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Abstract: Many engineered approaches have been proposed over the years for solving the hard
problem of performing indoor localization using smartphone sensors. However, specialising these
solutions for difficult edge cases remains challenging. Here we propose an end-to-end hybrid
multimodal deep neural network localization system, MM-Loc, relying on zero hand-engineered
features, but learning automatically from data instead. This is achieved by using modality-specific
neural networks to extract preliminary features from each sensing modality, which are then combined
by cross-modality neural structures. We show that our choice of modality-specific neural architectures
can estimate the location independently. But for better accuracy, a multimodal neural network that
fuses the features of early modality-specific representations is a better proposition. Our proposed
MM-Loc system is tested on cross-modality samples characterised by different sampling rate and data
representation (inertial sensors, magnetic and WiFi signals), outperforming traditional approaches
for location estimation. MM-Loc elegantly trains directly from data unlike conventional indoor
positioning systems, which rely on human intuition.

Keywords: indoor localization; sensor fusion; multimodal deep neural network; multimodal sensing;
wifi fingerprinting; pedestrian dead reckoning

1. Introduction

With a growing number of mobile applications requiring contextual information
to tailor their services for user needs, location estimation is becoming crucially more
important for immediate adoption. GPS is a system-level navigation method relying on
satellite signals. However, indoor environments are often shielded from satellite signals. As
a result, alternative methods have been proposed for performing indoor positioning, which
relies on signals such as WiFi, Bluetooth, and inertial movement sensors (accelerometer,
gyroscope, barometer) [1]. Such systems are heavily engineered, but this type of approach
is becoming hard to adapt to edge cases and when the indoor environment changes.

Two fundamental approaches have dominated the indoor localization solutions in
different forms: Pedestrian Dead Reckoning (PDR) and WiFi based Location Estimation
(with the most popular version known as WiFi Fingerprinting) [2]. In PDR, the starting
point is assumed to be known and using specially engineered techniques (well-defined
formulations) the travelled distance and the direction of movement are estimated such that
their predictions determine subsequent adjacent positions. WiFi Fingerprinting systems
compare the received signal strength with pre-recorded WiFi radio maps to estimate the
best matching location.

However, purposefully engineered systems fail to work when faced with unreliable
sensor data (such as from accelerometers, gyroscopes and magnetometers). The drift and
noise of sensor data often lead to lower location estimation accuracy. This challenge has
encouraged different creative-engineered correction solutions, such as particle filters [2,3],
Kalman filters, graph-conditions [4] and constraint modelling [5]. Such systems rely on
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mathematical formulations to make firm assumptions about the possible movement from
the isolated observations of sensors. To enable such services in complex environments, the
systems are tuned for each deployment setup [4,6]. Nevertheless, these hand-engineered
mathematical models lose efficiency when the indoor space changes and the propagation
environment is modified. Currently, no one system has reached the level of maturity and
acceptance such as the GPS has for outdoor environments. This is due to the wide differ-
ences between indoor spaces and their unique characteristics. It is costly to accommodate
all possible scenarios in manually configured systems and their maintenance [7].

Other solutions aim to combine the two approaches through ingenious designs (sen-
sor fusion and independent estimation fusion). These environment-specific engineered
systems make firm assumptions about the subject movement pattern based on imperfect
observations from data. They often restrict the possible subject activities because irregular
movements are harder to model with common mathematical formulations. Inevitably,
these hand-engineered models often fail in challenging scenarios.

We advance the previous methods for performing indoor localization by adopting
a convenient approach based on end-to-end multimodal deep learning. We believe that
moving the focus from minutely understanding mobility patterns to learning cross-sensor
patterns automatically from data is a more attractive proposition. This will allow position-
ing systems to be more flexible and robust due to affording to continuously update models
from fresh data.

Multimodal machine learning is a proven technique for modality-fusion, such as for
audio-vision speech recognition and for context recognition [8]. However, this has not
been used before for multi-sensor data fusion for location tracking. We propose the first
hybrid multimodal deep neural network to perform the fusion of raw sensor signals for
location estimation. This is lightweight to run on modern mobile phones for tapping into
their sensor signals (WiFi and inertial sensors).

The contributions of this work are as follows:

• We model the traditional methods of location estimation from sensor data with end-
to-end machine learning approaches. The chosen networks avoid the need for hand-
picked features. Instead, data processing models are learned automatically from data.

• We deploy a recurrent neural network—Long Short-Term Memory (LSTM) to model the
sequential estimations of PDR—estimating a sequence of locations, starting from a known
point and estimating the following points based on observations from sensor data.

• Performing modality fusion through a hybrid neural network—using different neural
network structures on each sensing modality and fusing their representations via
additional top layers. We use a recurrent neural network for the inertial sensor data
processing and a fully-connected network for the WiFi modality.

2. Motivation and Related Work

Position estimation of smartphones inside buildings is a challenging task due to the
GPS being unreliable in environments shielded by walls and ceilings. At the same time,
other radio signals with longer penetration (cellular and FM) are limited to the granularity
of position estimation they can offer [9]. Alternative methods have been proposed to
take advantage of a broader range of sensors available on smartphones [10]. However,
none have managed to produce a robust and scalable system for efficient indoor position
estimation. We believe the reason is three-fold: (i) Indoor spaces are too complex to
model with limited and fragmented observations about the environment (limited data),
(ii) Signal distortions are inerrant in signal propagation (in light, sound, radio frequency
and magnetic field, etc.), which are hard to model; and (iii) Current systems rely heavily on
human designed features to be extracted from data (e.g., engineered solutions to estimate
the number of steps and direction of movement).

Machine learning is a promising option due to its validated performance in several
fields, including computer vision, natural language processing and pattern recognition
for performing inferences from noisy data [11]. This clearly shows the advantage of
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automatically learning features from data and their correlations for producing a target
label [12].

Using machine learning for indoor location tracking has become a popular research
topic, which produces location estimation from sensor data. However, many systems are
still built to operate on a single modality, which limits their performance. Given the unstable
nature of signal propagation environments, modelling signals from scarce observations is
relatively challenging with simplistic models. Besides, the indoor environment is formed of
multiple signal modalities. Mono-modality limits the representation of the full indoor state,
which in turn reduces the achievable performance of single-modality machine learning
based positioning systems especially in edge cases.

We enhance artificial intelligence based indoor location tracking systems to under-
stand the environment from different perspectives by designing a multimodal machine
learning approach. This solution uses a neural network to capture in-depth features of the
natural signals and to learn from their feature correlations in a sensor fusion manner. We
demonstrate this on a system running with inertial sensor data and RSS data as input to
produce flexible and robust location estimations.

We believe that by relying on models with high generalisation to learn directly from
data, we can leverage the growing volume of data to tackle the aforementioned long-
standing challenge that has limited indoor localisation. The direction forward is via a
data-driven approach.

Therefore, our purpose here is to evolve our approaches from pure engineering
work to an artificial intelligence based approach. This shift moves the focus from manually
identifying patterns and fitting them with rigid mathematical formulations to automatically
learning from data.

2.1. Pedestrian Dead Reckoning (PDR) on Inertial Sensors

PDR builds on inertial sensors to estimate displacement distance and direction of
movement. However, these sensors have their limitations. Sensor drift is one of the most
notorious problems, making it hard to double integrate acceleration for displacement esti-
mation [13]. The same problem is experienced when estimating the direction/orientation of
the movement. Figure 1 shows the drift of gyroscope readings when plotting the direction
of movement in a straight line. We observe that in just a few seconds, the accumulating
sensor drift is substantial, changing the estimated direction of the movement dramati-
cally. Hence, relying on the gyroscope alone is known to be inefficient, so well-engineered
solutions use additional sensor inputs for recalibration [14,15].

20,000 30,000 40,000 50,000 60,000 70,000 80,000

Figure 1. Gyroscope drifts disturbing direction calculation when sampling from a straight-
line walking.

Alternatively, to replace hard and rigid engineered solutions, others use machine
learning to identify sampling characteristics in inertial sensors, such as for step size estima-
tion [16].
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2.2. WiFi Fingerprinting on Received Signal Strength

The WiFi Fingerprinting localization approach consists of two phases: (i) training
phase or commonly known as the offline phase that collects samples to build WiFi Finger-
printing database, and (ii) the real-time phase or so-called the online phase that produces
estimations based on incoming observations [2].

In terms of WiFi signal, indoor spaces experience a challenging radio propagation
environment with multi-path effect, shadowing, signal fading and other forms of signal
degradation and distortion. It is hard to model all the possible states of the WiFi environ-
ment in the offline phase; as such, the online phase often faces forms of the environment
that was never trained on, leading to erroneous estimations.

The main challenge in taking advantage of this sensor data is that signals experienced
during data collection time may be radically different to those experienced at run-time.

Figure 2 shows the complexity of WiFi samples through the histogram of a long scan
at a random indoor location. Although many WiFi-based positioning systems model RSS
as a Gaussian process [17,18], we can see that none of the 5 AP histograms fits a normal
distribution tightly. In fact, AP2 shows a bimodal distribution over time; AP4 and AP5 are
skewed to the right and are overlapping in RSS; they are likely to interfere with each other
if operating on adjacent channels. Whereas AP1 has a wide distribution of observed RSS
values, spanning almost 20 dBm. Further observations on the difficulty of modelling the
WiFi environment are also exposed in [4].
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Figure 2. Histogram of Received Signal Strength for 5 Access Points observed at a single location
showing the complexity of WiFi fingerprints, with various distributions (binomial and skewed).
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Figure 2. Histogram of Received Signal Strength for 5 Access Points observed at a single location
showing the complexity of WiFi fingerprints, with various distributions (binomial and skewed).

We sampled the RSS of one AP at different fixed locations. Figure 3 shows the
fluctuating nature of AP’s Received Signal Strength. Each of these histograms is drawn
from one AP at a fixed location over a short period of time (within an hour). The signal is
not stable across time and locations. Any slight change in the environment hinders accurate
estimations. Fitting a single polynomial density function to capture this wide variation of
these histograms is hard to achieve.

Unlike mathematical-based solutions, neural networks are used to tolerate these noisy
data, which may be a specific characteristic of some locations, instead of simply cancelling
the estimation because of noisy observations or outliers. Hence, a model should assimilate
information from new data easily and capture more unexpected variations of data. Others
use deep neural networks in WiFi signal strength based indoor localization [19] and also
for WiFi signals with a formulation of the propagation model known as EZ [20,21], while
more recent work has been using neural networks on Channel State Information (CSI) [22].

2.3. Multimodal Approaches

Multimodal approaches make estimations from multiple perspectives of cross-modality
data possible. Filtering methods like particle filters and Kalman filters have been proposed
to address the multimodality of data. Specifically, HiMLoc uses particle filters to integrate
inertial sensors with WiFi fingerprints based on prior observations of Gaussian processes
for direction estimation, distance estimation and correlation between samples and location
in buildings and admissible human activity [2]. Similarly, WiFi-SLAM and Zee build on
particle filters emphasising their importance for random system initialisation [3], while
Kalman filters are used to integrate inertial sensing modalities [5]. Other engineered ap-
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proaches, such as UnLoc, combine sensing modalities based on empirical observations of
how some locations are unique across one or more sensors [6], MapCraft uses conditional
random fields [23] and LiFS uses graph constraints to map and position estimations on
the trajectory [4]. Similarly, WILL builds a connected graph to estimate location at room
level [24].

rss

rss

rss

rss

rss

rss

Figure 3. Histograms of one AP signal strength over a small time window (1 h), captured at different moments of time over
a day and week. The fluctuating nature of WiFi signal, which makes this hard to model with simple function fitting.

Multimodal neural networks across sensing modalities have not been used before for
indoor localization, although these concepts have been used before for context recognition
tasks, such as human activity recognition [8]. Here, we aim to customise an end-to-end
multimodal deep neural network for performing the indoor localization task such that
it produces location estimation from sensor data of inertial movement samples and WiFi
fingerprints. Training directly from data has its drawbacks, that of moving the challenges to
the quality of training dataset (with labels) and cross-sensor modality alignment, although
this can be eventually automated by other systems such as vision-based systems [25].

3. Methodology

In this section, we introduce the methodologies of how to use recurrent neural network
for pedestrian dead reckoning based on inertial sensor data and how deep neural network
performs a location estimator using WiFi fingerprints, as well as our proposed multimodal
deep neural network architecture, which fuses both single-modality data to produce an
end-to-end regression for estimating the coordinates of the position as output.

3.1. Pedestrian Dead Reckoning with Recurrent Neural Networks

PDR estimates continuous location by starting from an assumed known position and
estimating displacement and direction of movement to estimate consecutive locations.
By similarity, Recurrent Neural Networks (RNN) perform the same process but with the
advantage of memorising previous steps and not relying entirely on new observations
coming to the system, which can be affected by local noise. An RNN is an artificial
neural network that includes connections between nodes that flow along a sequence. This
structure is ideal for estimating time serial data.
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RNN has proven its advantages in dealing with sequential data such as speech recogni-
tion, image captioning and machine translation tasks [26]. RNN is similar to a feedforward
neural network. The difference is that the recurrent connections link a neuron from the
current layer to the next neuron of the next layer. This feature makes the RNN model
“remember” the features from the previous loop [27]. RNN transfers the state within each
loop. Therefore, it could deal with sequential data such as the inertial sensor data we used
in the experiment. We show the structure of an RNN in Figure 4.
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Figure 4. The structure of a RNN, transferring internal representations from future estimations.

It is an unfolded basic RNN structure that contains a number of neuron-like nodes.
Those connected nodes, which are either input, output or hidden nodes, are organised into
successive layers which follow a one-way direction connected to the next layer. Each neuron
includes an activation that varies based on the time sequence. Errors are calculated from
each sequence, while the total error is the total value of the deviations of the target label
values calculated from each sequence. Practically, it operates just like the dead reckoning
method, to estimate consecutive positions from streamed inertial sensor data [28].

However, the basic RNN has the problem of vanishing gradient when feeding long
sequential data. It cannot catch the feature of the dependencies between samples in
relatively longer sequential data. Hence, long short-term memory (LSTM) is used to solve
this problem. An LSTM is an optimised RNN model that solves the basic RNN problem
of vanishing gradient. This is achieved by adding a forget gate. It prevents vanishing or
exploding caused by backpropagated errors. Figure 5 shows the internal structure of the
LSTM unit. In each unit, there is not only an input gate and an output gate but also a forget
gate that controls the “memory” to either propagate into the next layer or be forgotten in
the current layer [29].

Figure 5. Long Short Term Memory (LSTM) Architecture.

The value in the current state is controlled by the forget gate f. Specifically, save
the value when the signal is set to 1 while forgetting the value if the gate is set to 0.
The activation of receiving a new input or propagation is determined by its input gate
and output gate, respectively [30]. The Equations (1) to (6) show the numerical definitions.
The xt represents the input data at time t while Wi, W f , Wo contain, the weights of the
input and recurrent connections respectively. At every time step t, the LSTM calculates the
input (It), forget (Ft) and output gates (Ot) activation vectors, which decide the cell state
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value (ct) and hidden cell (ht). The softmax output (mt) determines the final probability
distribution while � is the product of the cell value of the gate value.

It = σ(Wixxt + Wimmt−1) (1)

Ft = σ(W f xxt + W f mmt−1) (2)

Ot = σ(Woxxt + Wommt−1) (3)

ct = Ft � ct−1 + It � h(Wcxxt + Wcmmt−1) (4)

mt = Ot � ct (5)

pt+1 = Softmax(mt) (6)

Figure 6 illustrates the unrolled chain of the LSTM network, where Ct is the long-
term memory at time t and ht is the block output at time t, or short-term memory, both
transmitted to the following LSTM block in the chain.

Ct-1 ht-1

xt-1

Ct+1 ht+1

ht-1

Ct ht

xt

ht ht+1

xt+1

Ct+2 ht+2

ht+2

xt+2

Ct-1, ht-1 Ct, ht Ct+1, ht+1

Figure 6. Unrolled Chain of LSTM Neural Network, using the same block for each new observation
together with the internal state of previous time-step.

As the sensor data is presented in time sequences, the LSTM model is ideal for location
estimation. An LSTM reads the time-sequential inertial sensor data based on a fixed size of
(Timestep× Features). The feature of each data point is the magnitude value of acceleration,
gyroscope and magnetic field data. The number of data points in each sample is determined
by the chosen time window (here, we set the time window as one second sampled every
100 ms, explained later). Each sample is offered a target position in coordinates (Xi, Yi).
The regression output of the LSTM model is the estimated position in coordinates (Xest,
Yest). The formulation for this process is presented in Equations (7) to (9).

x−1 = Sensor Data(I) (7)

xt = WeSt, t ∈ {0 . . . N − 1} (8)

pt+1 = LSTM(xt), t ∈ {0 . . . N − 1} (9)

During the training process, the LSTM updates its weights and state each time when
reading a new incoming sensor data and returns a location estimation result. Here, x−1
represents the inertial sensor data from the last time step; xt indicates the current stage
of the LSTM block input, the weighted (We) sensor data (St); pt+1 is the LSTM cell next-
timestep numerical prediction of latitude and longitude coordinates based on the current
stage information (xt).

3.2. WiFi Fingerprinting with Deep Neural Networks

Indoor positioning systems use an anchoring mechanism to estimate the location
based on instant snapshots of the environment sampled by sensors for recalibration. One
such independent estimation can be achieved with WiFi Fingerprinting, which are regarded
as unique at some positions [6] for localising without continuous sensing. For periodic
recalibration, the WiFi is a reliable anchoring signal source, used extensively in previous re-
search [2,3,6,24], relying on real-time observations to match the fingerprints in the database
or with a pre-trained model for position estimation.
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Here, we introduce our approach for using deep neural networks (DNN) as WiFi
Fingerprinting for location estimations. A visual representation of the WiFi Fingerprinting
model is presented in Figure 7.

AP2

AP3

APn

...

AP1

X

Y

Figure 7. WiFi Fingerprinting DNN used for producing X,Y coordinates for the location estimation.

The end-to-end DNN takes WiFi scans of observed Access Points at each sampling
time-step as input and target coordinates (Xi, Yi) for the location where the fingerprint was
collected to use in the training phase. The training minimises the estimation error between
the ground truth and the network estimation (Xest, Yest). In the online phase, the network
produces the estimations based on the WiFi RSS data alone.

3.3. Sensor Fusion via Multimodal Deep Neural Networks

By fusing both inertial sensors and WiFi fingerprints modalities, their unique per-
spectives can contribute to more robust estimations. Similar to our previous work in
multimodal deep learning for context recognition [8], here we explore the capacity of
similar construction to combine the two aforementioned neural networks operating on
each sensing modality.

Figure 8 presents our proposed MM-Loc architecture, an end-to-end multimodal deep
neural network for performing indoor localization, which makes inferences on the joint
perspective of inertial sensors and WiFi fingerprints modalities.

Sensors

LSTM

AP1 AP2 ... APn

X Y

Figure 8. MM-Loc: our proposed multimodal deep neural network architecture for indoor localiza-
tion with two parallel single-modality feature extractors and a joint network structure to merge latent
features at the top.

The MM-Loc takes time-sequential inertial sensor data through the LSTM sub-network
and WiFi RSS data through the DNN sub-network (when available) in parallel. The input
size of the sensor modality at the LSTM side is (Timestep × Sensor_num) and for the
DNN side matches the WiFi Fingerprint vector (AP_num). Both modalities are reduced
to 128-dimensional hidden units (internal representation) on each branch. These two
parallel 128 units are then fused by concatenation to 256 units. The 256-dimensional new
representation is fed into three fully connected (FC) layers with 128 and 64 hidden units,
before the final output layer at the top performing a two-dimensional regression (Xest, Yest).
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The inference process is done in one pass through the MM-Loc network, taking the
high-frequency inertial sensors at each estimation step, while the WiFi fingerprint input
vector is provided on the DNN branch when available. If a WiFi sample is not collected
(due to its lower sampling frequency or because it is missing for various reasons), a null
vector is provided as input for the WiFi branch, leaving the estimation on the LSTM side
alone. In training, the gradient flows through both branches, updating the weights if they
had any contribution. A null vector as input on the WiFi branch causes neglectable changes
to that branch during training.

What is unique about this construction is its ability to handle imbalanced sampling
rates or missing samples from the WiFi modality. This is because WiFi scans are produced
at a much lower rate than inertial sensors, so when there is no WiFi scan in the system,
the WiFi input is a vector with all components value of 0 (normalised to −100 dBm). This
null vector causes the inference to balance entirely on the inertial sensors side. When both
modalities have inputs our multimodal architecture combines their perspectives and trains
both branches.

4. Data

We collect a multimodal sensor dataset from two scenarios with ground truth loca-
tion labels. Our preprocessing involved granular location interpolation, normalisation,
overlapping and downsampling.

4.1. Data Collection

The multimodal sensor dataset is collected using an Android application designed
specifically for the task of data collection. Figure 9 presents screenshots of the mobile
app graphical interface for initiating collection and labelling of sensor data. This applica-
tion can be configured to collect sensors data (accelerometer, magnetometer, gyroscope
and WiFi scans) continuously in the foreground with a visual interface to accept user
inputs or running in the background, to allow continuous data collection with phone in
pocket and screen switched off. To collect data with ground truth location labels, we run
the same application synchronously on a second mobile phone. One marks locations as
input through the visual interface displaying the building map aligned to Google Maps
coordinates for the purpose of longitude and latitude information acquisition. The logged
ground truth geographical locations are converted to the Universal Transverse Mercator
(UTM) in metres for our experiments. The second phone is carried by the user to collect
sensor data continuously running our application in the background. There is no user
interaction while collecting data to resemble the perspective of sensors in natural motion.

During the data gathering process, ground truth labels are transferred between the
two devices. The first data collection campaign involved walking on the corridor at
different walking speeds, starting from one corner of the building, performing a circular
trajectory and arriving back at the starting point. Ground truth locations were provided
sporadically, but to obtain location information on a more granular basis, some locations
were interpolated between consecutive two input locations—assuming local constant
walking speed. Specifically, during one round of data collection, we build two record
sets synchronously: Set.1 holding the inertial sensors and WiFi scan from walking on the
corridor with phone 1; Set.2 the ground truth locations as labels collected with phone 2 by
inputting the latitude and longitude information of phone 1, when passing key locations
such as corners and doors.

For training our MDNN model, we use two scenarios into a training set—collected
from two crowded office buildings. Both scenarios are typical indoor environments with
diverse human activities that increase the complexity in terms of noisy data and varia-
tion. Specifically, these complex situations include people walking alone the person who
collected the data, which affects the normal traversal of corridors during data collection;
various electronics in operation, such as elevators, computers, printers and portable de-
vices, which generate electromagnetic interference; building materials contain reinforced
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concrete, metal and glass, which influence signal propagation patterns. Furthermore, we
use multiple mobile devices with different built-in sensor sensitivity and sampling rates
for data gathering, which adds to the complexity of the experiment. During data collection,
the participants walked at different speeds and were free to exercise other postures which
again adds to the motion complexity.

(a) (b)

Figure 9. Screenshots of the Android application used to collect multisensory data. (a) Location
Input Interface; (b) Sensors Control Options.

Table 1 presents the samples distribution of the two data collection scenarios. Scenario
A holds 24,450 inertial sensor samples and boosted number of WiFi samples, to 25,541, by
interpolating with static samples at precise locations. Scenario B holds fewer WiFi samples,
8390, but collected at the same time with the inertial sensors, 29,836 samples.

Table 1. MDNN Dataset Description.

Datasets Inertial Samples WiFi Samples Access Points Time Duration

Scenario A 24,450 25,541 102 407 Mins
Scenario B 29,836 8390 750 497 Mins

4.2. Data Preprocessing

We pre-process our data to match a standard format for training and testing. This is
challenging because of the imbalanced sampling rate of different sensors.

4.2.1. Inertial Sensor Data

The Android API provides sensor samples on an event base, only if the value is
considered to have changed. This leads to uneven intervals between sensor samples.
Inertial sensors—accelerator, gyroscope and magnetometer—hold different refreshing
rates. We use linear interpolation to fill the missing values in between every two hardware
sensed values in order to generate the continuous time-sequential data. The interpolated
data is grouped in time windows, which we discussed later, and has a location associated
to it. We interpolate geographical locations based on the selected time window between
each two recorded locations as we only record locations when passing special points
such as corners, elevators, kitchen, meeting rooms and other obvious landmarks along
the trajectory.
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The inertial sensors sample the motion in three orthogonal directions, on axes Ox,
Oy and Oz. Because the phone can be placed in any orientation in a pocket or in a
bag, invariant sample data is attained by calculating the magnitude value of the built-in
sensor (accelerometer, gyroscope and magnetometer) from the values on the three axes
(Ox, Oy, Oz), as:

sensormagnitude =
√

sensor2
x + sensor2

y + sensor2
z (10)

As the LSTM load the time-sequential data by time window, a proper window selection
contributes to lower computational cost and on-device power consumption with acceptable
inference efficiency. We explored four time-window sizes: 10 ms, 100 ms, 1000 ms and
2000 ms. In addition, we considered the case of time windows overlapping (10%, 50%,
90%) to increase the frequency of location updates for a fast responsive system. Window
overlapping also plays well with the LSTM model since the information from previous
time windows is reinforced and emphasised by overlapping for better quality detection
and strengthening of correlations between samples.

Despite the amount of machine learning dataset increased with richer information
for training by time window grouping and overlapping, the side effect is that the heavier
dataset increases the processing demand. Hence, to improve the feed-forward speed
with a smaller input size without losing too much information, a downsampling method
is explored to compress the dataset. Figure 10a shows three magnitude values of the
accelerometer, gyroscope and magnetometer with 1000 data points (1000 ms) on the left
side and the downsampled value to as much as 90% linear compression. Figure 10b
compares the original data and the downsampled over a longer interval of 7000 ms.
The comparison from Figure 10 indicates that the main features are maintained even on
high-level compression, reducing the frequency of samples to 1 Hz. As such, we analyse
the downsampling effect in the experiments presented in the evaluation section.

AccTotal (Original)

GyroTotal (Original)

MagTotal (Original)

AccTotal (Down sampled)

GyroTotal (Down sampled)

MagTotal (Down sampled)

1,000

1,000

1,000

(a)

AccTotal (Original)

GyroTotal (Original)

MagTotal (Original)

AccTotal (Down sampled)

GyroTotal (Down sampled)

MagTotal (Down sampled)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

(b)

Figure 10. Compare between the original data and the downsampled data. It shows that loss of information is minimal
across two time windows, being able to follow the trend in signal for the walking activity. (a) Sensor values over a time
window of 1 s; (b) Sensor values over a wider time window of 7 s.
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4.2.2. WiFi Fingerprint Data

The RSS inputs to the neural networks are provided as vectors. To construct this
vector, we first scan the whole WiFi logfile to identify all unique APs observed throughout
the data gathering process (total of n APs observed inside the building), as well as the
minimal and maximum received signal strength encountered throughout. These values
are used to normalise the vector input to the [0, 1] interval by linear scaling. We observe
the min-max interval is [−99, −40] in dBm. Hence, for missing APs in WiFi scans, a value
of −100 is associated with their position in the n-dimensional vectors. To produce a WiFi
fingerprint vector as realistic as possible, we keep even the occasional personal hotspots
found throughout the data gathering. These APs act as noise in the dataset, to increase its
complexity.

4.3. Sensor Fusion Dataset Alignment

The main challenge of aligning inertial sensor data with WiFi data is that the WiFi
sampling frequency is significantly lower than the inertial sensors sampling rate due to
hardware characteristics.

By observing the original sampling rate of sensors from the log files, we determine
the average sampling frequency of the inertial sensor to be in milliseconds, while the WiFi
updates come in seconds apart. (The time gap between WiFi samples is a non-integer value,
such as 1.03 s, 3.56 s, etc.). The amount of time-series sensor data is significantly larger
than WiFi samples.

If we simply combine these two modalities (one-second grouped inertial sensor data
with one WiFi scanning as one input data point), the set contains sparsity with unbalanced
data components. This is because the WiFi scans are many times less frequent than one
second as we discussed. For the purpose of eliminating the sparsity of the WiFi data and to
increase the location estimation frequency, we adjust the WiFi scan rate from the original
sampling rate to every 100 ms. For instance, if the first time duration of 0.1 s in the log
file contains three WiFi scans, we compress these three samples into one single sample.
Therefore, we get a denser WiFi fingerprint dataset to be aligned with a time window of
inertial sensor data, illustrated in Table 2.

Table 2. The raw WiFi Fingerprint data format. Missing APs from the current scan are indicated with
Null. Each WiFi scan has an assigned collection location (X, Y) as label.

Time AP0 AP1 . . . APn X Y

t0 Null −85 . . . Null x0 y0
t1 −92 Null . . . Null x1 y1
t2 Null Null . . . Null x2 y2

T′ −92 −85 . . . Null X′ Y′

If the time window contains only inertial sensor samples, with no WiFi scan, we use
−100 dBm to represent missing APs in an abstract WiFi scan, to indicate that a scan was
not available for that time window.

As two synchronously-logged datasets contain not only inertial sensor and WiFi
RSS samples but also ground truth location information within the same time duration,
the timestep records are utilised for matching multimodalities with geographical labels. The
processing of locations involves normalising the coordinates to the bounding boxes chosen
for the building and scaling to the interval [0, 1]. Estimations of neural network models
are converted back into latitude and longitude coordinates. Table 3 indicates the generic
elements of the records used for training after the time alignment of sensor samples.
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Table 3. Cross-sensor data format, showing the normalised and filtered/interpolated values. A one
second time window holds 1000 samples from each sensor, a WiFi scan and the ground-truth location.
Missing APs in the WiFi scan are indicated with a −100 value.

Time Accelerator Gyroscope Magnetometer AP0 AP1 . . . APn X Y

T0 a0 ∼ a999 g0 ∼ g999 m0 ∼ m999 −100 −85 . . . −100 X0 Y0
T1 a999 ∼ a1999 g999 ∼ g1999 m999 ∼ m1999 −100 −100 . . . −100 X1 Y1
T2 a1999 ∼ a2999 g199 ∼ g2999 m1999 ∼ m2999 −70 −100 . . . −65 X2 Y2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tn an ∼ an+999 gn ∼ gn+999 mn ∼ mn+999 −100 −100 . . . −100 Xn Yn

5. Model Configuration

This section presents the evaluation of each independent modality-specific neural
network architecture, followed by the evaluation of the multimodal deep neural network
(MDNN) implementations with different fusion architectures that combine the features
extracted by the two independent models (RNN for sensor data and DNN for WiFi samples)
to produce a new location estimation at the top.

5.1. Recurrent Neural Network on Inertial Sensors

Here we present our exploration to identify the best model structure and parameters
for calibrating the LSTM for the best performance in terms of time window settings,
overlapping ratio and data compression.

5.1.1. Time Window

As LSTMs read the data in time windows, a well-selected time window allows the
model to catch enough detailed information needed for estimating the movement ac-
curately. A larger time window loses granular information by exploiting larger scale
observations, including more information for a range of movements while being computa-
tionally demanding for performing inferences on mobile devices and slower in providing
location updates. In contrast, a smaller time window captures minimal information, not
discriminating between different walking speeds or between very similar activities like
moving on a flat surface and climbing stairs, although more computationally friendly to
mobile devices since the input layer is smaller. We train the LSTM model with the time
window of 10 ms, 100 ms, 1 s and 2 s, and the model hyper-parameters listed in Table 4.

Table 4. LSTM Model Parameter Settings.

Parameter Settings

Epoch 100
Batch Size 100

Hidden Units 128
LSTM Layer 1 Layer

Learning Rate 0.005
Learning Rules RMSprop

Figure 11 shows the LSTM performance with various input time windows, presented
using the Cumulative Distribution Function (CDF) charts. As observed here, the time
window setting has limited impact on the inference accuracy. This observation on the
validation set is also confirmed on the test set in the CDF plot Figure 11b, which shows
that several time windows have a similar location estimation accuracy. The 1000 ms based
model shows a good performance similar to the others and going for this larger time
window allows the model to capture more observations. The estimation error is still high
since this is the first parameter we optimise for. Therefore, we choose the time window
setting of 1000 ms in the following explorations.



Sensors 2021, 21, 7488 14 of 24

,

,

(a)

,

,

(b)

Figure 11. LSTM model performances with different time window settings. (a) Validation Set CDF.
(b) Test Set CDF.

5.1.2. Overlapping Ratio

This evaluation presents the outcome of changing the overlapping ratio based on the
fixed time window setting of 1000 ms. The overlapping ratios we experiment with are 30%,
50% and 90%, which increase the amount of training data subsequently by 1.3×, 2× and
9× respectively.

There are two main advantages to implementing overlapping. The first one is to
enhance dependency between consecutive time window samples by repeating information
observed in the overlapping part. With the LSTM model, this enhances the memory
aspect of adjacent time windows, the model experiencing portions of the recent action over
consecutive inputs. Moreover, we increase the training dataset synthetically by obtaining
a larger number of training samples, since larger training sets help with the training of
neural networks.

Figure 12 shows the three models trained with the enhanced training sets after intro-
ducing overlapping of samples. In the training set, it appears that the model trained with
data overlapping by 90% performs consistently better than the other two models trained
on 30% and 50% overlapping data. This is also the case over the test set, in Figure 12b, the
model trained with overlapping 90% of samples performs similarly well as in the training
set. This is a good performance, considering that it is based on nothing more than inertial
sensor data without much to calibrate on apart from occasional well-located changes of
direction (e.g., when going around a corner). This route covered long stretches of straight-
line corridors (up to 60 m) walked at various speeds. These conditions are recognised well
by the LSTM estimator. These results illustrate that by increasing the overlapping rate,
models can learn features better since they have more data available to train on.
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Figure 12. LSTM model performance with different overlapping rations on validation and test set.
(a) Validation Set CDF. (b) Test Set CDF.
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From this experiment of using overlapping strategies, model performance improves
compared to those without time windows overlapping. The 90% windows overlapping model
has the best performance. We use this training enhancement in the following experiments.

5.1.3. Data Compression

We implement simple downsampling and Principal Component Analysis (PCA) strate-
gies for data compression to reduce the cost of training and inference time. As mentioned
in Figure 10, simply downsampling has little impact on the original signal representations.
Hence, we implement downsampling (pick up datapoint every 100 ms) over the training
data with the overlapping ratio of 90%. Therefore, one sample has been downsampled from
the size of (1000× 3) to (10× 3). For the PCA data compression, the dimension is reduced
to the same size of (10× 3) for each sample. New variables in a lower dimension could
be calculated based on eigenvalues and eigenvectors and therefore replace the original
variables in a higher dimension matrix by PCA.

Figure 13 shows the comparison between the downsampled based model and PCA
based model with an overlapping ratio of 90% for the LSTM model. Both CDFs illustrate
that the downsampled based model performs better than the uncompressed data based
model in that it reaches 80% of the prediction accuracy with the precision requirement of 8 m
on the test set. PCA based model performs slightly better compared to the uncompressed
model in both validation and test set.
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Figure 13. LSTM Model performances with different data compression strategies. (a) Validation Set
CDF. (b) Test Set CDF.

In general, the downsampled based model has the highest accuracy and reliability
compared to the PCA-based and to the model without data compression. By implementing
downsampling to the overlapping data, the model reduces its complexity by setting
a smaller time step to save computation time. It could handle the data with a larger
time window without losing significant data features. Specifically, ten datapoints in one
time window represent the data features of one-thousand samples in a time window,
which allows the model to further increase the time window allowance with little model
complexity increase. It could potentially allow the model to process a variety of activities
on short input vectors. This is of critical importance when integrating the model into
mobile devices to improve the prediction efficiency, which reduces application response
time and power consumption.

5.2. Overview of RNN for Inertial Sensors

Figure 14 contains all models discussed in this section. Overall, starting with selecting
a suitable time window from 10 ms, 100 ms, 1 s and 2 s, we choose 1 s for the time window
size, as this allows more data variation. We then improve estimation accuracy by further
increasing the training size with overlapping. For 90% overlapping of sensor samples,
the model shows a significant improvement in location estimation accuracy. To reduce
the complexity and the training time of the models, we compress the training data size
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by downsampling and PCA dimension reduction. We selected the LSTM model with
downsampling based on a 90% overlapping ratio, presented by the blue line in Figure 14,
as the inertial sensor positioning model settings, which balances the estimation accuracy
and efficiency.
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Figure 14. Overall comparison of model performances with different calibration strategies.
(a) Overall Validation Set CDF. (b) Overall Test Set CDF.

5.3. Deep Neural Network on WiFi Fingerprints

WiFi scans are received at an average update rate of about one second on experiment
smartphone devices of Samsung Galaxy S6 and HUAWEI P40. We use a Deep Neural
Network (DNN) as the WiFi Fingerprinting model, which takes WiFi scans from sensed
Access Points (AP) Received Signal Strength (RSS) at each sampling timestep, as input
to produce estimations, the normalised latitude and longitude. We evaluate the WiFi
estimator regarding model structure settings on the WiFi fingerprints dataset. The missing
APs are represented by −100 dBm and converted to zero when normalising to the [0, 1]
interval for input.

5.3.1. Model Structure

We explore the impact of architecture settings of 3-layer, 6-layer and 9-layer DNN
structures. As we observe from the CDF in Figure 15, the 3-layer DNN regression model
produces the best inference accuracy compared to the deeper networks. The models
show extreme similar estimation capability on the test set—Figure 15b, which shows the
model generalisation.
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Figure 15. WiFi based DNN model performances with different network structures. (a) Validation
Set CDF. (b) Test Set CDF.

5.3.2. Model Tuning

After we determine the DNN structure, we implement model tuning on the 3-layer
WiFi DNN regression model with the hyperparameter settings shown in Table 5. It should
be mentioned that the only variation of the model structure is the input sizes caused by
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the number of APs sampled in different experiment buildings. For our two evaluation
scenarios, there are 102 APs and 750 APs, respectively.

Table 5. WiFi-based DNN Parameter Settings.

Parameter Settings

Input Size AP Number
Epoch 100

Batch Size 100
Hidden Units 128
DNN Layer 3 Layers

Dropout Rate 0.5
Learning Rate 0.001
Learning Rules RMSprop

5.4. Overview of DNN for WiFi Fingerprints

The WiFi-based estimator is modelled with a deep neural network regression model.
By exploring the model structure with parameter tuning settings, we decide to use a three-
layer DNN model for WiFi Fingerprinting. We use this WiFi model architecture as the
sub-component network integrated into the multimodal fusion model.

5.5. Multimodal Deep Neural Networks on Sensor Fusion

After we determined the model structure for each modality, we move our focus to
fuse each modality-specific component into a uniform Multimodal Deep Neural Network
(MDNN).

5.5.1. MDNN Integration

To explore the best fusion architecture of the MDNN that links the modality-specific
features extracted from the RNN and DNN sub-networks as introduced in Figure 8, we
customise four types of fusion networks, including two hybrid element-wise fusion of
concatenation and multiplication, a hybrid residual connection fusion as well as a late
fusion structure.

Element-wise Fusion: The MDNN with element-wise fusion architecture is shown
in Table 6. By concatenating the modality-specific hidden layer outputs from both LSTM
and DNN sub-networks of 128 dimension output, the fusion layer read these two hidden
outputs by implementing element-wise matrix calculation of concatenation (128× 2) or
multiplication (128). This fused matrix then goes through higher 128 and 64 size fully-
connected joint layers and eventually are regressed to a two-value prediction (Xest, Yest).

Residual Connection Fusion: Table 7 shows the MDNN with a residual connection
architecture. Different from the element-wise fusion MDNN, in order to emphasise the
WiFi features which are smaller in representation compared to the time-sequential inertial
sensor data, we add a residual connection layer that transfers the hidden output (128) from
WiFi penultimate fully-connected layer to the joint layer, fusing together with the LSTM
(128) and DNN last FC layer outputs (128× 2). This derives a 128× 3 representation for
the sensor-fusion component, which performs the final location estimation.

Late Fusion: Table 8 presents the MDNN architecture with the late fusion strategy.
This works by combining two separate LSTM and DNN model outputs, the predictions
that produce the lat-long coordinate estimation (XSensor, YSensor) and (XWiFi, YWiFi) respec-
tively. These estimations form a four-dimensional feature input vector, which provides
the representations needed by the top layers to estimate the final latitude and longitude
(XFusion, YFusion).
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Table 6. MDNN Architecture with Element-wise Fusions.

Layers Output Shape

LSTM Layer (sensor) (Batch Size, 128)

FC Layer.1 (WiFi) (Batch Size, 128)

Dropout Layer.1 (WiFi) (Batch Size, 128)

FC Layer.2 (WiFi) (Batch Size, 128)

Dropout Layer.2 (WiFi) (Batch Size, 128)

FC Layer.3 (WiFi) (Batch Size, 128)

Fusion Layer (concat or multiply) (Batch Size, 128 × 2 or 128 × 1)

FC Layer.4 (joint) (Batch Size, 128)

FC Layer.5 (joint) (Batch Size, 64)

FC Layer.6 (joint) (Batch Size, 2)

Batch Size Learning Rate Learning Rules Dropout Rate

100 0.001 RMSprop 0.5

Table 7. MDNN Architecture with Residual Connection Fusion.

Layers Output Shape

LSTM Layer (sensor) (Batch Size, 128)

FC Layer.1 (WiFi) (Batch Size, 128)

Dropout Layer.1 (WiFi) (Batch Size, 128)

FC Layer.2 (WiFi) (Batch Size, 128)

Dropout Layer.2 (WiFi) (Batch Size, 128)

FC Layer.3 (WiFi) (Batch Size, 128)

Residual Layer (FC Layer.2 WiFi ) (Batch Size, 128)

Fusion Layer (LSTM, FC Layer.3, RL) (Batch Size, 128 × 3)

FC Layer.4 (joint) (Batch Size, 128)

FC Layer.5 (joint) (Batch Size, 64)

FC Layer.6 (joint) (Batch Size, 2)

Batch Size Learning Rate Learning Rules Dropout Rate

100 0.001 RMSprop 0.5

Table 8. MDNN Architecture with Late Fusion.

Layers Output Shape

LSTM Layer (sensor) (Batch Size, 128)

Sensor Regression Output.1 (X1, Y1) (Batch Size, 2)

FC Layer.1 (WiFi) (Batch Size, 128)

Dropout Layer.1 (WiFi) (Batch Size, 128)

FC Layer.2 (WiFi) (Batch Size, 128)

Dropout Layer.2 (WiFi) (Batch Size, 64)

FC Layer.3 (WiFi) (Batch Size, 32)

WiFi Regression Output.2 (X2, Y2) (Batch Size, 2)

Fusion Network (input: X1, Y1, X2, Y2) (Batch Size, 2 × 2)

Regression Output.3 (X3, Y3) (Batch Size, 2)

Batch Size Learning Rate Learning Rules Dropout Rate

100 0.001 RMSprop 0.5
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5.5.2. MDNN Implementation

We present the estimation accuracy from the four MDNN with different fusion strate-
gies, comparing sensor and WiFi single-modality location estimators results. The CDF
charts in Figure 16 show the estimation strength of these four models. We evaluate these
models on the aligned multimodal dataset collected from two buildings (deployment
scenarios) with the following split radio: 65%, 25% and 10% for training, validation and
testing, respectively.
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Figure 16. Comparison of MDNN model performances with different fusion architectures.
(a) Comparison CDF on Scenario A; (b) Comparison CDF on Scenario B.

Figure 16a shows the performances of the MDNN with hybrid concatenation, hybrid
multiplication, residual connection and late fusion architectures, as well as the sensor
model and WiFi model on scenario A. We observe that the hybrid concatenation fusion
MDNN performs the best with 1.98 m precision in 80% of the estimations, followed by
the residual fusion and multiplication fusion models. Although the late fusion model
has a relatively poor 3.7 m accuracy, it is approximately 2× better than that from the
sensor-based estimator. In terms of single-modality estimator performance, the WiFi model
performs significantly better than the sensor models with 2.6× better accuracy. In 80% of
the estimations, the WiFi model has an accuracy of 2.6 m error while the sensor model
holds 6.9 m prediction error.

We observe similar performances from these models on Scenario B (second building),
with the best performance contributed by the same architecture of concatenation fusion
MDNN, just under 2 m median error, as shown in Figure 16b. Regarding single-modality
model performances, the WiFi model has an error of 3 m, and the sensor-based model has
an error of 6.2 m.

5.6. Overview of MDNN on Sensor Fusion

By evaluating the performance of MDNN under different fusion architectures (con-
catenation, multiplication, residual connection and late fusion), we observe that the median
error of the hybrid fusion multimodal model on the test set is 1.98 m, which is significantly
lower than other fusion models and modality-specific estimators from sensors and WiFi
data. As observed from the CDF plot in Figure 16, 90% of the errors are lower than 4 m in
both scenarios. The hybrid concatenation MDNN fusion method has the best estimation
accuracy among all other models under both scenarios, which gives us confidence in the
generalisation power of the models. We use the element-wise concatenation as the fusion
method for the MDNN, giving it the name of MM-Loc, for further evaluations.

6. Evaluation

In this section, we present the results of evaluating the MM-Loc performance under
both scenarios, compared to modality-specific models performances. We also discuss
the inference accuracy influenced by sensor inputs with different sampling frequencies.
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Furthermore, we add a comparative study for evaluating our proposed MM-Loc with other
state-of-the-art (SOTA) multimodal positioning systems.

MM-Loc’s median accuracy is within 2 m error for 80% of the prediction cases, which
is 3.5× better than the single-modality baseline model. By comparing Figure 17a,b, we
observe that in scenario A the MM-Loc performs better than the WiFi-based single-modality
model within 2 m error at the intersection point with the WiFi model. However, the WiFi
model outperforms the MM-Loc for larger precision tolerance. In scenario B, MM-Loc
always outperforms the single-modality models. This is likely due to the WiFi signal
coverage being denser in scenario A than that in scenario B, which contributes to the
WiFi-based position estimator quality. As observed, the MM-Loc outperforms single-
modality models.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
metres

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MM-Loc CDF

MM-Loc
Sensor
WiFi

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
metres

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MM-Loc CDF

MM-Loc
Sensor
WiFi

(b)

Figure 17. MM-Loc prediction CDF compared with modality-specific models. (a) MM-Loc Perfor-
mance CDF on Scenario A; (b) MM-Loc Performance CDF on Scenario B.

To explore the opportunity for reducing energy consumption, we vary the WiFi scan
frequency in our proposed MM-Loc system. Specifically, for scenario A, as the default WiFi
sampling rate is 10 Hz, sourced from the system, we reduce the scanning frequency of the
dataset from 10 Hz to 5 Hz and 1 Hz by applying a filter. The purpose of adjusting the
WiFi sample frequency is to assess the impact of this energy-saving strategy of scanning
reduction onto the location estimation accuracy. This also shows how our model behaves
in systems where a high refresh rate is not available. In Scenario B, we decrease the WiFi
sampling frequency from the original 1 Hz to 0.1 Hz and even 0.05 Hz for the same reason.

Figure 18 presents the comparison between the performances of MM-Loc running
at different WiFi sampling frequencies. We found that the multimodal model prediction
accuracy experiences the same trend with the decrease of sampling rates. MM-Loc with
an intermediate sampling rate still predicts with approximately 4 m accuracy. Hence, the
sampling rate has little impact on accuracy, but it can bring a lot of savings on-device from
reduced computations and WiFi scans.
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Figure 18. Comparison of MM-Loc model performances running at different WiFi sampling rates.
(a) MM-Loc Performance CDF on Scenario A. (b) MM-Loc Performance CDF on Scenario B.
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Figure 19 shows the box plots of the MM-Loc with the default WiFi frequency inputs
in both scenarios. In scenario A, the location estimation accuracy at first quartile (Q1),
second quartile (Q2) and third quartile (Q3) is 0.467 m, 0.784 m and 1.545 m respectively;
while in scenario B, Q1, Q2 and Q3 is 0.789 m, 1.387 m and 2.288 m respectively.
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Figure 19. MM-Loc Prediction Box Plot. (a) MM-Loc Box Plot on Scenario A; (b) MM-Loc Box Plot
on Scenario B.

6.1. MM-Loc Comparative Study

We compare our proposed MM-Loc with other multimodal SOTA positioning systems
on the same dataset collected from the two scenarios. These SOTAs include P-MIMO,
which uses RNN to extract multiple received signal strength and DNN for predicting
regression location outputs [31]; HDLM, which uses a convolutional neural network (CNN)
for RSS feature extractor and LSTM for regression locations estimations [32]; GRU-CNN,
which uses CNN to extract RSS features and Gated Recurrent Unit (GRU) for positioning
predictions [33]. The estimation performances are shown in Table 9. Compared with other
SOTA baseline models, our proposed MM-Loc has the best performance, which shows the
superior position estimation capability with the highest prediction accuracy and the lowest
estimation error in both scenarios.

Figure 20 represents the CDF performances of the MM-Loc model and the aforemen-
tioned SOTAs models. As it can be observed, in more than 90% of the estimations, our
MM-Loc outperforms all other SOTA estimators.
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Figure 20. Comparison of model performance CDF of MM-Loc and SOTA models. (a) SOTA
Performance CDF on Scenario A; (b) SOTA Performance CDF on Scenario B.
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Table 9. Comparative study of model performances under both scenarios.

Method
ScenarioA ScenarioB

Min Max Mean Std Min Max Mean Std

MM-Loc 0.0331 m 30.1591 m 1.5530 m 1.7790 m 0.0031 m 20.2881 m 1.8859 m 1.9679 m

P-MIMO 0.0866 m 30.3014 m 2.4021 m 2.9929 m 0.0059 m 21.3284 m 2.4363 m 2.0115 m

HDLM 0.0337 m 30.9279 m 1.9946 m 2.5993 m 0.0031 m 18.4450 m 2.1128 m 2.0198 m

GRU-CNN 0.0348 m 33.1648 m 1.5446 m 1.7886 m 0.0048 m 22.7855 m 2.1867 m 1.8698 m

6.2. MM-Loc Visualisation

Figure 21 presents the predicted footpath from the MM-Loc for two scenarios. The red
line indicates the distance between the coordinates of the ground truth and estimated
locations produced by the MM-Loc model.
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Figure 21. MM-Loc Footpath Visualisation. (a) MM-Loc Predicted Footpath on Scenario A;
(b) MM-Loc Predicted Footpath on Scenario B.

We observe that MM-Loc predicts the footpath along the corridor with high fidelity,
having clear estimation boundaries. However, some predictions are over 5 m away from the
ground truth, especially at the corners of corridors. This is likely an effect of the difficulty
of observations in the WiFi component near corners. The other aspect introducing errors is
the magnetic interference present in some places on the pathway (elevators and heavy iron
materials in building materials).

7. Discussion

Our work shows that conventional smartphone indoor localization methods can be
modelled by end-to-end deep neural networks and fused by a multimodal structure. This
starts with individual feature extractors specific for each modality (using RNNs and DNNs)
and then fusing these representations for the final inference through joint neural network
architecture. With this, we are moving the effort from engineering each modality com-
ponent (step counting, direction estimation) and other conventional integration methods
(particle filters, Kalman filter and graph-based constraints) to a purely data-driven machine
learning effort.

Our data-driven fusion approach builds entirely on the quality and volume of data,
without engineering preliminary features nor making assumptions about the use of the
system. Previous systems fail when porting to new environments because of the built-in
assumptions about the scene. In contrast, our system is generalizable as it requires low
deployment costs. This is because the MM-Loc model can be automatically retrained to the
new deployment scenarios by transfer learning. The training relies on data samples with
minimum effort for data collection and labelling.

The proposed fusion approach of our system is extendable to include other various
sensing modalities and signal sources (such as light, environmental noise, humidity, air
pressure, etc.) for improving the system performance.
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There is still space for improvements in the estimation accuracy. Despite our explo-
ration with a low volume of training data, we show that even these limited training sets
are enough for our end-to-end machine learning multimodal DNN solution to produce
good estimations. Our method moves the effort entirely on the quality of the training data.
Although data collection is still a hard challenge for now, we believe this is the only way to
capture the fine details that are commonly missed by traditional modelling approaches.
This information will always be available to train on if larger volumes of data become
available. In the future, this data collection can be automated, by robots roaming the indoor
space to update WiFi radio maps or by mass unlabelled data collection from users roaming
naturally in the environment, as well as through labelling solutions based on computer
vision [25]. The performance of our system improves with more training data becoming
available.

8. Conclusions

In this work, we introduce an end-to-end machine learning system, MM-Loc, which
uses a hybrid multimodal deep neural network to perform the task of smartphone indoor
localization. Our MM-Loc is an entirely data-driven approach. We model the conventional
methods of indoor localization, WiFi Fingerprinting and Dead Reckoning through neural
network structures. These are capable of performing location estimation independently,
with a median error of 2.8 m by the WiFi Fingerprinting neural network and a median error
of 6.5 m by the inertial sensors recurrent neural network, respectively. To perform the fusion,
we developed MM-Loc as a multimodal structure that bridges internal representations
from modality-specific networks into a more robust location estimation solution. Our
MM-Loc achieves a performance of 1.9 m median error, while being easy to deploy due to
learning only from data automatically.
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