ships or their wakes,
which are significantly higher than that of the sea surface. However, the accuracy of this
method is limited by the existence of clouds and islands, which cause false alarms or
missed detection rates. Methods based on deep learning [16–18] extract the textural and
geometric features of a target. However, the GEO optical images lack textural information
about targets and the target detection method based on deep learning cannot be applied to
medium- and low-resolution remote sensing images. In contrast, the method based on the
visual attention mechanism [19,20] can quickly and accurately extract regions of interest
from complex scenes and the contrast mechanism, multi-resolution representation, size
adaptation and other characteristics of the human vision system (HVS) make it efficient
and robust for small target detection.

The gray value of ship targets in optical remote sensing images is generally much
lower than that of clouds and islands. However, owing to the long imaging distance
coupled with atmospheric attenuation and cloud occlusion, it is difficult to observe the ship
itself in an optical remote sensing image from a GEO satellite with a medium resolution
and it is not easy to detect the ship directly. A ship forms a wake behind it as it moves and
the area of the wake is always larger than the ship itself. In addition, compared with the sea
surface and the hull, a ship’s wake often has stronger optical reflection characteristics and
these are a main feature used to identify and detect a moving ship. Therefore, detecting and
analyzing the wake of a moving ship is an effective method of detecting its movement on
the sea surface. Some studies have researched ship target detection and tracking methods
based on GEO optical images [15,21–23]. However, these methods do not consider the
wake of a moving ship. In addition, cloud and island interference causes false alarms or
missed detections.

Data association is another core issue limiting accurate ship tracking. Classical data
association methods include nearest neighbor (NN) data association methods, various
improved methods based on NN, joint probability data association (JPDA) methods [24]
and multiple hypothesis tracking (MHT) methods. One study [21] used the MHT method
to achieve multi-frame GF-4 optical satellite remote sensing image ship target-associated
tracking while suppressing false alarms and another [22] used the DCF-CSR algorithm to
track ship targets in the remote sensing image of a geosynchronous orbit optical satellite.
However, considering that track crossing does not occur at the same time for ships moving
on the sea, calculations using the MHT method is complicated; hence, the JPDA method is
more suitable for ship tracking.

In this study, we analyze the wake characteristics of ships moving on the sea and
propose a moving ship detection and tracking method based on the optical remote sensing
images from GEO satellites, specifically involving GF-4 satellite panchromatic remote-
sensing images. First, the ANGS method is used to enhance the optical remote sensing
image, with the aim of suppressing bright cloud and sea clutter in the image and high-
lighting the dim ship wake. Second, based on the visual saliency theory, we propose a
multiscale dual-neighbor difference contrast measure (MDDCM) method, which calculates
the saliency map of the image and obtains the location of the salient target. The wake
shapes of moving ship targets are analyzed and false targets (such as speckle clouds) are
removed from the candidate targets via verifying the shape of the ship’s wake. Finally, the
JPDA method is used to conduct data association and multi-target tracking in multi-frame
images, with the aim of obtaining the speed and track of real moving ship targets and false
targets, such as stationary islands, are also removed.
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The following sections provide the following information: in Section 2, we analyze the
imaging characteristics of a GF-4 image and the wake characteristics of the moving ship
in the image; Section 3 describes the methods proposed in this paper in detail, including
the image enhancement method, target detection method and data association method
employed; Section 4 presents the experimental results and an analysis of the proposed
method; the conclusions are provided in Section 5.

2. Analysis of Wake Feature in GF-4 Satellite Optical Remote Sensing Images

GF-4 has a high temporal resolution, a wide coverage and multiple imaging bands.
The camera parameters of GF-4 are list in Table 1.

Table 1. The camera parameters of GF-4.

Band Spectral
Range (um)

Spatial
Resolution (m)

Swath
(km)

Revisit
Time (s)

Image Size
(pixel) Digitalizing Bit

Visible and Near
Infrared

B1 0.45–0.90

50 400 × 400 20
10,000 × 10,000

16

B2 0.52~0.60
B3 0.63~0.69
B4 0.76~0.90
B5 0.45~0.52

Middle Wave
Infrared B6 3.5~4.1 400 1000 × 1000

GF-4 images have a spatial resolution of 50 m in the visible band; therefore, a ship that
is several hundred meters in length and tens of meters in width occupies only a few pixels
in the GF-4 image. In addition, some hulls are coated in stealth materials and lack reflective
features, which makes it difficult to detect them directly. Therefore, the characteristics of a
ship’s wake are analyzed in this study with the aim of effectively detecting the presence of
a ship.

The wake of a ship is mainly caused by the force between the hull (propeller) and the
sea when the ship moves on the sea; this causes subsurface sea water to rise to the surface,
which forms the wake. Normally, the width and length of the wake are approximately
1–3 times the width of the ship and 1–20 times the length of the ship, respectively. The wake
of a moving ship mainly comprises Kelvin, divergent, transverse, turbulent and breaking
waves, as shown in Figure 1. Different wave types of the wake can be identified in different
image types. For example, in SAR remote sensing images, Kelvin waves, divergent waves,
shear waves and broken waves can be observed; Kelvin waves, divergent waves, shear
waves, turbulent waves and broken waves can be observed in high-resolution optical
remote sensing images; but only turbulent waves can be observed in GF-4 satellite optical
remote sensing images. The observed wake of the turbulent wave appears as a spindle-
shaped bright area in the GF-4 image and its brightness and width decrease continuously
along the opposite direction of the ship’s motion. The main factors affecting the turbulence
wake size in the GF-4 images are the size and sailing speed of the ship.

Figure 2a shows a two-dimensional (2D) view of the original GF-4 image, Figure 2b
shows a 2D view of the stretched GF-4 image and Figure 2c shows a three-dimensional
(3D) view of Figure 2a. It is evident that extremely bright flawed pixels appear at (245,448)
and dark flawed pixels appear at (672,966). Therefore, it can be concluded that in the
GF-4 images, the maximum and minimum gray values are often represented by flawed
pixels. In addition, the gray value difference between the clouds and the sea is not obvious
and the gray value change is mainly reflected in the floating change in cloud brightness.
Furthermore, the ship’s wake is difficult to find. Figure 2b shows a 3D view of the stretched
GF-4 image, where the gray difference between the cloud and sea background has been
enlarged, the flawed pixels at (245,448) and (672,966) have been suppressed and the ship
wakes at (713,131) and (944,291) have been highlighted. This is therefore a better image to
use for detecting the ship’s wake.
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GF-4 satellite optical remote sensing images can contain cloud clutter, ships’ wakes 
and flaws, as shown in Figure 3. After analyzing this image, the following were deter-
mined: (1) GF-4 satellite optical remote sensing image contain a large number of bright 
clouds and the gray values of these are higher than that of the ship’s wake; (2) the ship 
forms an obvious wake as it moves on the sea and the gray values of the wake are higher 
than the sea background; (3) the wakes of different ships differ in size and brightness in 
relation to the size and speed of the ship itself; and (4) flawed image pixels from the cam-
era of the GF-4 satellite result from the very harsh electromagnetic radiation environment 
of the stationary orbit. The remote sensing image contains several bright and black flawed 
pixels, but there are more pixels representing the ship’s wake than there are flawed pixels; 
(5) the brightness of the cloud varies, but there are large areas of bright clouds or local 
bright spot-shaped clouds. 
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GF-4 satellite optical remote sensing images can contain cloud clutter, ships’ wakes
and flaws, as shown in Figure 3. After analyzing this image, the following were determined:
(1) GF-4 satellite optical remote sensing image contain a large number of bright clouds
and the gray values of these are higher than that of the ship’s wake; (2) the ship forms an
obvious wake as it moves on the sea and the gray values of the wake are higher than the
sea background; (3) the wakes of different ships differ in size and brightness in relation
to the size and speed of the ship itself; and (4) flawed image pixels from the camera of
the GF-4 satellite result from the very harsh electromagnetic radiation environment of the
stationary orbit. The remote sensing image contains several bright and black flawed pixels,
but there are more pixels representing the ship’s wake than there are flawed pixels; (5) the
brightness of the cloud varies, but there are large areas of bright clouds or local bright
spot-shaped clouds.
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3. The Proposed Methods

The above analysis shows that identifying ship targets in GF-4 satellite optical remote
sensing images is problematic due to clouds and flaws. However, the brightness of the
ship’s wake is lower than that of clouds but higher than that of sea background and image
stretching can enhance the ship’s wake within an image. Although the ship’s wake in
the image is a turbulent wake with a certain shape, it remains weak and only occupies a
small number of pixels within the image. However, as the GF-4 satellite is a video-like
satellite that can continuously scan the observation area and form an image sequence, the
multi-frame association method can be used to identify a moving ship and remove false
targets. The target detection and tracking framework of sea-surface moving ships proposed
in this study are shown in Figure 4.

The method proposed in this paper includes four stages: image enhancement, ship
detection, shape verification and multi-frame association and are outlined as follows:

(1) Image enhancement stage: ANGS is used to enhance each frame of the GF-4 image
sequence to improve the image contrast and highlight the ship’s wake in the image.

(2) Target detection stage: the focus of this study is to detect targets based on visual
saliency. In this respect, the MDDCM method is used to calculate the saliency map
and the image is then segmented according to the dynamic threshold value to obtain
the location of the candidate ship target.

(3) Shape verification stage: based on the detection results of MDDCM, the region in
which the target is located is binarized to obtain the shape of the ship’s wake and
remove false targets that do not have ship wake characteristics.

(4) Multi-frame tracking stage: the JPDA method is used for data association to confirm
the real moving ship target from the candidate targets in multi-frame images. In addi-
tion, the ship’s speed and its track are obtained and false targets, such as stationary
islands, are removed.
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3.1. GF-4 Satellite Optical Remote Sensing Image Enhancement

The analysis above showed that the pixels with the greatest brightness in the GF-4
satellite optical remote sensing image are often flawed and the brightness of cloud is
generally higher than that of the ship’s wake. Therefore, to effectively detect ships on the
sea surface, it is necessary to enhance the GF-4 image to heighten the contrast between
the ship’s wake and the sea background. Image enhancement methods are generally
divided into spatial domain enhancement and frequency-domain enhancement methods.
However, owing to the uncertain size and shape of a ship’s wake, the frequency-domain
enhancement method is not suitable for image enhancement in this context. Therefore,
spatial domain image enhancement methods are preferred and these include histogram
equalization, Laplace transform, log transform and gamma transform. In this paper, an
adaptive nonlinear gray stretch (ANGS) method is used to suppress high-brightness clouds
and to simultaneously enhance the brightness of the ship’s wake. The formula for the
ANGS is as follows:

F(x, y) =
1

1 +
(

mgray
G(x,y)+eps

)E (1)

where G (x, y) is the original remote sensing image of GF-4, mgray is the mean value of the
original image G (x, y), E is the stretch factor that controls the slope of the stretch curve
and eps is a very small value that prevents the formula from being meaningless when G
(x, y) = 0. Furthermore, E is an empirical value and different stretching factors of E have
different stretching effects on the image: the larger the value of E, the greater the gray
contrast near the mean value mgray and the gray value compression of the high and low
gray levels is also stronger.

3.2. MDDCM Method for Ship Wake Detection

As previously mentioned, the analysis conducted in Section 2 showed that the gray
value of the ship’s wake in the GF-4 image was lower than that of the clouds and the land.
A ship’s wake generally occupies only a dozen (or sometimes a few) pixels in a GF-4 image
and, thus, it is a small and dim target. In recent years, algorithms based on the human
visual system (HSV) have demonstrated a good performance for detecting dim and small
targets. HVS algorithms, including the local contrast measure (LCM) method [25] and
multiscale patch-based contrast measure (MPCM) method [26], generally use the local gray
difference between the target and the surrounding background to calculate the contrast and
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extract the target position. Based on the HVS theory, we propose a multiscale dual-neighbor
difference contrast measure (MDDCM) method for detecting a ship’s wake in GF-4 images.

3.2.1. DDCM Window Structure

The traditional LCM window is shown in Figure 5a. The window includes nine sub-
blocks: a central block and the adjacent eight sub-blocks. The traditional LCM algorithm
measures the visual salience of the central block by calculating the contrast between the
central block and the surrounding eight sub-blocks.

Sensors 2021, 21, x FOR PROOFREADING 7 of 22 
 

 

( )

( )

1,

1
, +e

E
gray

F x y
m

G x y ps

=
 

+   
 

 
(1)

where G (x, y) is the original remote sensing image of GF-4, graym  is the mean value of 
the original image G (x, y), E is the stretch factor that controls the slope of the stretch curve 
and eps is a very small value that prevents the formula from being meaningless when G 
(x, y) = 0. Furthermore, E is an empirical value and different stretching factors of E have 
different stretching effects on the image: the larger the value of E, the greater the gray 
contrast near the mean value graym  and the gray value compression of the high and low 
gray levels is also stronger. 

3.2. MDDCM Method for Ship Wake Detection 
As previously mentioned, the analysis conducted in Section 2 showed that the gray 

value of the ship’s wake in the GF-4 image was lower than that of the clouds and the land. 
A ship’s wake generally occupies only a dozen (or sometimes a few) pixels in a GF-4 image 
and, thus, it is a small and dim target. In recent years, algorithms based on the human 
visual system (HSV) have demonstrated a good performance for detecting dim and small 
targets. HVS algorithms, including the local contrast measure (LCM) method [25] and 
multiscale patch-based contrast measure (MPCM) method [26], generally use the local 
gray difference between the target and the surrounding background to calculate the con-
trast and extract the target position. Based on the HVS theory, we propose a multiscale 
dual-neighbor difference contrast measure (MDDCM) method for detecting a ship’s wake 
in GF-4 images. 

3.2.1. DDCM Window Structure 
The traditional LCM window is shown in Figure 5a. The window includes nine sub-

blocks: a central block and the adjacent eight sub-blocks. The traditional LCM algorithm 
measures the visual salience of the central block by calculating the contrast between the 
central block and the surrounding eight sub-blocks. 

M1 M2 M3

M8 C M4

M7 M6 M5
Whole Image

Slide X

Slide Y

Middle Area

Center Area

Backgroud Area

 

M1 M2 M3

M8 Tc M4

M7 M6 M5

B2 B3 B4 B5

B6

B7

B8

B9B10B11B12B13

B14

B15

B16

B1

(a) (b) (c) 

Figure 5. (a) Structure of the LCM; (b) Slide whole image using DDCM window; (c) Structure of DDCM. 

In contrast to the traditional LCM window, we designed a dual-neighborhood win-
dow that includes central, middle and background regions. By sliding the dual-neighbor-
hood window onto the entire image, the local contrast of the image can be calculated and 
a saliency map is then generated. The sliding process is illustrated in Figure 5b. The struc-
ture of the dual-neighborhood window is shown in Figure 5c, which contains a central 
region RC, middle region, RM and background region, RB. RC contains 1 sub-block, Tc, RM 

Figure 5. (a) Structure of the LCM; (b) Slide whole image using DDCM window; (c) Structure of DDCM.

In contrast to the traditional LCM window, we designed a dual-neighborhood window
that includes central, middle and background regions. By sliding the dual-neighborhood
window onto the entire image, the local contrast of the image can be calculated and a
saliency map is then generated. The sliding process is illustrated in Figure 5b. The structure
of the dual-neighborhood window is shown in Figure 5c, which contains a central region
RC, middle region, RM and background region, RB. RC contains 1 sub-block, Tc, RM
contains eight middle sub-blocks, M1–M8 and RB contains 16 background sub-blocks,
B1–B16.

3.2.2. DDCM Local Contrast Calculation

Our previous analysis showed that a ship’s wake appears as a spindle-shaped bright
area in a GF-4 image. When the wake is small, it appears as a Gaussian spot and when the
wake is large, it appears as a long strip. The distribution of the Gaussian spot-like ship’s
wake on the DDCM window is shown in Figure 6a. As the course of the hull is arbitrary,
we use four angles, as shown in Figure 6b–e, to roughly describe the distribution of the
strip-like ship’s wake in the DDCM window.
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Based on the DDCM window structure, the difference between the three regions is
used to measure the local contrast. The contrast between the central sub-block, Tc and
the middle region of each sub-block, Mi, is represented by d(T, Mi) and the expression of
d(T, Mi) is

d(T, Mi) =

{
meanT −meanMi if meanT −meanMi > 0

0 else
, i = 1, 2, 3...8 (2)

where meanT represents the gray mean of the central sub-block, Tc; meanMi represents the
gray mean of the middle sub-block, Mi; and i = 1, 2, 3...... 8.

The contrast between the central sub-block, Tc and the background region is repre-
sented by DB and the expression of DB is

DB =

{
meanT −max(meanBk ) if meanT −max(meanBk ) > 0

0 else
, k = 1, 2, 3...16 (3)

where meanT represents the gray mean of the central sub-block, Tc; meanBk represents
the gray mean of the background sub-block Bk, where k = 1, 2, 3... 16; and max(meanBk )
represents the maximum value of meanBk in 16 background subblocks. The gray value
of the central region where the ship wake is located is generally higher than that of the
outer background region; therefore, by identifying DB, cloud clutter can be effectively
suppressed and the ship’s wake can be highlighted.

A ship’s wake is generally distributed symmetrically along the central axis. When the
central sub-block of the DDCM window passes through the center of the ship’s wake, a
part of the ship’s wake may be distributed in the middle region. Therefore, the contrast
between the central region, RC and the middle region, RM, can be expressed as Dm, where
the expression of Dm is as follows,

DM =


d(T, M3)× d(T, M7) if max(meanMi ) = meanM1 or max(meanMi ) = meanM5

d(T, M4)× d(T, M8) else if max(meanMi ) = meanM2 or max(meanMi ) = meanM4

d(T, M5)× d(T, M1) else if max(meanMi ) = meanM3 or max(meanMi ) = meanM7

d(T, M6)× d(T, M2) else if max(meanMi ) = meanM4 or max(meanMi ) = meanM8

(4)

where max(meanMi ) represents the maximum value of meanMi for the middle region
of eight sub-blocks and the sub-block corresponding to max(meanMi ) may be the sub-
block where the ship’s wake symmetry axis is located. Therefore, we use the sub-block
perpendicular to the sub-block of max(meanMi ) to calculate the contrast between the central
region, RC and the middle region, RM.

If the size of the central region, RC, in the DDCM window is k × k, the visual saliency
of the k-size DDCM can be expressed by DDCMk as follows:

DDCMk = Dm × DB (5)

where Dm is the contrast between the central and middle regions and DB is the contrast
between the central region and the background region. By setting the value of the DDCM
window size k and using the DDCM window to slide through the entire GF-4 image, a
single-scale DDCM saliency map is obtained.

3.2.3. MDDCM Local Contrast Calculation

The size of a ship’s wake varies in accordance with factors such as the hull size, sailing
speed and the spatial resolution of the image that it is caught within. Therefore, a single-
scale DDCM window is not suitable for detecting ships’ wakes of all sizes. We thus use
the multiscale dual-neighbor difference contrast measure (MDDCM) method to detect the
wake of a ship.
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The DDCM saliency map of size k can be represented as DDCMk; the saliency of a
pixel P(i, j) in the image can be represented as DDCMk(i, j); and the expression of the
saliency MDDCMk(i, j) of pixel P(i, j) in the MDDCM algorithm is as follows:

MDDCMk(i, j)= max(DDCM k(i, j)), k = 2, 3, 4, 5...K (6)

where k is the size of the DDCM and the minimum and maximum values are 2 and K,
respectively. Therefore, the MDDCM with the largest scale of K can be expressed as

MDDCM = max(DDCM k), k = 2, 3, 4, 5...K (7)

3.2.4. Adaptive Extraction of Ship’s Position Based on MDDCM

Following the MDDCM calculation, an MDDCM saliency map of the image can be
obtained. The contrast of the area of the ship’s wake is enhanced, while bright flaws,
random noise, cloud clutter and sea background clutter are effectively suppressed and the
signal-to-noise ratio (SNR) is significantly improved. To extract the target, we normalize
the saliency map to distribute it between 0 and 1 and then use an adaptive threshold to
segment the saliency map to obtain the location of the target. The expression of threshold τ
used for saliency map segmentation in this study is

τ = µ + λthσ, (8)

where µ is the mean value of the MDDCM saliency map, σ is the standard deviation of the
MDDCM saliency map and λth is the segmentation factor, which typically ranges from 20
to 50. Using the threshold τ to segment the saliency map, the position of the target, (the
candidate ship) is extracted.

3.3. Shape-Based False Alarm Removal

The detection result of the MDDCM saliency map provides the position of the can-
didate ship in the image, but they do not show the size and shape of the candidate ship.
In fact, the extraction result in the MDDCM saliency map is usually the central position
of the ship’s wake. Therefore, after obtaining the location of the ship using MDDCM, it is
necessary to segment the target candidate region to contour information about the candi-
date ship. Shape verification can then be used to remove false targets, such as spot-shaped
clouds.

Based on the location of the candidate target extracted by MDDCM, we extracted
64 × 64-pixel regions of interest (ROI) and then used the Otsu method to perform binary
segmentation of the ROI to separate the target from the sea surface background. The
formula is as follows:

F(x, y) =
{

1, F(x, y) ≥ Thotsu
0, F(x, y) < Thotsu

(9)

where Thotsu is the segmentation threshold of Otsu’s method. For the segmented image,
the connected region centered on the detection result of the MDDCM saliency map is the
region of the ship. However, the detection results of the MDDCM saliency map often
contain false alarms, but through binary segmentation of the target area, the target contour
can be obtained and the target’s shape characteristics can then be verified.

The spatial resolution of the GF-4 satellite optical remote sensing image is 50 m and
the width of a ship is generally within 50 m (not exceed 100 m). According to the above
analysis, the width of the ship’s wake is approximately one to three times that of the hull
and the wake’s length is one to twenty times the length of the hull. Therefore, the width of
the ship’s wake in the GF-4 image occupies only a few pixels but its length can be dozens of
pixels. Generally, the larger the wake’s width, the larger the size of the ship or the faster its
speed; this means that the turbulent wake formed behind the ship will be longer and there
is thus a positive correlation between the length and width of the ship’s wake. Based on
this feature, we can verify the shape of targets and remove false alarm targets that do not
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meet the shape characteristics of the wake. If the length of the smallest enclosing ellipse of
the target area is LengthT and the width is WidthT , the length-to-width ratio is represented
by Rreal . Therefore, the width WidthT and length-to-width ratio Rreal of the wake of the
ship should have a certain range. We use the following formula to verify the shape of the
ship’s wake as follows:

Widthmin < WidthT < Widthmax (10)

Rth =
WidthT + 1

2
(11){

Rreal =
LengthT
WidthT

Rreal > Rth
, (12)

where Widthmin and Widthmax are the minimum and maximum value ranges of the wake
widths, respectively. Limiting the value of WidthT can remove small false targets, such
as flaws and large false targets, such as clouds and islands. Rth is the adaptive threshold
value associated with WidthT . False targets that do not meet wake characteristics can be
removed using Rth.

3.4. Ship Tracking Based on JDPA

GEO satellites can detect and track marine moving ships to obtain their moving tracks
and estimate their movement trends. In addition, data association can be used to remove
false alarm targets, such as stationary islands, irregular clouds and random noise.

As previously mentioned, JPDA is a classic data association method [24]. The main
idea is to comprehensively consider all the targets and measurements, according to the
association between all measurements and all targets.

In the JPDA method, the predicted state equation of the target is defined as

X̂t(k|k− 1) = Ft(k− 1)X̂t(k− 1|k− 1), (13)

where X̂t(k|k − 1) represents the state vector of t at time k predicted by time k − 1 and
Ft(k− 1) is the state transition matrix of t at time k− 1.

The prediction vector of measurement target is defined as

Ẑt(k|k− 1) = H(k)X̂t(k|k− 1), (14)

where H(k) represents the measurement target matrix.
According to the Kalman filter formula, the equation for calculating the status update

is as follows,
X̂t(k|k) = X̂t(k|k− 1) + Kt(k)Vt(k), (15)

where Kt(k) represents the Kalman gain matrix of t at time k and Vt(k) represents the
combined information of t at time k.

The associated area is defined as

A(k) = [z(k)− ẑ(k|k− 1)]TS−1(k)[z(k)− ẑ(k|k− 1)] ≤ γ, (16)

where S−1(k) represents the innovation covariance matrix at time k and γ is a fixed thresh-
old that can be obtained from the χ2 distribution table.

As an extension and optimization of the probability data association (PDA) method,
the JPDA method mainly introduces the concept of joint events within the association cycle,

θi(k) =
Numk∩

j=1
θi

jt(k), (17)

where θi(k) is the joint-associated event, k is the time, θi(k) is the ith joint event at time k,
Numk represents the total number of measured targets at time k and θi

jt(k) represents the
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event when the measured target, j, is related to track t at time k in the joint event of i. When
t = 0, there are no related events for the measured target, j and this indicates a false alarm.

Figure 7 illustrates the implementation process of JPDA, which first establishes a con-
firmation matrix and lists all possible events based on the criterion that the target provides
a maximum of one piece of measurement information in a period; the measurement has
only one source. Finally, all events are connected via probability to obtain the final status
update value for each target.
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Figure 7. Implementation process of joint probability data association.

The JPDA algorithm uses the measurement in the current scan period within the
tracking threshold to calculate the correlation probability between the measurement and
the corresponding track. The calculation determines the set of all possible “measurement-
track” combinations and the probability of the associated set.

We use the target location extracted using the MDDCM method as the data source
for data association (the shape has been verified). The JDPA is then used to associate the
target data in the multi-frame GF-4 image with the aim of obtaining tracking information
about the ship target and calculating its average speed. As the candidate targets in the
GF-4 satellite image sequences often contain false targets, we use constraints (such as the
minimum associated frames, maximum target speed, minimum target speed and minimum
moving distance) to further remove false targets and filter the displacement of the stationary
targets caused by camera shake.

4. Experiment and Analysis
4.1. Experimental Data

Remote sensing images of the two regions were used for experimental data sources
and the region where the two remote sensing images are located is shown in Figure 8. The
imaging time and latitude and longitude information of remote sensing images are listed
in Table 2

Table 2. Remote sensing image for experiment.

Region Band Imaging Time Longitude Range Latitude Range

1© Bohai area B1 2019-03-31 09:00 [116.1223◦ E, 124.8828◦ E] [36.9983◦ N, 44.1268◦ E]
2© East China Sea area B1 2020-07-26 15:00 [120.4694◦ E, 127.7919◦ E] [26.3600◦ N, 32.2755◦ N]

To better observe the ship wake, analyze the experimental results and verify the
performance of the method, four groups of image slices with different sizes and scenes
were extracted from the original remote sensing images as experimental data. A description
of the experimental data is presented in Table 3.
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Table 3. Data used in the experiment.

Sequence
ID

Spatial
Resolution (m)

Temporal
Resolution (s)

Image Size
(pixel)

Number of
Images Features of the Scene

Sequence1 50 20 500 × 500 8 No Cloud + No Island
Sequence2 50 20 200 × 200 5 With Cloud
Sequence3 50 20 500 × 500 8 With Island
Sequence4 50 20 800 × 800 8 Island + Cloud

In accordance with our detection and tracking framework, ANGS was used to stretch
single-frame images to improve the image contrast and highlight the ship targets prior
to detecting ship targets in the single-frame remote sensing images. The results of our
stretching experiments conducted on several groups of GF-4 satellite panchromatic optical
remote sensing images, the stretching effect was superior when the value of E was set at
between 6 and 8. We therefore set the parameter E to 6 in the experiment. The stretched
images of the four groups of experimental data are illustrated in Figure 9.
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Figure 9. (a) 2D and 3D views of stretched images without clouds and island; (b) 2D and 3D views of stretched images
with clouds; (c) 2D and 3D views of stretched images with island; (d) 2D and 3D views of stretched images with island
and clouds.

4.2. Detection and Comparison

To verify the performance of this method, we conducted comparative experiments
between using the MDDCM method and other visual saliency methods, including the
multi-scale patch-based contrast measure (MPCM) method [26], the local peak signal-
to-noise ratio (PSNR) method [21] and the spectral residual (SR) method based on the
frequency domain [27].

4.2.1. Experimental Parameters

The range of the MDDCM window size depends on the image resolution and the
target size. Our previous analysis showed that the width of the wake in a GF-4 image
was few pixels, while the length could reach dozens. Therefore, the size k of the MDDCM
window was set in the range of 2–4 for the multi-scale saliency map calculation.

Similarly, the size of the MPCM window depends on the size of the target. In addition,
MPCM method supports multiple scales; hence, we set the K value of MPCM to 3 and 5.

The convolution kernel size of SR method is related to the target size and can only be
set to one value. Through experiments, we found that when n is 3, the detection result is
better.

In article [21] for PSNR method, the author explicitly proposed that the value of Kout
is 20 and the value of Kin is 10. In addition, fixed threshold th is adopted for segmentation
and the authors suggested th to be set at 3–5, therefore, here, th was 4.

The segmentation threshold τ was used to segment the saliency map. The segmenta-
tion factor λth is an empirical value, usually 20–50. Except for the PSNR method, the value
of λth was uniformly set to 20 to compare and verify the performance of each method.

The experimental parameter settings of each method are listed in Table 4.
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Table 4. Experimental parameter values of visual saliency methods.

Method Symbol Parameter Description Value

MPCM
K Size of center window 3, 5

λth Segmentation factor 20

PSNR
Kin Size of inner window 10
Kout Size of outer window 20
th Fixed segmentation threshold 4

SR
n Size of convolution kernel 3

λth Segmentation factor 20

MDDCM
K size of center window 2, 3, 4

λth Segmentation factor 20

4.2.2. Comparison

The comparative experimental ship detection results using the different methods with
the four groups of experimental data introduced above are shown in Figure 10.
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ods used in comparison. Although false alarms occurred in the fourth group of data, these 
false alarms can be subsequently removed using the follow-up method. 

  

Figure 10. (a) 3D view of saliency map and ship detection result using MPCM; (b) 3D view of saliency
map and ship detection result using PSNR; (c) 3D view of saliency map and ship detection result
using SR; (d) 3D view of saliency map and ship detection result using MDDCM.

Figure 10a shows that the MPCM method has a good background suppression ability.
The detection performance of small targets is very good and all small targets in the four
scenes can be detected; but in the presence of clouds or islands, there are several false
alarms, while the anti-interference ability becomes insufficient. In Figure 10b, the detection
performance of the PSNR method is also good, but the background suppression ability is
relatively poor and there are many false alarms in the data of group 2 and group 3.

Figure 10c shows that SR method misses targets in groups 1, 2 and 4 data and the
detection performance of small targets is poor. False alarms appeared in the data of
groups 3 and 4.

It can be seen from Figure 10d that our MDDCM method successfully detected all
targets with a low false alarm rate and excellent background suppression ability. This
greatly improved the SNR and it provided the best detection performance of all the methods
used in comparison. Although false alarms occurred in the fourth group of data, these false
alarms can be subsequently removed using the follow-up method.

4.3. Shape-Based False Alarm Removal

Based on the image resolution analysis and the size and shape of the ship’s wake,
we set Widthmin and Widthmax to 2 and 6, respectively. The aim of shape verification is
to further remove false alarms from candidate ship targets and particularly to avoid the
interference of spot-shaped clouds in target detection. Table 5 lists the shape verification
results for some of the candidate ship targets.
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Table 5. Shape-based verification.

No. Target Width Length Rreal Rth Verification

1
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Candidate ship targets detected by the MDDCM algorithm often contain false alarms,
such as small islands and spot-shaped clouds and these tend to have high brightness.
Figure 11a shows the detection results of the MDDCM algorithm, where target C is an
island and target A is a moving ship. The Rreal of target C does not meet the threshold, Rth
and it is thus removed from the candidate target. The result is then shown in Figure 11b.

Sensors 2021, 21, x FOR PROOFREADING 18 of 22 
 

 

(a) (b) 

Figure 11. (a) Detection result of MDDCM; (b) false alarm removal by conducting shape verification. (A, B and C in the 
figure are three candidate ship targets). 

4.4. Ship Tracking 
After target detection and shape verification within a single frame image in the image 

sequence, the candidate ship can be obtained in the single frame image. Taking the center 
pixel of each candidate target as the data source, multi-frame data association of the image 
sequence can be conducted to obtain the track and speed of the ship. Simultaneously, con-
straint parameters such as the minimum number of associated frames, maximum speed, 
minimum speed and minimum moving distance can be used to further remove false tar-
gets. The corresponding parameter settings are presented in Table 6. 

Table 6. Constraint parameters for ship tracking. 

Item Value 
Minimum association frames 3 

Minimum speed 10 km/h  
Maximum speed 80 km/h 

Minimum distance 2 km 

Figure 12 shows the process involved in associating three frames of data using the 
JPDA method. The previous method detected two targets, A1 and B1 in Figure 12a, A2 
and B2 in Figure 12b and A3 and B3 in Figure 12c. The track and speed of target A were 
successfully obtained by associating three frames of data. However, the false alarm target 
B was a fixed island, which was not associated with a stable track, and it was therefore 
filtered out. 

Figure 11. (a) Detection result of MDDCM; (b) false alarm removal by conducting shape verification. (A, B and C in the
figure are three candidate ship targets).



Sensors 2021, 21, 7547 17 of 20

4.4. Ship Tracking

After target detection and shape verification within a single frame image in the image
sequence, the candidate ship can be obtained in the single frame image. Taking the center
pixel of each candidate target as the data source, multi-frame data association of the image
sequence can be conducted to obtain the track and speed of the ship. Simultaneously,
constraint parameters such as the minimum number of associated frames, maximum speed,
minimum speed and minimum moving distance can be used to further remove false targets.
The corresponding parameter settings are presented in Table 6.

Table 6. Constraint parameters for ship tracking.

Item Value

Minimum association frames 3
Minimum speed 10 km/h
Maximum speed 80 km/h

Minimum distance 2 km

Figure 12 shows the process involved in associating three frames of data using the
JPDA method. The previous method detected two targets, A1 and B1 in Figure 12a, A2
and B2 in Figure 12b and A3 and B3 in Figure 12c. The track and speed of target A were
successfully obtained by associating three frames of data. However, the false alarm target
B was a fixed island, which was not associated with a stable track, and it was therefore
filtered out.
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Figure 12. (a) Frame 1 with targets A1 and B1 (b) frame 2 with targets A2 and B2 (c) frame 3 with targets A3 and B3 (d) data
association result with real target A and false target B.

The JPDA algorithm was then used to conduct data association for the candidate tar-
gets detected by the five groups of experimental data and the obtained tracking information
is shown in Table 7.

Table 7. Tracking results.

Image Sequence Total Frames Track Id Association Frames Mean Speed (km/h)

Image Sequence 1 8
Track 1 8 36.12
Track 2 8 34.77
Track 3 7 26.46

Image Sequence 2 5
Track 1 5 49.06
Track 2 4 44.95

Image Sequence 3 8 Track 1 8 58.44

Image Sequence 4 8
Track 1 7 37.08
Track 2 6 28.62
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4.5. Results Evaluation

To verify the effectiveness and performance of the proposed method, we used the
recall, precision and F-score to evaluate the method and compare it with other methods.
Recall represents the effectiveness of the detection, Precision represents the accuracy of
the detection and F-Score is the comprehensive response of recall and precision and the
formulas used to calculate them are as follows:

Recall =
NTP

NTP + NFN
, (18)

Precision =
NTP

NTP + NFP
, (19)

False-Alarm =
NFP

NTP + NFP
, (20)

F-Score =
2× Rcall × Precision

Rcall + Precision
, (21)

where NTP and NFN are the number of correctly detected targets and the number of ships
that have not been detected, respectively, and NFP is the number of false targets detected. In
accordance with the previous experimental data obtained and the experimental parameters,
the detection results of the five groups of experimental data were statistically analyzed
and the results of a comparison between the proposed MDDCM method and other visual
saliency methods are shown in Table 8.

Table 8. Comparison between the performance of MDDCM and those of other methods.

Method NTP + NFN NTP + NFP NTP NFN NFP Recall (%) Precision (%) False-Alarm (%) F-Score (%)

MPCM

58

124 55 3 69 94.8 44.4 55.6 60.5
PSNR 90 50 8 40 86.2 55.6 44.4 67.6

SR 64 24 26 40 41.4 37.5 62.5 39.4
MDDCM 75 55 3 22 94.8 70.7 29.3 81.0

The experimental results show that SR provided the worst performance of all methods
and the proposed MDDCM method provided the best performance. The MPCM and
MDDCM methods both provided high recall, but the MPCM method identified a greater
number of false targets.

Although the MDDCM method provided the highest recall of all methods, which
reached 94.8%, its precision was only 70.7% and many false targets were identified. There-
fore, the proposed shape verification method was used to further remove false targets that
did not have ship’s wake characteristics. The JPDA was then used to conduct a multi-frame
data association of candidate targets in a single frame image and false targets could be
further removed, if they were not associated with a stable track. These steps show that the
detection precision of the MDDCM method can be improved. Table 9 shows the improve-
ments made in the detection performance after shape verification and multi-frame data
association.

Table 9. Performance improvement by employing shape verification and data association.

Method Recall (%) Precision (%) False-Alarm (%) F-Score (%)

MDDCM 94.8 70.7 29.3 81.0
After shape verification 93.1 87.1 12.9 90.0
After data association 93.1 98.2 1.9 95.6

The experimental results show that after shape verification, some false targets were
further filtered and the precision increased from 70.7% to 87.1%. After multi-frame data
association, most of the false targets were removed and the false alarm rate was only 1.9%.
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However, some real targets were filtered out during shape verification and some were
discarded because they were not associated with a stable track, which resulted in a slight
decrease in the recall rate. Nevertheless, the comprehensive evaluation F-score increased
from 81.0% to 95.6%.

5. Conclusions

Geostationary optical remote sensing satellites can provide continuous observations
of fixed areas. The GF-4 satellite has the advantages of a high temporal resolution and
large coverage, which enables continuous observation of ships moving on the sea surface.
However, owing to the spatial resolution of the image, as well as interference from high-
brightness clouds, islands and sea clutter, ship targets are dim and small in the image,
which makes it very difficult to directly detect ships.

We analyzed the wake of a moving ship and proposed a moving ship detection and
tracking method based on visual salience. Four groups of GF-4 panchromatic remote
sensing images of different scenes and four groups of real GF-4 panchromatic remote
sensing images were used in this study. The four groups of data included a cloudless scene,
a scene containing dense cloud, a scene containing islands and a complex scene containing
both clouds and islands

Through experimental analysis and comparisons with other methods, the proposed
method provides a good detection performance, which has a higher recall rate of 93.1%
and a lower false alarm rate of 1.9%. Thus, it can be used to effectively detect and track
moving ships on the sea surface in GEO optical remote sensing satellite images, even in
the presence of dense clouds and islands. Nevertheless, our method has limitations. In the
presence of numerous moving spot-shaped clouds, the detection performance will sharply
decline, resulting in high false alarm.

Finally, we analyzed the general influencing factors on ship detection in optical
remote sensing images, such as clouds and islands and proposed an MDDCM method
suitable for small target detection. In low and medium resolution optical satellite remote
sensing images, ship targets are usually small and generally affected by bright clouds and
islands. Therefore, we will apply the proposed method to other medium-resolution and
low-resolution optical satellite remote sensing images for further research.
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