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Abstract: Distributed Acoustic Sensing (DAS) is a promising new technology for pipeline monitoring
and protection. However, a big challenge is distinguishing between relevant events, like intrusion by
an excavator near the pipeline, and interference, like land machines. This paper investigates whether
it is possible to achieve adequate detection accuracy with classic machine learning algorithms using
simulations and real system implementation. Then, we compare classical machine learning with a
deep learning approach and analyze the advantages and disadvantages of both approaches. Although
acceptable performance can be achieved with both approaches, preliminary results show that deep
learning is the more promising approach, eliminating the need for laborious feature extraction and
offering a six times lower event detection delay and twelve times lower execution time. However, we
achieved the best results by combining deep learning with the knowledge-based and classical machine
learning approaches. At the end of this manuscript, we propose general guidelines for efficient system
design combining knowledge-based, classical machine learning, and deep learning approaches.

Keywords: deep neural networks; Distributed Acoustic Sensing; machine learning; signal processing

1. Introduction

Pipeline accidents could cause human deaths, serious injuries, and material costs [1].
Presently, pipeline monitoring and protection is often performed by expensive and labo-
rious physical inspection methods such as helicopter or vehicle patrols [2]. Distributed
acoustic-optical sensors (DAS) are a comparatively new approach (see Figure 1). Such
systems permit the supervision of long-distance pipelines using fiber optics [3–10].

Figure 1. Distributed acoustic–optical sensors for pipeline monitoring.

Since fiber optic cables are usually laid along the modern pipelines, no additional
investment in equipment installation is needed. However, the application of distributed
acoustic–optical sensors requires advanced computer algorithms capable of recognizing
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events of interest such as manual and/or excavator digging, tapping, and intrusion detec-
tion. The design of efficient algorithms for event detection based on DAS measurements is
especially hard due to a huge variety of scenarios such as various kinds of excavators and
soil types, different temperature and weather conditions, as well as possible interference by
other signal sources such as highways, railways, wind turbines, and agricultural machines,
etc. Signal processing [11] and machine learning (ML) [12–21] are promising approaches
for tackling such problems.

Most of the current investigation and available literature focuses on the extracting
of the signal from the fiber, which is completed by interferometer assemblies. In [3], the
sensing of vibration using an optical frequency-domain reflectometry (OFDR) technique
was demonstrated in a 17-m length fiber up to a frequency of 32 Hz. A Mach–Zender
interferometer was used together with standard single-mode fibers. However, the work
focuses on the extraction of the signal, and the classification of events from the signal is
not discussed. Juarez et al. [4] describe the OTDR system for the detecting of intruders
in laboratory and field tests using a 12-km-length fiber. In the field, tests successfully
demonstrated the ability to detect an 80-kg person walking over the fiber. However, the
ability to classify different events has not been investigated. Choi [7] reports on the use
of OTDR for intruder detection over a cable buried 30 cm deep in the ground and with
a length of two km, tested with a 60-kg person walking up to a 1-m distance from the
cable. Again, any change in the signal was interpreted as evidence for the intrusion event
without discussing the possibility of classifying events by careful analysis of the signal
signature. Kumagai [8] describes an approach to distinguish intruders climbing a fence
from fence vibration due to wind to minimize false alarms. The signal of a Sagnac-type
interferometer was used to classify the event using FFT frequency analysis in the 0 to
250 Hz range. It was demonstrated that the event of a person climbing the fence can be
distinguished from the wind-induced fence vibration, and the resulting false alarm rate
was around one per month during a 1-year test period. About two real events per day
have been detected with a 100% detection rate. US patent 5,194,847 [9] discloses a method
and apparatus for intrusion detection based on the OTDR technique. The details of optical
setup and pulse forming as well as signal processing for the detection and location of the
intruder from the backscattered signal of an interrogating pulse are described, but the
classification of the event is not disclosed. Harman discloses a method and apparatus in
PCT patent application WO2013/185208 [10] for short-range perimeter surveillance with
two back-to-back Michelson interferometers using a cable comprising of four optical fibers.
He targets to achieve a competitive price for a security installation using this arrangement
and describes the necessary signal processing and post-processing techniques to extract an
intruder’s location from the optical signal. Again, signal processing for the classification of
the event was not disclosed.

In spite of more works on algorithms for event detection in recent times [22–30], research
and development of such algorithms are still challenging. Although there are some applica-
tions of either classical machine learning [22,23] or deep learning (DL) [24–30] approaches
in event detection in DAS, to our knowledge, there is not much research comparing and
combining these two approaches, as can be seen in a recent review [30]. Especially, little
attention is devoted to the role of human knowledge and its iterative development during
the whole process. Classifiers presented in [22–30] are mostly multi-event classifiers able
to detect different events like big/small machine hitting, pneumatic hammer, and a plate
compactor, where our classifiers distinguish only between two events: ‘excavator digging’
and ‘no excavator digging’. However, our classifier achieves higher classification accuracy
than most of the classifiers presented in the literature. We also provide real-time system
deployment results with a high true alarm and low false alarm rate, whereas most of
the references provide only the classification accuracy for different events, but not the
results of the real-time system deployment. Like the references [22–30], we investigated
supervised classifiers, both classical machine learning as well as deep learning classifiers,
where for each training instance the label is provided to which class the instance belongs.
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Performance comparisons between our system and the systems in the references [22–30]
are further discussed in the Results section.

In this work, we present the application of signal processing and machine learning
algorithms for event detection using DAS signals generated along a pipeline. We imple-
mented, compared, and combined two approaches for event detection: the classic machine
learning approach and the approach based on and deep learning. We especially emphasize
the role of human knowledge in all phases of development, from data collection through
an algorithms’ selection to system evaluation. We explicitly list design decisions made
according to the available knowledge at different phases of the development and outline a
proposal for the whole design process.

In the sequel of the work, we first provide a short description of DAS technology.
Then, we describe some machine learning and signal-processing algorithms that can be
used for event detection using DAS signals. Finally, we present and discuss results and
provide suggestions for further work.

2. Materials and Methods
2.1. Distributed Acoustic-Optical Sensors

Optical Time-Domain Reflectometry (OTDR) is a well-established technique used
to check long-haul fiber optical connections for telecommunication. This technology is
based on emitting short pulses into the fiber and recording the intensity of light reflected
to the sender by Rayleigh reflection [3–6]. A distributed acoustic–optical sensor can be
constructed by exploiting the fact that the refractive index of glass fiber is slightly affected
by any applied pressure, including sound pressure: short pulses are emitted as in the
case of OTDR, but instead, the signal intensity evaluated in the phase of the Rayleigh
reflected optical signal [3–6]. The laser pulse is launched into the fiber through pulse-
forming unit (see Figure 2). Rayleigh backscattered light from different positions along the
fiber is then captured in the reflected signal. Finally, the signal at different positions on
the fiber is determined by an interferometer as the difference between the phases of the
transmitted pulse and the reflected pulses from that fiber position (Φ-OTDR). Delay line
brings light reflected at short distances—say, 10 m apart—to the interferometer at the same
time. Alternatively, no delay line is needed if the pulse-forming unit can create two short
pulses emitted in the fiber at, e.g., 20 m.

Figure 2. Distributed Acoustic Sensor (DAS) Unit.

The optical/electrical (O/E) unit performs the conversion of the optical to the electrical
signal. By evaluating the interferometer every 100 nanoseconds, this procedure captures
the sound pressure every ~10 m. By emitting pulses at a rate of, e.g., 1000 Hz, one obtains
a distributed acoustic–optical sensor that is capable of detecting the vibrations’ pressure
up to distances of 40 km at regular distance of 10 m and up to frequencies of 500 Hz.
Optical fiber sensors have certain advantages that include immunity to electromagnetic
interference, lightweight, small size, high sensitivity, large bandwidth, and ease in imple-
mentation, as fiber cables are often already installed for communication purposes in critical
infrastructures. Strain, temperature, and pressure are the most widely studied signals used
in optical fiber sensing [5,6]. The tiny pressure change induced by acoustic events in the
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surrounding of an optical fiber can be measured by optical means over large distance, and
therefore, surveillance of large areas becomes possible using this technology

We used DAS based on Φ-OTDR. In our DAS system, polarization phase changes of
the Rayleigh backscattering light at different sections of the fiber (each 10 m) are sampled
at the rate of 2 kHz and provided each second as the input for the ML algorithms. The
ML performs classification decisions (‘excavator’ no ‘excavator’). These decisions are then
evaluated by the heuristic rules derived from the human domain knowledge before an
alarm is eventually raised.

The system was deployed on Windows operating system using GNU C for extracting
signals from the reflected light and doing basic preprocessing. For further signal processing
and machine learning, we used Matlab and scikit-learn library. Details of the system used
are provided in Table 1.

Table 1. Hardware and software used in the project.

Component Characteristics

Hardware

Industry PC: Intel Core i7, 64 GB RAM, 2TB HDD
Laser: output power: 13 dBm

Pulse durations: 10/20 ns
Nominal frequency of 100 MHz

Phase jitter ≤ ± 10 ps RMS
Initial frequency accuracy ≤ ± 150 ppm

Temperature stability ≤ ± 30 ppm
Aging ≤ ± 15 ppm for the 1st year

Photodetectors sensitivity: ≥0.85 mA/m
Data provisioning each second at the rate of 2 kHz

Software

scikit- learn V1.0 (© 2007–2021, scikit-learn developers (BSD
License)) library for machine learning

Matlab R2019a (The Mathworks, Inc., Natick, MA, USA) for
signal processing and machine learning

Windows 10 (Microsoft Corporation, Redmond, WA, USA) and
GNU C for the rest of the software

2.2. Signal Processing and Machine Learning for DAS Event Detection

While the classical literature describes basic signal processing to resolve an event from
the OTDR signal and thereby generate alarms [7–10], the classification of event types from
the signal is a modern research topic [22–30]. There is a need to monitor and detect specific,
safety-relevant events with a low false alarm rate among many ‘harmless’ background
events. Although it is relatively new research area requiring multidisciplinary approach,
we are standing on the ‘shoulders of giants’ and can exploit a vast body of knowledge in
signal processing and pattern recognition in general [11–13] and more recent advances like
deep learning specifically [14,15].

The classical task machine learning approach consists of the following phases: data
collection, data preprocessing, feature extraction, feature classification, tracking, and event
probability evaluation (see Figure 3, left).

In Figure 3, we emphasize the central role of human knowledge in making design
decisions about data collection strategy, feature selection, and algorithms selection for ma-
chine learning and tracking. Human knowledge comprises our whole domain and physics
knowledge: how signals arise and propagate over the Earth, what possible interference
sources exist, and which machine learning and tracking algorithms we can use. Human
knowledge is iteratively refined and improved during the whole project. In the following,
we shortly describe each of the phases using classing machine learning approach.
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Figure 3. Two methods for event detection by DAS: classic machine learning approach (left) and
deep neural networks approach (right). Note the central role of human knowledge.

2.2.1. Feature Selection and Extraction

The art of science of machine learning consists of selecting appropriate features and
classification algorithms for the task at hand. Especially, feature selection is demanding
task that requires high effort and very good domain knowledge.

Before feature extraction, standard signal-processing techniques like signal smoothing
and filtering are used for data pre-processing and visualization, which are necessary prereq-
uisites for further signal analysis and pattern recognition [11,12]. To reduce computation
effort, a threshold selection can also be used to only evaluate the fiber sections with a signal
above the appropriate threshold.

The feature extraction task is to define and calculate the specific characteristics
of the signals (features) useful for classification [12,13]. The outputs of feature extrac-
tions are N-dimensional vectors that are mapped by feature classifier to the classes in an
N-dimensional feature space. The features can be extracted from signal characteristics in
time, frequency, or in time and frequency (scale) domains:

• Time features: time energy distribution (TE), principal component analysis (PCA),
and correlation-based features;

• Frequency features: fast Fourier transform (FFT), short-time fast Fourier transform
(STFT), and cepstral coefficients (CC);

• Time-frequency features: continuous wavelet transform (CWT), discrete wavelet
transform (DWT), and wavelet packet transform (WPT).
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2.2.2. Feature Classification: Machine Learning Algorithms

The task of feature classifiers, i.e., machine learning algorithm, is to assign the
N-dimensional feature vectors obtained by feature extraction to the different classes of
events. In our case, there are two event classes: intrusion by an excavator and no excavator
intrusion. In general, it means dividing N-dimensional feature space into several regions
and associating the regions with the classes. In the following, we provide an overview
of some popular classifiers according to [12–15] that we evaluated in our work. We used
supervised machine learning, where for each training instance a label is provided to which
class the instance belongs.

• Decision trees are (tree-like) graphs in which each internal node represents an “if”-
test on a feature, each branch represents the outcome of the test, and each leaf node
represents a class label.

• Random Forest is an ensemble of decision trees improving accuracy by combining
decisions of different classifiers (decision trees).

• Support Vector Machines (SVM) separates the classes by choosing the hyperplane that
maximizes the distance between the hyperplane and the closest points in each feature
space region, which are called support vectors. In the cases of feature vectors that are
nonlinearly separable, a kernel function maps the input vectors to a higher dimension
space in which a linear hyperplane can be used to separate the vectors.

• Artificial Neural Networks (ANNs) are classifier methods that do not need special
assumptions on the underlying probability models [12–15]. A classical version of the
ANN is the so-called fully connected feed-forward ANN that takes features as an input
layer and forward signals from the neurons of one hidden layer to the other hidden
layer and finally to the output layer, which usually provides the class probabilities.
ANN can learn from examples, i.e., adapt internal weights between neurons so that the
predefined feature vectors are optimally allocated to the predefined classes (learning
examples). Classical ANNs are fully connected feed-forward networks where each
neuron in one layer is connected to all neurons of the previous layer. This kind or
ANN is also called multi-layer perceptron (MLP). However, the connections between
neurons in the deep learning ANN are adapted for the task at hand, e.g., CNN for
image recognition use inspired from human visual system to connect neurons in
distributed and hierarchical manner to build a kind of image filters [14,15].

• Deep Neural Networks: among ANN algorithms, especially deep neural networks
(DNN) with many layers of neurons organized in hierarchical manner, have drawn
attention in recent times due to their superb classification performance and their
ability to extract features from raw data [14,15]. As input signal for event detection, an
image that has been previously generated from sensor measurements by diverse image
processing algorithms can be used [18,19]. DNN can then operate on images to find
the DAS events. For image classification, especially effective are convolutional neural
networks (CNN) that hierarchically extract features from an image [14]. For example,
edges in images are extracted by a first hidden layer, shapes are then extracted in
the second layers using edges from the first layer as the input, and finally, the whole
objects are extracted in the last hidden layer.

Recently, deep learning is increasingly used for event detection using fiber sensing,
as described in [24–30]. The big advantage of deep neural networks is their capability to
extract the relevant features from the raw data in a hierarchical manner without need for much
domain knowledge (see Figure 3, right). One also does not need to search for optimal classifiers
for the selected features, since the deep neural networks offer a unified approach for feature
selection and classification. Together with their superior performance, these two advantages
make deep neural networks a promising approach for many machine-learning tasks.

2.3. Tracking and Probability Evaluation

After detecting and classifying events, additional algorithms could be used for tracking
the events over time and space as well as evaluating the total probability of the events. The
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positions of events such as single vehicles or groups of vehicles can be tracked over time
using well-known filtering algorithms such as Hidden Markov Models (HMM), Kalman,
or particle filtering [16,17]. Using past positions information and current measurements to
determine the actual positions provides, in general, higher event detection probability than
using only the current measurements.

3. Results

We implemented and evaluated two approaches for event detection (see Figure 3): the
classic machine learning approach and the deep learning approach. Table 2 summarizes
the main design decisions we made according to our system and domain knowledge.

Table 2. Main Design Decisions.

Task Design Decisions

Data Collection

Total fiber length of 17 km; distance resolution of 10 m.
Data collection in a suburban area near Vienna, Austria.

Real-time system evaluations over 3 months.
DAS: phase-sensitive optical time-domain reflectometer

(Φ-OTDR).
Collect data at different positions along the fiber at different times

during the day and different days during the week.
Collect signals from different interferers: vehicles, land machines,

and wind wheels.
Total of 172,400 signal samples with 100 signal values (one signal

value for each frequency from 1 to 100 Hz), with class labels.
23,020 excavator signals, and 149,440 no excavator signals.

Classical ML
(supervised)

Training: 137,968 samples, each with 100 signal values at 1–100 Hz.
Test: 34,492 samples, each with 100 signal values at 1–100 Hz.

DL CNN
(supervised)

Training: 17,054 images (50 × 50 pixels, grey)
Test: 4264 images (50 × 50 pixels, grey)

Data Evaluation Trigger Evaluate data from a fiber section when the average signal of the
section is above a section-specific threshold.

Feature selection Use frequency features since they have physical meaning (Earth’s
vibrations) and provide the best results in offline simulations.

ML Model Selection Select the best model using off-line Matlab simulations and
N-fold cross-validation.

DNN Selection Use CNN since they are appropriate for image recognition

Tracking Use Kalman filter as a widely used standard tracking algorithm

In the following, we present results obtained with classical machine learning and deep
learning approaches.

3.1. Results with Classical Machine Learning Approach

The ‘classic’ machine learning approach is based on feature extraction and classifi-
cation. In the following, we describe an application of the classic ML approach in event
detection with DAS systems.

3.1.1. Feature Extraction

The task of Feature Extraction is to extract from the raw data the features that are
representative for the events of interest with enough discriminative power for subsequent
classification by machine learning algorithms. An example of a ‘raw’ time signal and the
signal spectrum for both the ‘excavator’ and ‘no excavator’ events is presented in Figure 4.
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Figure 4. Raw signal: phase of the Rayleigh backscattering light (left) and the spectrum of the signal (right).

As discussed in Section 2, there are several possible features that can be used for
event classification: Time, frequency, and time-frequency features. Among them, the
frequency features turned out to be most appropriate because at first, they have clear
physical meaning: vibrations are traditionally investigated using frequency analysis, signal
sources have usually different spectra, and earth as a transmission media acts as a kind
of low pass filter. In addition, [22] recommends the usage of frequency-domain features
for event detection along a pipeline using OTDR since they provided good results in the
systems presented in their literature review and comprise all the meaningful behaviors
of the analyzed signals. Furthermore, it is not clear which time feature can be derived
from the signal: amplitudes, duration of oscillations, and number of oscillations, etc. (see
Figure 4, left). Time-frequency features such as wavelets also do not have clear physical
interpretations and require a larger processing time [11], which might be critical in real-time
system deployment. As shown in Figure 4 right, most of the signal spectrum is concentrated
below 100 Hz. Consequently, the signal powers at frequencies from 1 to 100 Hz were used
as classification features.

In Figures 5 and 6, box plots of statistical distributions of spectrum measurements
are depicted. These spectrum features are used as the training inputs to ML classifiers to
distinguish between two classes of events: ’excavator’ and ‘no excavator’.

Figure 5. Box plot of the spectrum samples used for classifier training for the ‘no excavator’ event.
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Figure 6. Box plot of the spectrum samples used for classifier training for the ‘excavator’ event.

As can be seen from Figures 5 and 6, the largest differences between the ‘excavator’
and ‘no excavator’ events are at lower frequencies of 1–10 Hz, especially at the frequencies
of 2–4 Hz. We performed a two-sample t-test (using Matlab function ‘ttest2′) for each of the
frequencies between 1–100 Hz to estimate which frequencies are relevant for classification.
The result was ‘1′ for all frequencies except for the frequency of 1 Hz, i.e., the test rejects
the null hypothesis that data comes from normal distributions with equal means and
equal but unknown variances (p-value < 0.0001). In addition, a Kolmogorov–Smirnov test
(function ‘kstest2′) confirmed that the data samples from ‘excavator’ and ‘no excavator’
events come from different probability distributions. We also calculated the effect size of
the differences between ‘excavator’ and ‘no excavator’ samples at all 100 frequencies using
the Cohen test and obtained 76 frequencies values greater than 0.5, meaning a ‘large effect
size’. This means that our data can be used for subsequent classification since they have
different means, have a large effect size, and come from different probability distributions.
Furthermore, we included in our samples all known interferers such as land machines,
wind-wheels, and highways, making our data statistically relevant. We also performed our
measurements several times, on different soil types, at different times of the day, and on
different days during the week.

It is important to stress that all signal characteristics are statistically distributed, with
relatively large variance, since signal changes depend on the source type and weight,
distance, soil type, and temperature, etc. Furthermore, it is important to exploit differences
between the excavator spectrum and possible interferers such as land machines, wind
wheels, or highways. For example, Figure 7 represents spectrum statistics from an excavator
signal, and a highway signal obtained over 100 sample signals for each signal source.

The high variations in input features such as the spectrum make reliable classification
challenging, i.e., distinguishing excavator signals from other interferer signals like a high-
way. In the next section, we discuss how the classification between ‘excavator’ and ‘no
excavator’ events can be performed using classical ML algorithms.
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Figure 7. Spectrum statistics of an excavator (left) and a highway (right).

3.1.2. Classification

The following classification algorithms were investigated: k nearest neighbors (k = 1),
decision tree (min_samples_leaf = 1, min_samples_split = 2), random forest (max_depth = 100,
n_estimators = 100), multi-layer perceptron (MLP) (solver = ‘adam’, alpha = 1 × 10−5,
hidden_layer_sizes = (20, 2)) and support vector machines (C = 10, gamma = ‘auto’). The
optimal parameters of the algorithms were estimated using a grid search (GridSearchCV
function from scikit-learn). In Table 3, performance measures of different machine learning
algorithms are presented.

Table 3. Performance of different machine learning algorithms.

ML Algorithm Accuracy Precision Recall F1 AUC 99% Conf. Int.

kNN 99.96% 99.91% 99.98% 0.99 0.99 +/− 0.01%
Decision Tree 99.53% 99.38% 99.32% 0.99 0.99 +/− 0.05%

Random Forest 99.95% 100% 99.86% 0.99 0.99 +/− 0.02%
MLP 99.88% 99.87% 99.80% 0.99 0.99 +/− 0.02%
SVM 99.79% 99.91% 99.52% 0.99 0.99 +/− 0.03%

For performance evaluation, we used three-fold cross-validation (cross_val_predict func-
tion from the scikit-learn library). We also confirmed the results using the test set consisting
of 20% of the total data. The performance measures obtained with three-fold cross-validation
and verification on the test set are within the 99% confidence interval, which is estimated
according to the accuracy, test sample size, and normal error distribution assumption.

As can be seen from Table 3, all classifiers achieved relatively high (above 99%) and
similar performances. It is a well-known fact from ML theory that with enough data,
almost all classifiers perform well and are almost equally good [31]. This is also confirmed
with ROC and PR curves presented in Figure 8 below.

Figure 8. ROC (left) and PR (right) curves of different classifiers.
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The accuracy of the classifiers is relatively high. According to the comprehensive
reviews [22,29], accuracy above 99% is achieved only by sensing much shorter segments
(44 m–1 km), and all three classifiers cited in [29] for pipeline monitoring achieved much
lower accuracy (55.6%–80.0%). However, the classifiers reviewed in [22] and [29] are mostly
multi-event classifiers able to detect different events such as big/small machine hitting, pneu-
matic hammer, and a plate compactor, while our classifiers distinguish only between two
events: ‘excavator digging’ and ‘no excavator digging’. Reference [23] also investigated multi-
ple events: big excavator, small excavator, pneumatic hammer, and plate compactor. The best
performances reported in [30] for big excavators were 55.7% (moving) and 31.9% (hitting).

The only significant differences between ML algorithms are in the execution times,
especially for test samples, which is relevant for real-time performance (see Table 4).
According to Table 4, the lowest execution time was for the decision tree and MLP.

Table 4. Execution time of different ML algorithms on a computer with i7 CPU with 64 GB RAM.

ML Algorithm Training Time per Instance (µs) Test Time per Instance (µs)

kNN - 2048.12
Decision Tree 336.87 0.57

Random Forest 1277.63 16.97
MLP 824.84 0.63
SVM 668.27 358.97

Although the classifier performance, according to Table 3, may appear high, it should
be considered that it is only for the signals of a 1-s duration from one virtual sensor of a
length of about 10 m. Since a typical DAS unit covers a distance of about 17 km (about
1700 virtual sensors) and a false alarm rate should be lower than once per month, we have
a typical problem of rare event detection that often results in a high false alarm rate. For
example, if the probability of a false alarm is p at one fiber section and within the one-time
interval (e.g., one second), then, assuming the independent events in time and space, the
number of false alarms is approximately n× p, where n is the number of fiber sections times
the number of time intervals over which the evaluation is completed. To keep the false alarm
rate low, we also need a tracking algorithm, as denoted in Figure 3 (left), that records the
positions and time steps of the detected events. Consecutive detections of the same event
type in close positions are considered the tracking of an event. For example, in addition to
the classifier decision (‘an excavator detected’), we can use the following heuristic rule before
raising the alarm: an excavator works for a relatively long time (i.e., 90 s instead of 1 s) at
approximately the same position (+/− 5 m i.e., one fiber section instead of 1700). Finally, the
event probability is evaluated, considering the classification probability of single detections
and the track length in seconds. The higher the track length, the more probable is the event.
In order to achieve high excavator detection reliability (99.9%) and at a maximum of one false
alarm per month, we needed 90 s, i.e., 90 consecutive excavator detections (one per second)
at approximately the same position. In this way, the number of possible false alarms can
be theoretically reduced from n to n/(number of fiber section x number of time intervals),
i.e., for the approximate factor of 90 × 700 = 153,000 in the case of independent events in
time and space. Although in praxis, the possible interference events such as land machines
are not independent in time and space, the above calculation shows the theoretical potential
of using heuristic rules in reducing the false alarm rate.

The question is whether the detection delay of 90 s can be further reduced by some
other approaches to prevent possible intrusions faster. Furthermore, with the above-
described classical machine learning approach, we needed almost one second for evalu-
ating one second of real-time data over the length of 17 km; i.e., the processing limit is
about 17 km. Increasing the DAS unit range would directly decrease deployment and
maintenance costs. It turns out that both a reduction of detection delay and execution time
are possible using the deep learning approach.
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3.2. Deep Learning Approach

Our deep learning approach is based on the idea of converting the sensor signals
first to a gray image and then applying a deep neural network to recognize the events
in the image. To produce an image from raw sensor data, first, the root mean square
(RMS) of 10 ms data (100 samples) for each virtual sensor (10 m) was calculated. The
low-pass-filtered RMS values were then processed by a horizontal and vertical Sobel filter
to produce a gray image at the end (see the example in Figure 9).

Figure 9. Images of different signal sources. On each image, the horizontal axis represents the
distance of the signal source to the DAS sensor in meters and the vertical axis the time in seconds.

In the next step, a deep neural network was trained using image samples with an
excavator and other signals without an excavator to classify ‘excavator’ vs. ‘no excavator’
events (see Figure 10).

Figure 10. Convolutional neural network (CNN) for excavator detection. (a) Input: 50 × 50 Pixels
grey (b) Convolutional Layer with 5 × 5 filters and 20 (c) Max pooling layer with 2 × 2 pooling (d)
Fully connected.

The convolutional neural network (CNN) from Figure 10 consists of the following layers:

• 2D convolutional layer, consisting of 5 × 5 filters with 20 channels (feature maps) in
the output of the convolutional layer. The output of each filter x is passed to a rectified
linear unit that produces max (0, x) as its output. The filter is a two-dimensional
matrix with parameters trained by a backpropagation algorithm [15]. All filters in
one layer share the same set of parameters. The filters at lower layers learn to detect
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low-level features, such as edges and lines, and the filters at higher layers learn to
detect higher-level features, such as shapes.

• 2D max pooling layer, dividing the input into rectangular regions and returning the
maximum value of each region. The height and width of the rectangular region (pool
size) are both two. This layer creates 2 × 2 pooling regions and returns the maximum
of the four elements in each region. Because the stride (step size for moving along the
images vertically and horizontally) is also 2 × 2, the pooling regions do not overlap.
The role of the pooling layer is signal averaging, i.e., if a part of a shape is detected by
one filter and the other part by another filter, the shape could be better detected after
pooling these filters together.

• The images are classified into two classes (‘excavator’, ‘no excavator’) by a fully
connected output layer that uses the SoftMax function to assign output yk for each
output class k:

yk =
ex p

(
θT

kx
)

∑K
j=1 ex p

(
θT

j x
) (1)

The parameters were iteratively adapted by training the network using stochastic gra-
dient descent algorithms, with the momentum update of the parameters θ at a time point
of t + 1, using the values of the parameters at time point t according to the following equations:

θ(t + 1) = θ(t)− v (2)

We adapted the parameter update using the learning rate α and the momentum
constant γ:

v(t + 1) = γv(t) + α∇θE(θ) (3)

where:

E(θ) = −
n

∑
i=1

k

∑
j=1

tij ln yj(xi, θ) (4)

where θ is the parameter vector, n is the batch size, k is the number of classes (we have k = 2,
i.e., two classes: ‘excavator’, ‘no excavator’), tij is the indicator that the ith sample belongs to
the jth class, and yj(xi, θ) is the output for sample i. The output yj(xi, θ) can be interpreted as
the probability that the network associates the ith input with class j, i.e., P (tj = 1|xi).

The network is trained with maximal 50 epochs with random batches of size n = 128
(default value), an initial learning rate α of 0.001, and a momentum constant γ set to 0.9
(default value).

In the classic ML approach, we have to sample each second of new data and track the
possibly detected events over several seconds up to a few minutes, using, for example, the
Kalman filter. In contrast, our CNN-based approach does not need tracking, since each
image already encompasses several tens of seconds up to a few minutes i.e., it already
contains a track of an event. Furthermore, the CNN outputs the overall event probability
for the whole track, whereas the classic ML approach evaluates the probability of every
single detection over the whole track.

The performance of CNN in comparison to the classic ML approach described above
is depicted in Table 5. As can be seen from Table 5, both classical ML, like MLP and
CNN, achieve similar accuracy, but the execution time of CNN is lower because no feature
extraction is needed.

Table 5. Comparison of MLP and CNN algorithms performance.

ML Algorithm Accuracy 99% Conf. Int. Exec. Time (µs)

MLP + feature
extraction 99.88% +/− 0.02% 554.63

CNN 99.91% +/− 0.12% 34.33
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Additionally, in real system deployment, the CNN-based approach outperforms the
classic ML approach regarding both the minimum delay required for reliable detection and
the execution time. For comparison, we used MLP as the classical ML algorithm with good
performance and low execution time (as can be seen from Tables 3 and 4). CNN needs a
six times lower delay and 12 times lower execution time, as can be seen from Table 6. This
is because we do not need excessive signal processing for feature extraction, such as in
classical machine learning. Furthermore, a CNN does not need a tracking algorithm since
the excavator path is captured in the input image. However, the false alarm rate with CNN
was also relatively high due to misclassifying interferer signals as land machines or wind
wheels vibrations as excavator signals. By combining CNN with simple heuristic rules, we
were able to reduce the false alarm rate of the CNN to less than one false alarm per month,
as required. We derived the following heuristic rules from the domain knowledge:

• The expected excavator speed is near zero, i.e., the excavator does not change the position
over time during the excavation, which helps eliminate land machines as interferers.

• The characteristic frequencies of excavator signals are derived from spectrum analysis
of excavator signals, which helps eliminate some interferers, such as wind wheels
vibrations, with different spectrums from the excavator.

Table 6. Comparison of classic ML approach (MLP) with deep learning approach (CNN) in real-time
system deployment in a suburban area over three months.

Algorithms
Number of

False Alarms
Per Month

Minimum
Delay Per
Alarm (s)

Execution
Time (s)

Max Detection
Distance (m)

MLP + heuristic rules <1 90 60 30
CNN >10 15 5 10

CNN + heuristic rules <1 15 5 10

Only the maximum distance where the reliable detection can be achieved is higher in
the case of the classic ML-based approach because the finer resolution in the signal strength is
possible with raw signals, as used by classic ML, than with images of signals, as used by CNN.

In [22], 98.37% accuracy was reported for the event ‘digging with heavy excavation
equipment’ (one of the six distinguishable events). In [25], a classification accuracy of five
different event types was reported, ranging between 92.1% for the event ‘digging with a
shovel’ and 98.7% for the event ‘walking’. In [26], 94% accuracy was reported using CNN
for pipeline protection. We achieved better accuracy than most published papers, but we
only distinguished between two events: ‘excavator detected’ and ‘no excavator detected,’
whereas most of the literature investigated more than two events. However, in these works,
no reference is made as to when exactly an alarm is generated and how long one should
wait before raising the alarm. We tested our system in real-time deployment over three
months in a suburban area, but for further verifications, the tests should be provided in
different areas and for a longer time.

4. Discussion and Conclusions

As shown above, we can achieve the required performance with both classical machine
learning algorithms and with a deep neural network. With enough data, almost all machine
learning algorithms are equally good [31]. However, using images of the sensor signals
and deep neural networks for pattern recognition seems to be a better approach: we
could decrease the delay and execution time in comparison to the classic machine learning
approach. Since all algorithms must run in real-time to detect possible intrusions, the
delay and the execution time are together with accuracy-important performance figures.
Decreasing the delay can help the earlier detection of an excavator and prevent early
enough possible pipeline damages, and a decreasing execution time enables that the same
hardware can cover larger distances of fiber, which reduces costs. Furthermore, we do not
need explicit feature selection procedures, such as in the classic machine learning approach,
that require a high implementation effort and good domain knowledge. Last, but not least,
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deep learning CNNs use as inputs the same images that human operators can also evaluate
in making their decisions.

We achieved better accuracy than the most published papers, but we only distin-
guished between two events: ‘excavator’ and ‘no excavator,’ whereas other work distin-
guished between several events. This might also suggest that in the case of several events,
a hierarchical classification could be a better choice, i.e., the first classification might be
between ‘excavator’ and ‘no excavator’ events, and then the further classification could be
completed within different ‘no excavator’ events such as drilling and hammering, etc. Our
system was tested in a real-time deployment of over three months in a suburban area, but
for further verifications, the tests should be provided in different areas and for a longer
time. However, our main contribution is rather methodological: how to effectively combine
classical ML, deep learning, and human knowledge, as outlined below.

Regarding the overall methodology recommendations, it is important to stress that
classical and deep learning approaches do not exclude each other; on the contrary, they
extend each other, and each realistic project is an interplay between human knowledge,
classical machine learning, and the deep learning approach, and is iterative in its nature:

• As the project began, we needed a physical model to decide what, where, when, and
how to measure to provide data for machine learning algorithms.

• The classic machine learning approach can be used at the project’s beginning, where
little data are available. The classic machine learning approach, combined with human
knowledge, provides more insight into the problem domain, i.e., features such as
characteristic frequencies relevant for the signal detection, and helps improve physical
models of the signal generation. The features extracted from the classic approach
can then be used for decisions for which new data might be needed. For example,
the interference sources producing similar frequencies as the desired signal are good
candidates for collecting new data.

• Deep learning can be used in a later project stage when enough data are collected.
Deep neural networks do not need manual feature extractions, which can save a lot
of engineering work. Furthermore, deep neural networks can discover unexpected
patterns in data that might be unnoticed by a human expert. On the other side, deep
neural networks can sometimes discover irrelevant patterns in data and make wrong
classifications events with small perturbations of input data. Furthermore, despite all
progress in explainable AI, deep neural networks are still a kind of a black box where
decisions are not as transparent, as in the case of some classical machine learning
techniques such as decision trees [32,33].

• We could achieve the best results by combining the insights from human knowledge
about physical models, classical, and deep learning approaches. We used a deep
learning network as the core classifier, but we constrained the search domain, only
taking into account signals within certain frequencies derived from the physical model
and the classical machine learning approach (decision trees). We also eliminated the
signals from sources that move too fast to be produced by a standing excavator. This
improved accuracy and reduced the probability of false alarms.

• Finally, yet importantly, we need to continue monitoring the system in the deployment.
As new data arrive, the system performance may degrade. For example, we noticed
that even a few hundred kilometers away, remote earthquakes could cause false
alarms. For such cases, automatic updates using information from the internet about
interferers, such as earthquakes and construction work, might help. Additionally,
including humans in the update loop is needed in order to verify machine/deep
learning decisions, define new events, label the data, and improve algorithms.

In this work, we used off-the-shelf CNN without much hyperparameter optimization.
In the future, further optimization of the deep neural network can be completed to enable
the detection of an excavator at larger distances and the detection of some other interesting
events such as manual digging or welding. Transfer learning by the usage of pre-trained
neural networks is also an interesting topic for further research.
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The method used in this work, converting sensor signals into images and then using
CNN for pattern recognition, is a promising approach for optimal sensor fusion in multi-
sensor systems. It can be used to detect other intrusion events along the pipeline such
as manual digging and tapping, as well as relevant events in other multi-sensor systems.
Furthermore, the general methodology of combining human knowledge, classical machine
learning, and deep learning is applicable in other science and technology fields such as
seismology [34] or medicine [35].
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