
sensors

Article

An Empirical Study of Training Data Selection Methods for
Ranking-Oriented Cross-Project Defect Prediction

Haoyu Luo 1, Heng Dai 2, Weiqiang Peng 3, Wenhua Hu 4,* and Fuyang Li 4,*

����������
�������

Citation: Luo, H.; Dai, H.; Peng, W.;

Hu, W.; Li, F. An Empirical Study of

Training Data Selection Methods for

Ranking-Oriented Cross-Project

Defect Prediction. Sensors 2021, 21,

7535. https://doi.org/10.3390/

s21227535

Academic Editors: Kim Phuc Tran,

Athanasios Rakitzis and

Khanh T. P. Nguyen

Received: 26 October 2021

Accepted: 10 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, South China Normal University, Guangzhou 510631, China;
hluo@m.scnu.edu.cn

2 School of Mechanical and Electrical Engineering, Wuhan Qingchuan University, Wuhan 430204, China;
daiheng726@163.com

3 School of Computer Science, Wuhan University, Wuhan 430072, China; pengweiqiang@whu.edu.cn
4 School of Computer Science and Artificial Intelligence, Wuhan University of Technology,

Wuhan 430070, China
* Correspondence: whu10@whut.edu.cn (W.H.); fyli@whut.edu.cn (F.L.); Tel.: +86-15827354612 (W.H.);

+86-2787216780 (F.L.)

Abstract: Ranking-oriented cross-project defect prediction (ROCPDP), which ranks software mod-
ules of a new target industrial project based on the predicted defect number or density, has been
suggested in the literature. A major concern of ROCPDP is the distribution difference between the
source project (aka. within-project) data and target project (aka. cross-project) data, which evidently
degrades prediction performance. To investigate the impacts of training data selection methods on
the performances of ROCPDP models, we examined the practical effects of nine training data selec-
tion methods, including a global filter, which does not filter out any cross-project data. Additionally,
the prediction performances of ROCPDP models trained on the filtered cross-project data using the
training data selection methods were compared with those of ranking-oriented within-project defect
prediction (ROWPDP) models trained on sufficient and limited within-project data. Eleven avail-
able defect datasets from the industrial projects were considered and evaluated using two ranking
performance measures, i.e., FPA and Norm(Popt). The results showed no statistically significant
differences among these nine training data selection methods in terms of FPA and Norm(Popt). The
performances of ROCPDP models trained on filtered cross-project data were not comparable with
those of ROWPDP models trained on sufficient historical within-project data. However, ROCPDP
models trained on filtered cross-project data achieved better performance values than ROWPDP
models trained on limited historical within-project data. Therefore, we recommended that soft-
ware quality teams exploit other project datasets to perform ROCPDP when there is no or limited
within-project data.

Keywords: fault prediction; machine learning; data selection

1. Introduction

Software defect prediction (SDP), also known as software fault prediction, is a research
hotspot, which has drawn lots of attention from both industry and academia [1,2]. Defect
prediction recognizes the appearance of defects in the system or industrial software, which
provides support to find the category, location, and scale of defects [3–7]. It has long been
recognized as one of the important aspects of improving the reliability of industrial system
software [8–10]. With the development of artificial intelligence algorithms, the reliability
of automatic defect prediction is ever-increasing. The general method of software defect
prediction models is to learn a classification model from the historical datasets via the
machine learning algorithms, and then predict whether new software modules contain
bugs [11]. The accurate prediction results can contribute to the allocation of reasonable
testing resources by focusing on those predicted defect-prone modules [12,13].

Sensors 2021, 21, 7535. https://doi.org/10.3390/s21227535 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21227535
https://doi.org/10.3390/s21227535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227535
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227535?type=check_update&version=1

Sensors 2021, 21, 7535 2 of 18

Within-project defect prediction (WPDP) models perform well when sufficient histori-
cal within-project (WP) data are available to construct a SDP model [14,15]. However, it is
very hard for a new project to construct a WPDP model with limited historical data. Cross-
project defect prediction (CPDP) is an efficient approach proposed and adopted by the
research community to alleviate the problem. CPDP techniques firstly use the other project
datasets (i.e., CP data) to construct a SDP model, and then predict the defect-proneness
of WP software modules [16]. However, only predicting the defect-proneness of the WP
modules is not very efficient for limited resource allocation, because the CPDP model
will allocate equal testing resource to all predicted defect-prone modules, without consid-
ering the number of defects or defect density of the modules [17,18]. Ranking-oriented
cross-project defect prediction (ROCPDP) can rank these WP modules according to their
predicted defect numbers or densities, thereby allocating the limited testing resources
more efficiently.

Turhan et al. [19] found that using all available CP data for model construction
results in a CPDP model with low performance due to existence of several irrelevant CP
modules within the data. Therefore, they proposed a training data selection method (i.e.,
nearest neighbor filtering) to filter out irrelevant CP modules. Their experimental results
demonstrated that the filtered data based on the training data selection method do improve
the performances of CPDP models, but it is a challenge for CPDP models to outperform
WPDP ones. Inspired by this work [19], many novel training data selection methods have
been proposed to find the most relevant training data for CPDP [20–25]. These studies
demonstrated the benefits of training data selection methods on CPDP performance, but
the practical benefits of these methods in urgent defective modules (i.e., software modules
with more defects or higher defect density) are unknown. Empirical evidence on the
impacts of training data selection methods on the performances of ROCPDP models is thus
necessary. Knowing the impacts of these data selection methods on the performances of
ROCPDP models could help software quality teams to make effective decisions regarding
scarce resource allocations and prioritization of defective modules.

Accordingly, we investigated the practical benefits of applying nine training data
selection methods for ROCPDP on eleven available defect datasets and evaluated them
using two ranking performance measures, i.e., FPA and Norm(Popt). The experimental
results indicate that the data selection methods have no positive impacts on the performance
of ROCPDP. Additionally, we investigated the impacts of training data selection methods on
the performance of ROCPDP compared to ranking-oriented within-project defect prediction
(ROWPDP) models trained on sufficient and limited within-project data. The experiment
results indicate that the performances of the ROCPDP models trained on filter CP data are
not comparable with those of ROWPDP models trained on sufficient historical WP data in
terms of FPA and Norm(Popt); and ROCPDP models trained on filtered CP data achieved
better results than ROWPDP models trained on limited historical WP data.

In real life, a new software project may not contain sufficient training data to build a
ROWPDP model with high performance. However, there are many historical data from
public software repositories. Therefore, we recommend that software testers exploit other
project datasets to conduct ROCPDP at the early stages of development activities when
there is no or limited WP data.

In summary, this paper makes the following contributions:

(1) We conducted an extensive comparative study on the impacts of nine training data
selection methods on the performance of ROCPDP. To the best of our knowledge, this
was the first attempt to perform such a large-scale empirical study on training data
selection methods in the context of ROCPDP.

(2) We evaluated the performances of training data selection methods using both the
module-based ranking performance measure (FPA) and the LOC-based ranking perfor-
mance measure (Norm(Popt)), and employed a state-of-the-art multiple comparison
technique (double Scott–Knott test) to rank and cluster the training data selection

Sensors 2021, 21, 7535 3 of 18

methods into distinct groups. Therefore, software quality teams are provided with
more choices for practical applications.

The remainder of this paper is organized as follows. Section 2 presents the back-
ground and related work. Section 3 briefly introduces the training data selection methods.
Sections 4 and 5 present the experiment setup and experiment results, respectively. Finally,
Section 6 presents the conclusion and points out the future work.

2. Related Work and Background

We first introduce the motivation behind the ROCPDP study. Then, we introduce
the existing SDP and ranking-oriented defect prediction (RODP) methods. Finally, we
summarize most existing works on CPDP.

2.1. ROCPDP

ROCPDP can rank WP modules according to their predicted bug number or density,
thereby assigning the testing resources more efficiently. We use an example in Figure 1 to
illustrate the difference between CPDP and ROCPDP.

Example: Project D is a new developed project which has one hundred software
modules. As of the deadline, the software testers could only test a fraction of these modules
(e.g., twenty modules). Since Project D is a new project and there are no historical data,
the testers first used multiple CP datasets (i.e., Project A, Project B, and Project C) to build
a classification model for predicting whether these modules are defective, or a model for
ranking the modules according to their predicted bug numbers or densities. Then, they
employed the built model to predict the defect-proneness of the modules or rank them.
Suppose that the classification model predicts that forty modules are defective: the software
testers face a problem as to which twenty modules among the forty predicted defective
ones should expect to be tested. The testers could, however, test the first twenty based
on the results of the ranking model, i.e., first inspecting the modules with more bugs or
higher defect density. Consequently, ranking modules in Project D can be more helpful
than predicting whether or not a module is defective in the absence of testing resources.
Since this CPDP approach employs the learning to rank technique to build models, we call
it ranking-oriented cross-project defect prediction (ROCPDP) [26].

To the best of our knowledge, only one work has focused on the ROCPDP problem.
You et al. [27] employed a simple multiple linear regression model to minimize the differ-
ence between the ranking list of WP modules and that of CP modules. However, this work
overlooked that the existence of larger irrelevant CP modules in CP datasets. Therefore, we
proposed the first research question (RQ) to investigate the practical benefits of applying
training data selection methods to filter out irrelevant CP modules for ROCPDP: RQ1:
Which training data selection method leads to better performance for ROCPDP?

In addition, in general, ROWPDP works well if sufficient historical WP data are
available to train a defect prediction model. Therefore, we proposed the second research
question to compare ROCPDP models trained on filter CP data and ROWPDP models
trained on sufficient historical WP data: RQ2: How does the application of training data
selection methods in ROCPDP models perform compared to ROWPDP models trained
on sufficient historical WP data?

However, in practice, it is rare to obtain sufficient training data for a new project.
Therefore, software quality teams perform ROWPDP with limited historical WP data,
or employ other project datasets to build ROCPDP models. Therefore, we wanted to clarify
how well ROWPDP models perform with limited historical WP data, compared with
these training data selection methods in the third research question: RQ3: How does the
application of training data selection methods in ROCPDP models perform compared
to ROWPDP models trained on limited historical WP data?

Sensors 2021, 21, 7535 4 of 18

Figure 1. The difference between a CPDP model and a ROCPDP model.

2.2. SDP and RODP

Recently, many scholars have proposed a variety of defect prediction methods using
some binary classification algorithms—e.g., neural networks [28], support vector ma-
chine [29], decision trees [30], Bayesian methods [31], and ensemble learning methods [32].
These proposed methods can learn from historical project datasets to construct a prediction
model, and then predict whether or not the new module is defective (i.e., a binary classifi-
cation task). However, only predicting the defect-proneness of the new software modules
is not very efficient when the testing resource is very limited, because the CPDP model
will allocate equal testing resource to all predicted defect-prone modules [33–35]. On the
contrary, RODP can rank these new modules according to their predicted bug numbers or
densities, thereby allocating the resources more efficiently.

In general, researchers use learning to rank techniques to construct the RODP models [18].
Learning to rank techniques can be divided into three categories, i.e., the pointwise method,
the pairwise method, and the listwise method [36]. The pointwise method first uses some
regression algorithm to predict the bug numbers of software modules, then uses these val-
ues to sort the modules. Recently, a lot of regression algorithms are employed to predict
the bug numbers of software modules, including Poisson regression (PR) [37], genetic pro-
gramming (GP) [38], decision tree regression (DTR) [39], etc. Moreover, Chen et al. [40] and
Rathore et al. [41] conducted an empirical investigation of many regression algorithms to predict
bug numbers, and the results showed that DTR, linear regression (LR), and Bayesian ridge
regression (BRR) achieved better performance in terms of average absolute error (AAE) and
root mean square error (RMSE). The pairwise method regard RODP problem as a binary clas-
sification task, i.e., constructing a classification model to identify which modules have more
defects. For instance, Nguyen et al. [42] explored the performances of the pairwise Ranking
SVM and RankBoost for RODP, and the results showed that the two algorithms outperformed
the linear regression algorithm. The listwise method directly looks at the entire ranking list
of modules by optimizing the performance measure. For instance, Yang et al. [18] proposed a
RODP approach named LRT via directly optimizing the FPA metric.

2.3. CPDP

There is not sufficient training data for a new developed software project. However,
there exist a lot of historical data from public software repositories [43]. To solve the insuf-
ficient training data problem, many CPDP methods are proposed. Zimmermann et al. [44]
conducted an empirical study and found that if we directly used other project datasets as

Sensors 2021, 21, 7535 5 of 18

the training data, the built defect prediction model performed not well due to the different
distribution between WP data and CP data. To alleviate the distribution gap, there exist
the three main methods. The first method is to employ the training data selection methods
to filter out irrelevant CP modules. For instance, Turhan et al. [19] proposed the nearest
neighbor filter, and Peters et al. [21] proposed the Peters filter. Bin et al. [45] investigated
nine training data selection methods for CPDP, and found that there seems to be no need
to filter CP data. The second one is to use the transfer learning techniques to build the
CPDP model. For instance, Ryu et al. [46] proposed the value-cognitive boosting with
support vector machine method to transfer WP data information into the weights of the CP
modules, and then build the predictor based on re-weighted CP modules. Jing et al. [16]
employed the semi-supervised transfer component analysis (SSTCA) method to make
the distributions of WP data and CP data consistent. The third method is to employ the
unsupervised learning techniques that need not labeled training data sets for CCDP. For ex-
ample, Zhang et al. [47] proposed to apply a spectral clustering algorithm to divide all WP
modules into a defective cluster and a non-defective cluster.

3. Training Data Selection Method

In this section, we briefly introduce the training data selection methods.

3.1. Global Filter (GF): Using All CP Data

GF was proposed by Menzies et al. in [20]. GF employs all CP modules as the training
data to construct the ROCPDP model, i.e., it does not filter out any CP modules.

3.2. Burak Filter (BF): WP Data Guided Filter

BF was proposed by Turhan et al. in [19]. It assumes that CP modules which are
nearest to WP modules are the most valuable CP data. The detailed procedure of BF are
as follows: (1) For each WP module, BF selects its k nearest neighbors in all CP modules
based on the Euclidean distance. (2) BF combines these neighbors (without duplication) as
the training data.

3.3. Peters Filter (PF): CP Data Guided Filter

PF was proposed by Peters et al. in [21]. It also assumes that CP modules that are
nearest to WP modules are the most valuable CP modules. However, the details of PF are a
little different from BF: (1) PF combines all WP modules and all CP modules, and uses the
K-means algorithm to group these modules. (2) PF keeps the clusters containing at least
one WP module. (3) For each CP module in each retained cluster, PF finds the nearest WP
module in the same cluster. (4) After obtaining these WP modules, for each WP module,
PF finds the neighbors from CP data in the same cluster. (5) PF combines these neighbors
(without duplication) as the training data.

3.4. Kawata Filter (KF): Density-Based Spatial Clustering Guided Filter

KF was proposed by Kawata et al. in [22]. KF assumes that CP modules which are in
the same cluster as WP modules are the most valuable modules in CP data. The details
of KF are as follows: (1) KF combines all WP modules and all CP modules, and uses the
DBSCAN algorithm to group these modules. (2) KF selects sub-clusters which consist
at least one WP module, and collects the CP modules in the selected sub-clusters as the
training data.

3.5. Yu Filter (YF): Hierarchical-Based Spatial Clustering Guided Filter

Our previous work proposed YF [23]. YF is similar to KF. The only difference is that YF
uses the agglomerative clustering algorithm to group all WP modules and all CP modules,
while KF uses the DBSCAN algorithm.

Sensors 2021, 21, 7535 6 of 18

3.6. He Filter (HF): Distribution Characteristic Guided Filter

HF was proposed by He et al. in [24]. HF applies the distribution characters of every
CP dataset to drive the selection process. HF selects training data at project level, while
the aforementioned filters select training data at module level. HF selects k most similar
CP datasets to the WP dataset, and combines all modules in the CP datasets as training
data. The similarity is calculated as follows: (1) Each project dataset is represented as a
distribution characteristic vector V = Min(f1), Max(f1), Median(f1), Mean (f1), STD(f1), . . . ,
Min(fn), Max(fn), Median(fn), Mean (fn), STD(fn), where Min(fi), Max(fi), Median(fi), Mean
(fi) and STD(fi) represents the minimum value, the maximum value, the median value,
the mean value, and the standard deviation value of the ith feature values of all modules
in each project dataset. (2) The similarity of two project datasets is the Euclidean distance
between the two distribution characteristic vectors of the two project datasets.

3.7. HeBurak Filter (HBF): Distribution Characteristic and WP Data Guided Filter

HBF was proposed by He et al. [24]. The details of HBF are as follows: (1) HBF applies
HF to obtain the retrained CP datasets. (2) HBF applies BF to the retrained CP datasets to
obtain the final training data.

3.8. HePerters Filter (HPF): Distribution Characteristic and CP Data Guided Filter

HPF was proposed by He et al. [24]. The details of HPF are as follows: (1) HPF applies
HF to obtain the retrained CP datasets. (2) HPF applies PF to the retrained CP datasets to
obtain the final training data.

3.9. Li filter (LF): Distribution Characteristic and Density-Based Partitioning Clustering
Guided Filter

LF was proposed by Li et al. in [25]. The details of LF are as follows: (1) LF applies HF
to obtain the retrained CP datasets. It is worth to note that LF uses the cosine distance to
measure the similarity of projects, while original HF uses the Euclidean distance. (2) KF
combines all WP modules and all CP modules in the retrained CP datasets, and uses the
K-means algorithm to group these modules. (3) KF selects sub-clusters which consist
at least one WP module, and collects the CP modules in the selected sub-clusters as the
training data.

We adopt these training data selection methods in our experiments for the following
reasons: Our selection of these training data selection methods closely resembles the choice
by Bin et al. [45]. In addition, they investigated another two training data selection methods
proposed in [20,48] for CPDP. The two methods train multiple individual defect prediction
models to generate an ensemble CPDP model. To classify a new WP module, each indi-
vidual model returns its class prediction, which counts as one vote. Then, the ensemble
CPDP model counts the votes and assigns the class with the most votes to the new WP
module. However, the two training data selection methods are not suitable for generating
an ensemble ROCPDP model, because it is unfeasible to use the vote strategy to decide
the rank of new modules. In addition, we set the parameters of the training data selection
methods according to the original works [19–25].

4. Experimental Setup
4.1. Datasets

We used 11 widely used industrial project datasets from the PROMISE repository as
our experimental datasets [49]. The detailed statistical results of the datasets are shown
in Table 1, where #Module is the number of modules in the release, #Defects is the total
number of defects in the release, %Defect is the percentage of defective-prone modules in
the release, Max is the average value of defects of all defective-prone modules in the release,
and Avg is the average value of defects of all defective-prone modules in the release. All
datasets have the same 20 software features (metrics) [50–52] shown in Table 2.

Sensors 2021, 21, 7535 7 of 18

Table 1. Details of Experiment Datasets.

Project Description #Modules #Defects %Defects Max Avg

Ant 1.7 A Java-based, shell independent build tool 125 33 16.0 3 1.65

Camel 1.6 An integration framework based on Enterprise Integra-
tion Patterns

965 500 19.5 28 2.66

Ivy 2.0 A dependence manager focusing on flexibility and sim-
plicity

352 56 11.4 3 1.4

Jedit 4.3 A cross platform programmer’s text editor 492 12 2.2 2 1.09

Log4j 1.2 A logging package for printing log output 205 498 92.2 10 2.63

Lucene 2.4 A core search library 340 632 59.7 30 3.11

Poi 3.0 Java API for Microsoft documents format 442 500 63.6 19 1.78

Synapse 1.2 A lightweight and high-performance Enterprise Service
Bus

256 145 33.6 9 1.69

Velocity 1.6 A template language engine 229 190 34.1 12 2.44

Xalan 2.7 An XSLT processor for transforming XML documents
into HTML, text, or other XML document types

803 531 48.2 9 1.37

Xerces 1.4 A Java-based XML parser 588 1596 74.3 62 3.65

4.2. Research Questions

RQ1: Which training data selection method leads to better performance for ROCPDP?
For this question, following the settings used in previous studies [19], when we considered
a project as a WP dataset, we chose other projects as the CP datasets. For instance, if we
employed Ant 1.7 as the WP dataset, we used all other projects (i.e., Camel 1.6, Ivy 2.0,
Jedit 4.3, Log4j 1.2, Lucene2.4, Poi 3.0, Synapse 1.2, Velocity 1.6, Xalan 2.7, Xerces 1.4) as
the CP datasets. To deal with the randomness in the training data selection methods and
prediction model, we ran the above procedure 100 times.

RQ2: How does using training data selection methods and ROCPDP models per-
form compared to ROWPDP models trained on sufficient historical WP data?

For this question, we wanted to investigate whether using training data selection meth-
ods and ROCPDP models can achieve performances comparable with those of ROWPDP
models trained on sufficient historical WP data. Following the settings used in previous
studies [19], for each project, the testing sets were selected from 10% of the data randomly.
Defect prediction models were then constructed from:

- CP data: all data from the other projects.
- WP data: remaining 90% of the data of that project.

We ran the above procedure 100 times to avoid sample bias and deal with the random-
ness in the training data selection methods and prediction model.

RQ3: How does using training data selection methods and ROCPDP models per-
form compared to ROWPDP models trained on limited WP data?

For this question, we wanted to investigate whether using training data selection
methods and ROCPDP models can achieve better performances than ROWPDP models
trained on limited historical WP data. Following the settings used in previous studies,
for each project, the testing sets are selected from 90% of the data randomly. Defect
prediction models are then constructed from:

- CP data: all data from the other projects.
- WP data: remaining 10% data of that project.

We ran the above procedure 100 times to avoid sample bias and deal with the random-
ness in the training data selection methods and prediction model.

Sensors 2021, 21, 7535 8 of 18

4.3. Performance Measures

In the experiment, we employed Norm(Popt) and FPA to evaluate the performances
of SDP models, since the former measures the global ranking of modules according to the
defect density, while the latter evaluates the global ranking of modules according to the
number of defects. We explain Norm(Popt) and FPA as follows.

In a the SLOC-based cumulative lift chart (Figure 2), the x-axis is the cumulative
percentage of inspected SLOC, and the y-axis is the cumulative percentage of found defects.

Norm
(

Popt
)
=

Popt −min
(

Popt
)

max
(

Popt
)
−min

(
Popt

) (1)

Here, Popt is defined as 1-opt, where opt is the area between the optimal model and
the prediction model in the SLOC-based cumulative lift chart. max(Popt) is the Popt value
of the optimal model, while min(Popt) is the Popt value of the worst model (software
modules are ranked by increasing actual defect densities).

Figure 2. A SLOC-based cumulative lift chart.

FPA is the average of the proportions of actual defects in the top modules to the whole
defects [18]. Assume that n modules in a project are ranked by no-decreasing order of
the predicted bug numbers, as M1, M2, M3, . . . , Mn, and y = y1 + y2 + . . . + yn is the total
bug numbers of the n modules. Therefore, Mn is predicted to contain the most number of
defects. The proportion of the actual bugs in the top m predicted modules to the whole
bugs is calculated as:

1
y

n

∑
i=n−m+1

yi. (2)

Then, FPA is define as follows:

FPA =
1
n

n

∑
m=1

1
y

n

∑
i=n−m+1

yi (3)

The higher Norm(Popt) and FPA values indicate the better ranking, where the software
modules that contain more defects or have higher defect density are ranked first.

Sensors 2021, 21, 7535 9 of 18

Table 2. The features of the datasets.

No. Feature Name Description

1 wmc Weighted methods per class A class with more member functions than its peers is considered
to be more complex and therefore more error prone

2 dit Depth of inheritance tree It’s defined as the maximum length from the node to the root of
the tree

3 noc Number of children Number of direct descendants (subclasses) for each class
4 cbo Coupling between object classes Increased when the methods of one class access services of

another

5 rfc Response for a class Number of methods invoked in response to a message to the
object

6 lcom Lack of cohesion in methods Number of pairs of methods that do not share a reference to an
instance variable

7 ca Afferent couplings How many other classes use the specific class

8 ce Efferent couplings How many other classes is used by the specific class

9 npm Number of public methods npm metric simply counts all the methods in a class that are
declared as public

10 lcom3 Another lack of cohesion measure m, a count the methods, attributes in a class. µ(a) is
the number of methods accessing an attribute. lcom3 =((

1
a ∑a

j µ
(

aj

))
−m

)
/(1−m)

11 loc Lines of code Total lines of code in this file or package

12 dam Data access metric Ratio of private (protected) attributes to total attributes
13 moa Measure of aggregation Count of the number of data declarations (class fields) whose

types are user defined classes
14 mfa Measure of functional abstraction Number of methods inherited by a class plus number of meth-

ods accessible by member methods of the class

15 cam Cohesion among methods of class #different method parameters types divided by (#different
method parameter types in a class)*(#methods)

16 ic Inheritance coupling Number of parent classes to which a given class is coupled
(includes counts of methods and variables inherited)

17 cbm Coupling between methods Total number of new/redefined methods to which all the inher-
ited methods are coupled

18 amc Average method complexity Number of Java byte codes

19 max_cc Maximum McCabe’s cyclomatic
complexity

Maximum McCabe’s cyclomatic complexity seen in class

20 avg_cc Average McCabe’s cyclomatic com-
plexity

Average McCabe’s cyclomatic complexity seen in class

4.4. Modeling Techniques

In this study, we used LTR [18] to build the ROWPDP and ROCPDP models. LTR is a
listwise learning to rank approach, which trains a simple linear model:

f (x) = 〈w, x〉. (4)

Then, it uses the composite differential evolution algorithm to directly optimize FPA to
get w. Then, it employs the built model to predict the relative bug numbers or densities in
new modules, and sort them according to the predicted values. Since parameter settings
may impact the performances of ROCPDP models [53], we followed the original paper [18]
to set the parameters of LTR; i.e., we set the feasible solution space to [−20, 20], and the
population size and maximal generation were set to 100.

The reasons that we used LTR are as follows.

Sensors 2021, 21, 7535 10 of 18

(1) Naïve Bayes (NB), logistic regression (LR), classification and regression tree (CART),
bagging, random forest (RF), and k-nearest neighbors (KNN) have been widely used
in SDP studies. These classification algorithms can rank all software modules with
respect to their probability of containing defect(s). For example, the Naïve Bayes
algorithm can output a score indicating the likelihood that a module is defective.
However, these algorithms do not employ the information of the number of defects.
In addition, Mende et al. [49] investigated the performances of these algorithms for
RODP in terms of CE and Popt. Experimental results show that these algorithms
had bad performances in terms of CE and Popt. Therefore, we do not employ these
classification algorithms to build the ROCPDP model.

(2) The work that originally designed for RODP was limited. Yang et al. proposed
LTR [18], which directly optimizes the performance measure (i.e., FPA) to obtain a
ranking function. Chen et al. [40] and Rathore et al. [41] conducted an empirical investi-
gation of many regression algorithms to predict bug numbers, and the results showed
that DTR, LR, and BRR achieved better performance in terms of AAE and RMSE.
Nguyen et al. [42] investigated Ranking SVM and RankBoost for RODP, and found
that these algorithms outperformed the linear regression algorithm. Therefore, we
compare LTR with DTR, LR, BRR, Ranking SVM and RankBoost. Experimental results
showed that LTR significantly outperformed the compared algorithms in terms of
FPA and Norm(Popt) using the 11 datasets in Table 1 through ten cross-validation. It
is also consistent with the view of Liu et al. [36] that the listwise approach generally
outperforms the pointwise approach and pairwise approach. Therefore, we use LTR
to build the ROCPDP model.

4.5. Statistic Comparison Tests

(1) We computed the effect size, Cliff’s δ [54], to quantify the amount of difference
between two methods. By convention, the magnitude of the difference is considered
as trivial (|δ| < 0.147), small (0.147–0.33), moderate (0.33–0.474), or large (>0.474).

(2) Scott–Knott Test: Scott–Knott test [55] is a multiple comparison technique that employs
hierarchical clustering algorithm to conduct the statistical analysis. The test divides
the training data selection methods into significantly different groups. There is no
significantly difference among the training data selection methods in the same group,
whereas the training data selection methods in different groups have significant
differences. In this study, we used the novel double Scott–Knott test [56] to cluster
these training data selection methods into different groups: In the first step of the test,
we divided the training data selection methods into significantly distinct groups with
the 100 FPA and Norm(Popt) values on each dataset as the inputs. Therefore, each
method had different rankings among different datasets. In the second step of the test,
we used the Scott–Knott test to get the final rankings of the methods with all rankings
of each method obtained in the first step as the input.

5. Experimental Results

In this section, we present the experimental results to answer the three research questions.

5.1. Which Training Data Selection Method Leads to Better Performance for ROCPDP?

To answer this question, we compare the impacts of nine training data selection
methods on the performances of ROCPDP models. Following the visualization technique
used in [47], the boxplots in Figures 3 and 4 show the distributions of FPA and Norm(Popt)
values of the methods with the Scott–Knott test results in the studied datasets. Different
colors of the boxplot indicate different Scott–Knott test ranks (from top down, the order is
red and blue). All methods in the same group are listed in decreasing order of the average
FPA and Norm(Popt) values from left to right. From Figures 3 and 4, we observe that the
nine training data selection methods are clustered into a group in terms of FPA, which
indicates that there exists no significant difference between these methods. In addition,

Sensors 2021, 21, 7535 11 of 18

the medium and average FPA values of GF are higher than those of the training data
selection methods.

Figure 3. The boxplots of the nine training data selection methods with the Scott–Knott test results in
terms of FPA.

Figure 4. The boxplots of the nine training data selection methods with the Scott–Knott test results in
terms of Norm(Popt).

Table 3 shows the Cliff’s δ values of the nine training data selection methods in terms of
FPA and Norm(Popt). White, light gray, deep gray, and yellow backgrounds indicate trivial,
small, moderate, and large magnitudes of difference according to Cliff’s δ, respectively.
As shown in Table 3, the differences among all methods are trivial or small in terms of FPA.
In terms of Norm(Popt), the difference between LF and PF is large, the differences between
LF and four other methods (GF, BF, KF, and YF) are moderate, the differences between HBF
and two other methods (PF, and YF) are moderate, and the difference between HF and PF
is moderate. In the other cases, the differences are trivial or small.

In summary, there are no significant differences among these nine training data
selection methods in terms of FPA and Norm(Popt); and LF is moderately better than GF,
BF, PF, KF, and YF in terms of Norm(Popt). The result is supported by the Scott–Knott test
and Cliff’s δ effect size.

Sensors 2021, 21, 7535 12 of 18

Table 3. Cliff’s δ of the Nine Training Data Selection Methods in Terms of FPA and Norm(Popt).

Norm(Popt)

GF BF PF KF YF HF HBF HPF LF
GF 0.181 0.208 0.069 0.167 −0.236 −0.278 0.056 −0.389
BF 0.180 0.083 −0.028 0.042 −0.292 −0.306 −0.069 −0.417
PF 0.125 0.027 −0.167 −0.056 −0.375 −0.375 −0.069 −0.523
KF 0.097 −0.125 −0.069 0.083 −0.292 −0.306 0.083 −0.458
YF 0.027 −0.152 −0.097 −0.042 −0.319 −0.347 −0.042 −0.431
HF 0.069 −0.111 −0.097 0.042 0.042 −0.111 0.194 −0.167

HBF 0.194 0.083 0.138 0.125 0.166 0.208 0.222 −0.097
HPF 0.278 0.194 0.166 0.208 0.236 0.277 0.181 −0.319

FPA

LF 0.097 −0.125 −0.111 0 0.111 0.083 −0.125 −0.292

5.2. How Does Using Training Data Selection Methods and ROCPDP Models Perform Compared
to ROWPDP Models Trained on Sufficient Historical WP Data?

The boxplots in Figure 5 show the distributions of FPA values of the nine training
data selection methods and LTR (i.e., ROWPDP model) trained on 90% WP data with the
Scott–Knott test results. As shown in Figure 5, LTR, HF, YF, BF, GF, LF and HBF belong to
the first group, while HPF and PF belong to the second group. In addition, the medium and
average FPA values of LTR are higher than those of the training data selection methods.

Figure 5. The boxplots nine training data selection methods and LTR trained on 90% WP data with
the Scott–Knott test results in terms of FPA.

The boxplots in Figure 6 show the distributions of Norm(Popt) values of the nine
training data selection methods and LTR trained on 90% WP data with the Scott–Knott test
results. As shown in Figure 6, we can observe that LTR and the nine training data selection
methods are clustered into a group. In addition, the medium and maximum FPA values of
LTR are much higher than those of the training data selection methods.

Table 4 shows the Cliff’s δ values of the nine training data selection methods and
LTR trained on 90% WP data in terms of FPA and Norm(Popt). As shown in Table 4,
the differences between LTR and two training data selection methods (PF and HPF) are
large, and the differences between LTR and two training data selection methods (BF, HBF,
and LF) are moderate in terms of FPA.

Sensors 2021, 21, 7535 13 of 18

Table 4. Cliff’s δ of the Nine Training Data Selection Methods and LTR Trained on 90% WP Data in Terms of FPA and
Norm(Popt).

Norm(Popt)

GF BF PF KF YF HF HBF HPF LF LTR
GF −0.181 0.042 0.069 0.194 −0.25 −0.306 0.125 −0.194 −0.638
BF 0.153 0.25 0.264 0.333 −0.027 −0.083 0.333 −0.042 −0.569
PF 0.402 0.431 0.014 0.014 −0.236 −0.319 0.125 −0.263 −0.708
KF 0.056 −0.111 −0.389 0.014 −0.194 −0.264 0.139 −0.236 −0.694
YF 0.083 −0.097 −0.403 0.014 −0.333 −0.333 0.042 −0.264 −0.75
HF 0.055 −0.125 −0.486 −0.014 −0.069 −0.056 0.264 −0.014 −0.444

HBF 0.111 0 −0.403 0.056 0.056 0.514 0.319 −0.056 −0.444
HPF 0.458 0.472 −0.414 0.458 0.458 0.153 0.444 −0.333 −0.75
LF 0.153 0.097 −0.403 0.097 0.153 0.153 0.056 −0.389 0.361

FPA

LTR −0.194 −0.361 −0.597 −0.25 −0.292 −0.222 −0.333 −0.667 −0.389

Figure 6. The boxplots of nine training data selection methods and LTR trained on 90% WP data
with the Scott–Knott test results in terms of Norm(Popt).

The differences between LTR and six training data selection methods (GF, BF, PF, KF,
YF, and HPF) are large, and the differences between LTR and other three methods are
moderate in terms of Norm(Popt).

In summary, although Scott–Knott test results show that LTR and some training
data selection methods belong to the same group, the Cliff’s δ effect size values indicate
that there are large or moderate difference between LTR and most training data selection
methods. In addition, LTR achieves the best average and median values in terms of FPA
and Norm(Popt). Therefore, we can conclude that the performances of ROCPDP models
trained on filter CP data using the training data selection methods are not comparable with
those of ROWPDP models trained on sufficient historical WP data in terms of FPA and
Norm(Popt).

5.3. How Does Using Training Data Selection Methods and ROCPDP Models Perform Compared
to ROWPDP Models Trained on Limited WP Data?

The boxplots in Figure 7 show the distributions of FPA values of the nine training
data selection methods and LTR (i.e., ROWPDP model) trained on 10% WP data with the
Scott–Knott test results. As shown in Figure 7, all training data selection methods belong to
the first group, while LTR belongs to the second group. It indicates that there are significant
differences between the training data selection methods and LTR. In addition, LTR has the
lowest average and medium FPA values.

The boxplots in Figure 8 show the distributions of Norm(Popt) values of the nine
training data selection methods and LTR trained on 10% WP data with the Scott–Knott test

Sensors 2021, 21, 7535 14 of 18

results. We can observe that the nine training data selection methods and LTR are clustered
into a group. In addition, the average Norm(Popt) value of LTR is lower than those of six
training data selection methods.

Figure 7. The boxplots of nine training data selection methods and LTR trained on 10% WP data
with the Scott–Knott test results in terms of FPA.

Figure 8. The boxplots of nine training data selection methods and LTR trained on 10% WP data
with the Scott–Knott test results in terms of Norm(Popt).

Table 5 shows the Cliff’s δ of the nine training data selection methods and LTR trained
on sufficient WP data in terms of FPA and Norm(Popt). As shown in Table 5, the differences
between LTR and all training data selection methods are moderate in terms of FPA, and the
difference between LTR and two training data selection methods (GF and HBF) is small in
terms of FPA and Norm(Popt).

In summary, Scott–Knott test results and Cliff’s δ values show that there are signif-
icant differences between LTR and all training data selection methods in term of FPA.
Although Scott–Knott test results show that LTR and all training data selection methods
belong to the same group in terms of Norm(Popt), most training data selection methods
achieve better average Norm(Popt) value than LTR. Therefore, we can conclude that the
training data selection methods achieve better performance than ROWPDP models trained
on limited historical WP data.

Sensors 2021, 21, 7535 15 of 18

Table 5. Cliff’s δ of the Nine Training Data Selection Methods and LTR Trained on 10% WP Data in Terms of FPA and
Norm(Popt).

Norm(Popt)

GF BF PF KF YF HF HBF HPF LF LTR
GF 0.069 0.097 0.111 0.278 −0.375 0.306 −0.028 −0.292 0.278
BF 0.056 0.014 0.042 0.194 −0.361 −0.306 −0.069 −0.278 0.014
PF 0.125 0.056 0.069 0.194 −0.431 −0.375 −0.083 −0.347 −0.083
KF 0.056 −0.028 −0.097 −0.111 −0.042 −0.069 0.222 −0.472 0.056
YF 0.069 −0.056 −0.056 −0.014 −0.611 −0.486 −0.208 −0.528 −0.032
HF 0.111 −0.042 −0.083 0.069 0.014 −0.056 0.25 0.056 0.111

HBF 0.166 0.097 −0.042 0.139 0.125 0.097 0.236 0.042 0.166
HPF 0.236 0.208 0.083 0.236 0.222 0.222 −0.139 −0.236 0.027
LF 0.111 0 −0.083 0.506 0.027 −0.028 −0.097 −0.25 0.125

FPA

LTR 0.416 0.389 0.375 0.403 0.403 0.458 0.431 0.347 0.444

5.4. Discussion

We formulate and structure our experiment to address three research questions. The ex-
perimental results for RQ1 indicate that the data selection methods have no positive impacts
on the performance of ROCPDP in terms of FPA and Norm(Popt). The experimental results
for RQ2 show that the performances of the ROCPDP models trained on filter CP data are
not comparable with those of ROWPDP models trained on sufficient historical WP data in
terms of FPA and Norm(Popt). The experimental results for RQ3 indicate that ROCPDP
models trained on filtered CP data achieved better performance values than ROWPDP
models trained on limited historical WP data. Therefore, we suggest that software testers
employ public project datasets to perform ROCPDP when there is no or limited WP data.

In a similar study, Bin et al. [45] investigated the impacts of nine training data selection
methods for CPDP, and also found that there is no need to filter CP data. The difference
between Bin et al.’s study and ours is that we focused on ranking software modules
according to the defect number or density, and we also investigated the impacts of training
data selection methods on the performances of ROCPDP compared to ROWPDP models
trained on sufficient and limited within-project data.

6. Conclusions and Future Work

In this study, we analyzed the performances of nine training data selection methods on
ROCPDP models. We employed 11 industrial project datasets from the PROMISE repository
as our experimental datasets, and used both a module-based effort-aware performance
measure (FPA) and a SLOC-based effort-aware performance measure (Norm(Popt)) as the
performance measures. We compared the ROCPDP models trained on the filtered cross-
project data using the training data selection methods with the ROWPDP models trained
on sufficient and limited within-project data. The experimental results showed that there
was no significant difference among the nine training data selection methods. Although the
performances of ROCPDP models with the filtered datasets cannot be comparable with
those of ROWPDP models trained on sufficient historical WP data, they significantly
outperformed ROWPDP models trained on limited historical WP data. Therefore, we
recommend that software testers exploit other project datasets to perform ROCPDP when
there are no or limited WP data.

In our experiments, we employed 11 widely used industrial project datasets. For future
studies, we plan to employ more project datasets to validate the generalization of our find-
ing. Since the experimental results indicate that the existing data selection methods have
no positive impacts on the performance of ROCPDP, developing a more effective training
data selection method for ROCPDP is also one of our future research interests. In addition,
we plan to design high-performing transfer learning algorithms to conduct ROCPDP.

Sensors 2021, 21, 7535 16 of 18

Author Contributions: Conceptualization, H.L.; Data curation, H.L.; Formal analysis, H.L. and
H.D.; Visualization, H.D.; Investigation, W.P.; Methodology, W.P. and H.L.; Software, W.P. and W.H.;
Supervision, F.L. and W.H.; Writing—original draft, F.L. and W.H.; Writing—review and editing, H.D.
and W.H.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Key—Area Research and Development Program
of Guangdong Province (No. 2020B0101650001), National Natural Science Foundation of China
(No. 62002123), and Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110212).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bal, P.R.; Kumar, S. WR-ELM: Weighted regularization extreme learning machine for imbalance learning in software fault

prediction. IEEE Trans. Reliab. 2020, 69, 1355–1375.
2. Sun, Z.; Zhang, J.; Sun, H.; Zhu, X. Collaborative filtering based recommendation of sampling methods for software defect

prediction. Appl. Soft Comput. 2020, 90, 106163, doi:10.1016/j.asoc.2020.106163.
3. Xu, Z.; Liu, J.; Luo, X.; Yang, Z.; Zhang, Y.; Yuan, P.; Tang, Y.; Zhang, T. Software defect prediction based on kernel PCA and

weighted extreme learning machine. Inf. Softw. Technol. 2019, 106, 182–200.
4. Yu, X.; Liu, J.; Yang, Z.; Liu, X. The bayesian network based program dependence graph and its application to fault localization. J.

Syst. Softw. 2017, 134, 44–53, doi:10.1016/j.jss.2017.08.025.
5. Leitao-Junior, P.S.; Freitas, D.M.; Vergilio, S.R.; Camilo-Junior, C.G.; Harrison, R. Search-based fault localisation: A systematic

mapping study. Inf. Softw. Technol. 2020, 123, 106295.
6. Zakari, A.; Lee, S.P.; Abreu, R.; Ahmed, B.H.; Rasheed, R.A. Multiple fault localization of software programs: A systematic

literature review. Inf. Softw. Technol. 2020, 124, 106312.
7. Szajna, A.; Kostrzewski, M.; Ciebiera, K.; Stryjski, R.; Sciubba, E. Application of the deep CNN-based method in industrial system

for wire marking identification. Energies 2021, 14, 3659.
8. Nguyen, T.P.K.; Beugin, J.; Marais, J. Method for evaluating an extended fault tree to analyse the dependability of complex

systems: Application to a satellite-based railway system. Reliab. Eng. Syst. Saf. 2015, 133, 300–313, doi:10.1016/j.ress.2014.09.019.
9. Rahman, A.; Williams, L. Source code properties of defective infrastructure as code scripts. Inf. Softw. Technol. 2019, 112, 148–163.
10. Rebai, S.; Kessentini, M.; Wang, H.; Maxim, B. Web service design defects detection: A bi-level multi-objective approach. Inf.

Softw. Technol. 2020, 121, 106255.
11. Rawat, M.S.; Dubey, S.K. Software defect prediction models for quality improvement: A literature study. Int. J. Comput. Sci.

Issues 2012, 9, 288–296.
12. Shippey, T.; Bowes, D.; Hall, T. Automatically identifying code features for software defect prediction: Using ast n-grams. Inf.

Softw. Technol. 2019, 106, 142–160.
13. Ochodek, M.; Staron, M.; Meding, W. SimSAX: A measure of project similarity based on symbolic approximation method and

software defect inflow. Inf. Softw. Technol. 2019, 115, 131–147.
14. Chen, X.; Mu, Y.; Liu, K.; Cui, Z.; Ni, C. Revisiting heterogeneous defect prediction methods: How far are we? Inf. Softw. Technol.

2021, 130, 106441.
15. Li, N.; Shepperd, M.; Guo, Y. A systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw.

Technol. 2020, 122, 106287.
16. Jing, X.; Wu, F.; Dong, X.; Xu, B. An improved SDA based defect prediction framework for both within-project and cross-project

class-imbalance problems. IEEE Trans. Softw. Eng. 2017, 43, 321–339.
17. Shepperd, M.J.; Bowes, D.; Hall, T. Researcher bias: The use of machine learning in software defect prediction. IEEE Trans. Softw.

Eng. 2014, 40, 603–616.
18. Yang, X.; Tang, K.; Yao, X. A learning-to-rank approach to software defect prediction. IEEE Trans. Reliab. 2015, 64, 234–246.
19. Turhan, B.; Menzies, T.; Bener, A.B.; Stefano, J.S.D. On the relative value of cross-company and within-company data for defect

prediction. Empir. Softw. Eng. 2009, 14, 540–578.
20. Menzies, T.; Butcher, A.; Cok, D.R.; Marcus, A.; Layman, L.; Shull, F.; Turhan, B.; Zimmermann, T. Local versus global lessons for

defect prediction and effort estimation. IEEE Trans. Softw. Eng. 2013, 39, 822–834.
21. Peters, F.; Menzies, T.; Marcus, A. Better cross company defect prediction. In Proceedings of the 10th Working Conference on

Mining Software Repositories, MSR ’13, San Francisco, CA, USA, 18–19 May 2013; Zimmermann, T., Penta, M.D., Kim, S., Eds.;
pp. 409–418.

Sensors 2021, 21, 7535 17 of 18

22. Kawata, K.; Amasaki, S.; Yokogawa, T. Improving relevancy filter methods for cross-project defect prediction. In Proceedings of
the 3rd International Conference on Applied Computing and Information Technology, ACIT 2015/2nd International Conference
on Computational Science and Intelligence, CSI 2015, Okayama, Japan, 12–16 July 2015; pp. 2–7.

23. Yu, X.; Liu, J.; Peng, W.; Peng, X. Improving cross-company defect prediction with data filtering. Int. J. Softw. Eng. Knowl. Eng.
2017, 27, 1427–1438.

24. He, P.; Li, B.; Zhang, D.; Ma, Y. Simplification of training data for cross-project defect prediction. arXiv 2014, arXiv:1405.0773.
25. Li, Y.; Huang, Z.; Wang, Y.; Fang, B. Evaluating data filter on cross-project defect prediction: Comparison and improvements.

IEEE Access 2017, 5, 25646–25656.
26. Yu, X.; Liu, J.; Keung, J.W.; Li, Q.; Bennin, K.E.; Xu, Z.; Wang, J.; Cui, X. Improving ranking-oriented defect prediction using a

cost-sensitive ranking SVM. IEEE Trans. Reliab. 2020, 69, 139–153.
27. You, G.; Wang, F.; Ma, Y. An empirical study of ranking-oriented cross-project software defect prediction. Int. J. Softw. Eng.

Knowl. Eng. 2016, 26, 1511–1538.
28. Manjula, C.; Florence, L. Deep neural network based hybrid approach for software defect prediction using software metrics.

Clust. Comput. 2019, 22, 9847–9863.
29. Yan, Z.; Chen, X.; Guo, P. Software defect prediction using fuzzy support vector regression. In Proceedings of the 7th International

Symposium on Neural Networks, ISNN 2010, Shanghai, China, 6–9 June 2010; Zhang, L., Lu, B., Kwok, J.T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6064, pp. 17–24.

30. Wang, J.; Shen, B.; Chen, Y. Compressed C4.5 models for software defect prediction. In Proceedings of the 2012 12th International
Conference on Quality Software, Xi’an, China, 27–29 August 2012; Tang, A.; Muccini, H., Eds.; IEEE: 2012; pp. 13–16.

31. Okutan, A.; Yildiz, O.T. Software defect prediction using bayesian networks. Empir. Softw. Eng. 2014, 19, 154–181.
32. Petric, J.; Bowes, D.; Hall, T.; Christianson, B.; Baddoo, N. Building an ensemble for software defect prediction based on diversity

selection. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM 2016, Ciudad Real, Spain, 8–9 September 2016; pp. 46:1–46:10.

33. Yu, X.; Bennin, K.E.; Liu, J.; Keung, J.W.; Yin, X.; Xu, Z. An empirical study of learning to rank techniques for effort-aware defect
prediction. In Proceedings of the 26th IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER
2019, Hangzhou, China, 24–27 February 2019; pp. 298–309, doi:10.1109/SANER.2019.8668033.

34. Li, W.; Zhang, W.; Jia, X.; Huang, Z. Effort-aware semi-supervised just-in-time defect prediction. Inf. Softw. Technol. 2020,
126, 106364.

35. Chen, X.; Zhang, D.; Zhao, Y.; Cui, Z.; Ni, C. Software defect number prediction: Unsupervised vs. supervised methods. Inf.
Softw. Technol. 2019, 106, 161–181.

36. Liu, T. Learning to rank for information retrieval. In Proceedings of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2010, Geneva, Switzerland, 19–23 July 2010; Crestani, F., Marchand-Maillet, S.,
Chen, H., Efthimiadis, E.N., Savoy, J., Eds.; p. 904.

37. Gao, K.; Khoshgoftaar, T.M. A comprehensive empirical study of count models for software fault prediction. IEEE Trans. Reliab.
2007, 56, 223–236.

38. Rathore, S.S.; Kumar, S. Predicting number of faults in software system using genetic programming. In Proceedings of the 2015
International Conference on Soft Computing and Software Engineering, SCSE’15, Berkeley, CA, USA, 5–6 March 2015; Elsevier:
Amsterdam, The Netherlands, 2015; Volume 62, pp. 303–311.

39. Rathore, S.S.; Kumar, S. A decision tree regression based approach for the number of software faults prediction. ACM SIGSOFT
Softw. Eng. Notes 2016, 41, 1–6.

40. Chen, M.; Ma, Y. An empirical study on predicting defect numbers. In Proceedings of the 27th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2015, Wyndham Pittsburgh University Center, Pittsburgh, PA, USA,
6–8 July 2015; Xu, H., Ed.; pp. 397–402.

41. Rathore, S.S.; Kumar, S. An empirical study of some software fault prediction techniques for the number of faults prediction. Soft
Comput. 2017, 21, 7417–7434.

42. Nguyen, T.T.; An, T.Q.; Hai, V.T.; Phuong, T.M. Similarity-based and rank-based defect prediction. In Proceedings of the 2014
International Conference on Advanced Technologies for Communications (ATC 2014), Hanoi, Vietnam, 15–17 October 2014;
pp. 321–325.

43. Liu, C.; Yang, D.; Xia, X.; Yan, M.; Zhang, X. A two-phase transfer learning model for cross-project defect prediction. Inf. Softw.
Technol. 2019, 107, 125–136.

44. Zimmermann, T.; Nagappan, N.; Gall, H.C.; Giger, E.; Murphy, B. Cross-project defect prediction: A large scale experiment on
data vs. domain vs. process. In Proceedings of the 7th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2009, Amsterdam, The Netherlands, 24–28
August 2009; van Vliet, H., Issarny, V., Eds.; pp. 91–100.

45. Bin, Y.; Zhou, K.; Lu, H.; Zhou, Y.; Xu, B. Training data selection for cross-project defection prediction: Which approach is better?
In Proceedings of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM
2017, Toronto, ON, Canada, 9–10 November 2017; Bener, A., Turhan, B., Biffl, S., Eds.; pp. 354–363.

46. Ryu, D.; Choi, O.; Baik, J. Value-cognitive boosting with a support vector machine for cross-project defect prediction. Empir.
Softw. Eng. 2016, 21, 43–71.

Sensors 2021, 21, 7535 18 of 18

47. Zhang, F.; Zheng, Q.; Zou, Y.; Hassan, A.E. Cross-project defect prediction using a connectivity-based unsupervised classifier. In
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May 2016; Dillon,
L.K., Visser, W., Williams, L.A., Eds.; pp. 309–320.

48. Bettenburg, N.; Nagappan, M.; Hassan, A.E. Think locally, act globally: Improving defect and effort prediction models. In
Proceedings of the 9th IEEE Working Conference of Mining Software Repositories, MSR 2012, Zurich, Switzerland, 2–3 June 2012;
Lanza, M., Penta, M.D., Xie, T., Eds.; pp. 60–69.

49. Mende, T.; Koschke, R. Revisiting the evaluation of defect prediction models. In Proceedings of the 5th International Workshop
on Predictive Models in Software Engineering, PROMISE 2009, Vancouver, BC, Canada, 18–19 May 2009; Ostrand, T.J., Ed.; ACM:
2009; p. 7.

50. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476–493,
doi:10.1109/32.295895.

51. Kafura, D.G.; Reddy, G.R. The use of software complexity metrics in software maintenance. IEEE Trans. Softw. Eng. 1987,
13, 335–343, doi:10.1109/TSE.1987.233164.

52. McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, 2, 308–320, doi:10.1109/TSE.1976.233837.
53. Kostrzewski, M. Sensitivity analysis of selected parameters in the order picking process simulation model, with randomly

generated orders. Entropy 2020, 22, 423.
54. Macbeth, G.; Razumiejczyk, E.; Ledesma, R.D. Cliff’s delta calculator: A non-parametric effect size program for two groups of

observations. Univ. Psychol. 2011, 10, 545–555.
55. Scott, A.J.; Knott, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics 1974, 30, 507–512.
56. Ghotra, B.; McIntosh, S.; Hassan, A.E. Revisiting the impact of classification techniques on the performance of defect prediction

models. In Proceedings of the 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy,
16–24 May 2015; Bertolino, A., Canfora, G., Elbaum, S.G., Eds.; Volume 1, pp. 789–800.

	Introduction
	Related Work and Background
	ROCPDP
	SDP and RODP
	CPDP

	Training Data Selection Method
	Global Filter (GF): Using All CP Data
	Burak Filter (BF): WP Data Guided Filter
	Peters Filter (PF): CP Data Guided Filter
	Kawata Filter (KF): Density-Based Spatial Clustering Guided Filter
	Yu Filter (YF): Hierarchical-Based Spatial Clustering Guided Filter
	He Filter (HF): Distribution Characteristic Guided Filter
	HeBurak Filter (HBF): Distribution Characteristic and WP Data Guided Filter
	HePerters Filter (HPF): Distribution Characteristic and CP Data Guided Filter
	Li filter (LF): Distribution Characteristic and Density-Based Partitioning Clustering Guided Filter

	Experimental Setup
	Datasets
	Research Questions
	Performance Measures
	Modeling Techniques
	Statistic Comparison Tests

	Experimental Results
	Which Training Data Selection Method Leads to Better Performance for ROCPDP?
	How Does Using Training Data Selection Methods and ROCPDP Models Perform Compared to ROWPDP Models Trained on Sufficient Historical WP Data?
	How Does Using Training Data Selection Methods and ROCPDP Models Perform Compared to ROWPDP Models Trained on Limited WP Data?
	Discussion

	Conclusions and Future Work
	References

