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Abstract: Rolling bearings are important in rotating machinery and equipment. This research
proposes variational mode decomposition (VMD)-DenseNet to diagnose faults in bearings. The
research feature involves analyzing the Hilbert spectrum through VMD whereby the vibration signal
is converted into an image. Healthy and various faults show different characteristics on the image,
thus there is no need to select features. Coupled with the lightweight network, DenseNet, for
image classification and prediction. DenseNet is used to build a model of motor fault diagnosis;
its structure is simple, and the calculation speed is fast. The method of using DenseNet for image
feature learning can perform feature extraction on each image block of the image, providing full play
to the advantages of deep learning to obtain accurate results. This research method is verified by
the data of the time-varying bearing experimental device at the University of Ottawa. Through the
four links of signal acquisition, feature extraction, fault identification, and prediction, a mechanical
intelligent fault diagnosis system has established the state of bearing. The experimental results show
that the method can accurately identify four common motor faults, with a VMD-DenseNet prediction
accuracy rate of 92%. It provides a more effective method for bearing fault diagnosis and has a
wide range of application prospects in fault diagnosis engineering. In the future, online and timely
diagnosis can be achieved for intelligent fault diagnosis.

Keywords: VMD-DenseNet; intelligent fault diagnosis; bearing fault

1. Introduction

With the development of modern machinery and equipment, the structure of equip-
ment has become more complex. The failure of parts in machinery and equipment may
cause the entire equipment to fail to operate, and the failure of key parts may cause serious
casualties and economic losses. The mechanical fault diagnosis technology has matured,
and its results have been widely used in industrial production. However, with the emer-
gence and widespread application of advanced technologies such as sensors, big data, and
the Internet of Things, the development trend of mechanical fault diagnosis technology is
bound to be combined with contemporary cutting-edge technologies. These factors pro-
mote the transformation of the monitoring and diagnosis of industrial equipment faults to
the direction of intelligence; the future development direction of this technology combines
with artificial intelligence.

Rolling bearing fault diagnosis is the process of determining the damage state through
detection, isolation, and identification through data collected by the health monitoring
of the rolling bearing. The early fault diagnosis method of rolling bearing was relatively
simple, mainly through some statistical parameters (average value, root mean square value,
kurtosis, etc.) to judge the fault condition of rolling bearing. However, these statistical val-
ues cannot determine the noise and interference caused by shaft speed changes, gears, and
other vibration sources. Cempel [1] constructed a set of discriminants for the crest factor,
pulse factor, harmonic factor, frequency modulation factor, and other parameters of the
random vibration process. Sturm et al. [2] designed a zero-mean normalization parameter
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and found that the parameter normalized to zero-mean condition is more suitable for fault
diagnosis than the absolute value of the time-domain parameter. Martin et al. [3] used
standardized skewness and standardized kurtosis to determine early failures of rolling
bearings. Pand et al.’s [4] research extended the field even further and proposed the use of
statistical moments to detect the health status of rolling bearings. Following this, the indus-
try explored parameterized signal processing methods. For example, Mechefske et al. [5]
found that the effect of parameterized spectral index fault classification is better than that
of traditional fast Fourier transform. Logan and Mathew [6] have proposed a correlation
integration algorithm to measure the results of the correlation di-mension on the rolling
bearing test rig. Vapnik et al. [7] proposed a learning theory based on statistics. It showed
superiority in the identification of small samples and non-linear processing, which was
later introduced into the field of fault diagnosis and achieved wide applications. Li et al. [8]
proposed a bearing vibration feature extraction method based on multi-scale permutation
entropy and binary tree based on an improved support vector machine. Lin [9] analyzed
the impact of different Gaussian kernel functions, such as fine, medium, and coarse, on
the performance of the SVM algorithm in the classification results of related motor data
sets obtained by motor fault detection and diagnosis. The most critical part of bearing fault
diagnosis is to effectively process the collected vibration signals to obtain features that can
express bearing state information, that is, feature extraction, which lays a good foundation
for subsequent fault pattern recognition. Vibration signal processing methods generally
include three types of analysis: time domain analysis, frequency domain analysis, and time-
frequency domain analysis [10]. Empirical mode decomposition can adaptively decompose
non-stationary signals based on the time scale. It is a signal processing method that is
widely used in the field of mechanical fault diagnosis [11,12]. Han et al. [13] proposed a
new power-based IMF selection algorithm and used an improved fully integrated EMD
with adaptive noise and a multilayer perceptron neural network to verify the performance
of the proposed fault diagnosis system. Lee and Hung [14] proposed a feature ranking
and differential evolution method for feature selection in brushless DC motor BLDC fault
diagnosis. This research uses Hilbert–Huang transform (HHT) to extract the hall signal
characteristics of four different types of brushless DC motors. Wang [15] proposed to
use short-time Fourier transform (STFT) to preprocess the original signal to obtain the
corresponding time-frequency diagram. Then, a convolutional neural network (CNN)
began to be used to adaptively extract the features of the time-frequency image. Li [16]
proposed pseudo-Wigner–Ville distribution and relative cross information methods for
intelligent fault diagnosis methods for motor roller bearings running at unsteady speed
and load. Gu et al. [17] developed a new type of long short-term memory (LSTM) model
with discrete wavelet transform (DWT) for multi-sensor fault diagnosis. Nguyen’s [18]
research applies the wavelet vibration imaging method (WVI) to the denoised vibration
signal. The obtained scale map is used as the input of the deep convolutional neural
network architecture (DCNA), which is used to extract the discriminative features in the
gearbox and the multiple degree tooth failure (MDTF) classification under variable speed
conditions. Dragomiretskiy et al. [19] proposed variational mode decomposition, which is
a new non-recursive, variational adaptive signal processing method. The decomposition
process is the process of solving the variational problem. Specifically, it first constructs
the variational problem for the input signal. Then, by solving the variational problem,
the signal is decomposed into a specified number of eigenmode functions. In addition,
variational mode decomposition has gained attention and application in bearing fault
diagnosis [20]. Lin’s research proposed an automatic fault diagnosis system combining
VMD and ResNet101 for bearing fault diagnosis. Recent efforts have also been made in the
field of deep learning to promote the miniaturization of neural networks. While ensuring
the accuracy of the model, it is smaller and faster and will become a popular method in the
future. These models make it possible for mobile terminals and embedded devices to run
neural network models. Online and timely diagnosis can be achieved in intelligent fault
diagnosis. This research proposes a comparison of advanced lightweight network models
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such as ShuffleNet, MobileNet, and DenseNet as traditional deep learning networks are
large, slow, and complicated. Lin’s research, for example, uses the Federal University
of Rio de Janeiro database, a traditional fixed speed database. The database of this re-
search is special the speed of each data is different from the traditional fixed speed, yet
the database is more challenging. Traditional machine learning methods such as artificial
neural networks, sparse representation, fuzzy inference, SVM have been widely applied
in bearing fault diagnosis [21–23]. Recent years have seen the advancement of training
deep network technology and a substantial increase in hardware computing capabilities.
Deep learning and machine learning technologies have more powerful feature extraction
and processing capabilities, as well as wide applicability and model migration capabili-
ties; this superior performance makes them widely used in various industries. Methods
based on deep learning have gradually become the focus of attention, and related fault
diagnosis research is shown in the literature [24–28]. In a paper published by Google, the
MobileNet lightweight network was proposed. The MobileNet deep convolutional neural
network is mainly developed for mobile terminals or embedded devices [29]. Compared
with traditional convolution, MobileNet uses depth separable convolution to divide the
convolution operation into two parts, Depthwise and Pointwise. The calculation amount
of depth separable convolution can be eight to nine times less than that of traditional
convolution. The design goal of ShuffleNet also includes how to use limited computing
resources to achieve the best model accuracy, which requires a good balance between
speed and accuracy [30]. The core of ShuffleNet uses two operations: pointwise group
convolution and channel shuffle, which greatly reduces the amount of model calculations
while maintaining accuracy. After ResNet, Huang [31] proposed the DenseNet network,
which inherited the idea of residual network and improved the connection method. The
DenseNet network takes image features as the starting point, and achieves better results,
and reduces a large number of parameters through the reuse of image features.

Traditional machine learning or deep learning classification prediction requires the
selection of features. The features to be used and the number of features are determined and
selected according to the intended use; there is no fixed standard operating procedure. The
spectrogram analyzed by VMD can fully present the characteristics of bearing diagnostic
signals. Through image classification and prediction in deep learning, ResNet is a good
method of classification and prediction. Compared with convolutional neural networks and
general deep learning methods, ResNet can solve the problems, to an extent, of gradient
descent and gradient disappearance. It produces it as the number of layers increases,
and each layer has a corresponding weight, and the number of parameters will increase
accordingly. In order to achieve real-time bearing monitoring and diagnosis, it is necessary
to reduce the amount of network calculations. In recent years, DenseNet has been proposed.
DenseNet is also an improved neural network framework based on convolutional neural
networks, which is mainly composed of dense blocks, transition layers, and bottleneck
layers. In order to further improve the efficiency of information flow between the various
layers, DenseNet proposes a different connection method, that is, the direct connection
from which layer to all subsequent layers is introduced. It enhances the propagation of
features to promote the repetition and effective use of features, reduces the number of
parameters, and simultaneously reduces the calculation. Therefore, VMD spectrogram
plus DenseNet is suitable for bearing fault diagnosis.

The research contribution aims to use VMD to analyze the Hilbert spectrum, convert
the one-dimensional bearing signal into a two-dimensional time-frequency graph, and
combine it with the deep neural network DenseNet to realize intelligent fault classification
prediction and diagnosis. Generally, neural networks require high-intensity calculations,
but for small and medium-sized embedded systems, computing resources are limited. In
order to deploy the network model in a small embedded system, it mainly compresses the
large-scale classical classification network model and reduces the number of parameters of
the model operation so that it can run in the case of insufficient CPU, memory, or other
hardware resources.
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2. Research Methodology
2.1. VMD

VMD is a new signal processing method, which is different from other separation
methods and is mainly reflected in the process of solving the center frequency and band-
width of each component. The basic principle of VMD is to use Wiener filtering and Hilbert
transform to construct multiple constraint problems from an input signal. By continuously
updating the bandwidth and center frequency of each constraint problem to solve the
problem, the adaptive decomposition of the vibration signal is finally realized.

The bearing vibration signal is split into K IMF components by the constrained vari-
ational model. Its intermediate frequency range and bandwidth are quickly updated in
the iterative loop process so that the sum of the frequency domain widths of the K IMF
components finally obtained is the smallest. At the same time, the addition of K IMF
components can restore the original vibration signal. The summary of VMD theory is as
follows [19]. Each IMF component can be functionalized into an amplitude modulation-
frequency modulation mode function uk(t), as shown in the following formula:

uk(t) = Ak(t) cos(φk(t)) (1)

Here, Ak(t) is taken as the instantaneous amplitude of uk(t), and Ak(t) ≥ 0; (t)
instantaneous frequency. φk(t) is used as the instant phase of uk(t), and φk(t) is the
first-order differential of t to obtain the instantaneous frequency of uk(t):

wk(t) =
φk(t)

dt
, wk(t) ≥ 0 (2)

The goal of estimating the frequency domain width of each IMF component by creating
a variational pattern:

(1) Conduct Hilbert transformation on the mode function uk(t). Acquire its analy-
sis input: (

δ(t) +
j

πt

)
∗ uk(t) (3)

(2) Use the transformation parameter e−jωkt to adjust the frequency domain of each
mode mapping to their initial band:[(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt (4)

(3) Derive the norm gradient square L2 in Equation (4), estimate the width of uk(t)
mode function, and the initial variational constraint problem:

min
{uk},{ωk}

{
K
∑

k=1
||∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt||22

}
s.t.

K
∑

k=1
uk(t) = f (t)

(5)

where {uk} stands for IMF1-IMFK, {uk} = {u1, u2, . . . uk}. {ωk} represents the bilateral
symmetric frequency of IMF1-IMFK, {uk} = {u1, u2, . . . uk}. δ(t) is the average pulse
function; ∂t is the first-order partial derivative of the functional with respect to time t; j
is the imaginary unit; ∗ is the convolution symbol. The amplified Lagrangian functional
L is introduced and the restricted variational target is converted in Equation (5) into an
unrestricted variational target for analysis, as shown in the formula:

L({uk}, {ωk}, λ) = α
K

∑
k=1
||∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt||22 + || f (t)−

K

∑
k=1

uk(t)||22 + 〈λ(t), f (t)−
K

∑
k=1

uk(t)〉 (6)
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In the formula, α is the secondary punishment factor. When white noise exists, its
existence can ensure the reconstruction accuracy of the original signal. In the formula, α
is the secondary punishment factor. λ(t)—Lagrange factor multiplier, the control limits
used to determine the factor are all executed in place. The actualized circulation regression
multiplier algorithm derives the expanded Lagrange map of Equation (6). The detailed
export process is as follows:

(1) Initial setup
{

û1
K
}

,
{

ω1
K
}

, λ̂1 n;
(2) Implement outer loop n = n + 1;
(3) If k = 1:K, implement this inner loop;
If there are ω ≥ 0, reiterate the functional ûk for each of them

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k û(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (7)

Iterate the functional again ωk:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2 dω∫ ∞

0 |ûk(ω)|2 dω
, (8)

(4) Update λ:

λ̂n+1(ω)← λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
, (9)

In the formula, τ is the noise tolerance scale. If the signal source has large background
noise, then setting τ = 0 can achieve outstanding noise reduction purposes.

(5) Continuously run the process (2)–(4), when the following conditions can be reached:

K

∑
k
||ûn+1

k − ûn
k ||

2
2/||ûn

k ||
2
2 < ε (10)

When the loop is paused, K IMF components with the smallest total bandwidth
are obtained.

2.2. DenseNet

With the deepening of the convolutional neural network structure, new problems
have appeared. After multi-layer transmission, the input information and gradient in-
formation may have been lost or disappeared when they reach the end of the network.
In order to solve the degradation problem of deep convolutional neural networks, He
Kaiming et al. [32] proposed ResNet. Traditional convolutional neural networks use pa-
rameterized layers to directly map between input and output, while the residual structure
used by ResNet uses multiple parameterized layers to learn the residuals between input
and output. By learning the residuals, the network converges faster, and because more
layers of parameters are used, the accuracy of the network is also improved.

Suppose Xn is the output of the nth layer of the convolutional neural network, and
Hn is the non-linear transformation composite function of the n-th layer. The composite
function is a combined operation, including batch normalization (BN), rectified linear unit
(ReLU), and convolution or pooling. The combined operation of convolution or pooling,
the output Xn−1 of the n − 1 th layer in the traditional convolutional neural network is the
input of the n-th layer:

Xn = Xn−1 (11)
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Because of the residual structure of ResNet, the output of the n-th layer is affected by
the input of the previous layer, which can be expressed as:

Xn = Hn(Xn−1) + Xn−1 (12)

In ResNet, the output of the n-th layer is connected by summation, which may affect
the spread of information in the network.

For the problem of vanishing gradient, many researchers have provided solutions, in
addition to ResNet, there are network structures such as Highway Networks [33], Stochas-
tic Depth [34], and FractalNets [35]. Although these network structures are different,
they are all based on the idea of mapping low-level feature maps to high-level networks.
Along this line, Huang et al. proposed a densely connected convolutional neural network,
DenseNet [31]. Compared with ResNet, DenseNet is a bolder and densely connected
network created to obtain better anti-fitting characteristics. DenseNet connects all layers
to each other, each layer receives all the previous layers as its new input to ensure that
the most inter-layer information is transmitted. DenseNet’s connection method is called a
dense block. Compared with other networks, the number of output feature maps of each
convolutional layer in the dense block is small, which also makes DenseNet’s network
narrower with fewer parameters. This densely connected method makes the transmis-
sion of feature maps and gradients more efficient, so the network will be easier to train.
Compared with other deep networks that have the problem of gradient disappearance
caused by the transmission of input information and gradient information in many layers,
DenseNet’s connection method allows each layer to directly connect the input information
and loss function, which can effectively reduce the problem of gradient disappearance. In
DenseNet, because the back layer will connect all the front layers as input, for an n-layer
network, there are a total of n(n + 1)/2 connections, and the output of the nth layer is:

Xn = Hn([X0, X1, · · ·Xn−1]), (13)

where [X0, X1, · · ·Xn−1] represents the stitching of the 0-th, . . . , n − 1 th layer output fea-
ture maps. The following summary illustrates the DenseNet methodology [31] in this study.
The network structure of DenseNet is mainly composed of DenseBlock and Transition.

Composite function: Here Hn(·) is defined as a combined function of three consecutive
operations: BN, followed by a ReLU and a 3 × 3 convolution (Conv).

Pooling layers: When the size of the feature map changes, there will be problems
with the wiring operation in Equation (13). However, convolutional networks have a
basic partial down-sampling layer, which can change the size of the feature map. In order
to facilitate the implementation of down-sampling, the network is divided into multiple
densely connected dense blocks. The layer between each block is called the transition layer,
which completes the convolution kernel pooling operation.

Growth rate: If each function Hn generates k feature maps, the subsequent l layer will
have k0 + k× (n + 1) feature maps as input, where k0 represents the number of channels in
this layer. An important difference between DenseNet and the existing network structure
is that the network of DenseNet is narrow, such as k = 12. The super argument k is called
the growth rate of the network.

Bottleneck layer: Although each layer only produces k output feature maps, it has
more inputs. Adding 1 ∗ 1 convolution before the 3 ∗ 3 convolution in the bottleneck layer
to achieve dimensionality reduction can reduce the amount of calculation. This design is
effective for DenseNet, that is, the structure of BN-ReLU-Conv(1 ∗ 1)-BN-ReLU-Conv(3 ∗ 3)
is called DenseNet-B.

Compression: In order to simplify the model, the number of feature maps is reduced
in the transition layer. If a dense block has m feature maps, this will allow the subsequent
transition layer to generate θm output feature maps. Among them, 0 < θ ≤ 1 represents
the Compression coefficient. When θ = 1, the number of feature maps passing through the
transition layer does not change.



Sensors 2021, 21, 7467 7 of 22

Here we explain the entire flow chart of VMD-DenseNet and how to implement it.
Figure 1 shows the entire flow chart of VMD-DenseNet. Vibration signals of rolling bearing
health and failure are obtained from the motor test platform. VMD is analyzed into IMF
through algorithm and converted into Hilbert spectrum image. The images are divided
into a training database and a test verification database. The training database is entered
into DenseNet for training classification, using convolution, dense block, pooling, and
linear as described in the previous paragraph. The training result model is provided to the
test database for test verification. DenseNet performs diagnostic classification based on
test data and provides the accuracy of diagnostic classification.
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3. Database Description

The data obtained in this study provide test data for healthy and faulty motors,
obtained from the University of Ottawa website at https://data.mendeley.com/datasets/
v43hmbwxpm/2 (accessed on 9 November 2021). The data is collected from the vibration
signals of bearings with different health conditions under time-varying speed conditions.
The experimental setup is shown in Figure 2. For each data set, there are two experimental
setting conditions in the bearing health status and the changing speed status. The health
and failure conditions of the bearing include (1) health, (2) inner ring defects, (3) outer
ring defects, (4) ball defects, and (5) composite defects including inner ring, outer ring,
and a ball. The operating speed conditions are (i) increase speed, (ii) decrease speed, (iii)
increase and then decrease speed, and (iv) decrease and increase speed. Therefore, there
are 20 different situations. In order to ensure the repeatability of the data, three trials were
collected for each experimental setting, resulting in a total of 60 data sets. Table 1 shows
the bearing health or failure and test conditions. Each data set contains the vibration data
measured by the two-channel accelerometer and the rotational speed data measured by
the encoder. The data are acquired by the NI data acquisition boards (NIUSB-6212BNC);

https://data.mendeley.com/datasets/v43hmbwxpm/2
https://data.mendeley.com/datasets/v43hmbwxpm/2
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the bearing type is ER16K. All data are sampled at 200,000 Hz, and the sampling duration
is 10 s. The CPR (cycles per revolution) of the encoder is 1024.
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Table 1. Bearing health or failure and test conditions.

Bearing
Health

Conditions

Increasing
Speed

Decreasing
Speed

Increasing
Then Decreasing

Speed

Decreasing
Then Increasing

Speed

Healthy
H-A-1 H-B-1 H-C-1 H-D-1
H-A-2 H-B-2 H-C-2 H-D-2
H-A-3 H-B-3 H-C-3 H-D-3

Faulty (inner
race fault)

I-A-1 I-B-1 I-C-1 I-D-1
I-A-2 I-B-2 I-C-2 I-D-2
I-A-3 I-B-3 I-C-3 I-D-3

Faulty (outer
race fault)

O-A-1 O-B-1 O-C-1 O-D-1
O-A-2 O-B-2 O-C-2 O-D-2
O-A-3 O-B-3 O-C-3 O-D-3

Faulty (ball
fault)

B-A-1 B-B-1 B-C-1 B-D-1
B-A-2 B-B-2 B-C-2 B-D-2
B-A-3 B-B-3 B-C-3 B-D-3

Faulty
(combined

fault)

C-A-1 C-B-1 C-C-1 C-D-1
C-A-2 C-B-2 C-C-2 C-D-2
C-A-3 C-B-3 C-C-3 C-D-3

4. Results and Discussion

The process of VMD involves three very important theories: Wiener filtering, Hilbert
transform, and frequency mixing. The basic principle of VMD uses Wiener filtering and
Hilbert transform to construct multiple constraint problems from an input signal and to
solve the constraint problem by continuously updating the bandwidth and center fre-
quency of each constraint problem. Finally, the adaptive decomposition of the vibration
signal is realized because the VMD method uses a non-recursive, variational adaptive
decomposition mode. Therefore, it can effectively solve the problems of mode aliasing
and end effect in other commonly used mechanical fault vibration signal processing meth-
ods. In addition, the VMD method has the advantages of fast running speed and stable
decomposition results.

The VMD parameter setting uses Max Iterations, one of the optimizations’ stopping
criteria; the optimization of Max Iterations is stopped when the number of iterations is
greater than 600, the maximum number of optimization iterations of 600. Num IMF (the
number of extracted IMFs) is 5 IMF, Initial IMFs (initial IMF) is a zero matrix, and Penalty
Factor (penalty factor) is 1500. This parameter determines the fidelity of reconstruction.
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Using a smaller penalty factor value can obtain tighter data fidelity. LMU update Rate
(the update rate of the Lagrangian multiplier) is 0.01, which is the update rate of the
Lagrangian multiplier in each iteration. A higher rate will lead to faster convergence, but it
will increase the optimization process into a local, best opportunity. The initialize method
is peaked, and peaks initialize the center frequency to the peak position of the signal in the
frequency domain.

This result discusses the application of the VMD method to the actual bearing vibration
signal, and for the healthy state of the rolling bearing as well as the different positions of the
inner ring, outer ring, and rolling element mixing (acceleration, deceleration, acceleration
and deceleration, and deceleration and acceleration). The four speed-increasing modes are
tested experimentally using the VMD method. Figures 3 and 4 show the VMD analysis
of the healthy bearing state. The motor speed is increased from 846 RPM to 1428 RPM.
Figure 3 is the time-domain waveform diagram of the vibration signal, Figures 3 and 4
show the VMD analysis of the healthy bearing state. The motor speed is increased from
846 RPM to 1428 RPM. Figure 3 is the time-domain waveform diagram of the vibration
signal VMD. Figure 4 is a component spectrum diagram; each state vibration signal is
decomposed into five mode components. The results show that the IMF Hilbert marginal
spectrum of the vibration data processed by VMD has a higher frequency resolution. There
are five frequencies in healthy bearings, the most obvious being 57 k Hz, 35 k Hz, 15 k Hz,
5 k Hz, 1.6 k Hz. The healthy bearing has not changed due to the increase in speed. The
healthy bearing has four transmission modes: increase, deceleration, increase and then
decelerate, and deceleration and increase again. Each mode contains data with three
measurements, and the speed is measured each time. There are a total of 12 different test
data; these data are all converted into images of Hilbert’s marginal spectrum.
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Figure 4. VMD analysis from a healthy bearing under increasing rotational speed condition in
Hilbert spectrum.

Figures 5 and 6 are the VMD analysis results of the inner race fault bearing state,
and Figure 4 is the time-domain waveform diagram of the VMD of the vibration signal.
Figure 6 is a component spectrum diagram; each state vibration signal is decomposed
into five mode components. The results show that the IMF Hilbert marginal spectrum
of the vibration data processed by VMD has a higher frequency resolution. There are
five frequencies in healthy bearings, the most obvious are 35 k Hz, 23 k Hz, 9 k Hz, 5.4
k Hz, 1.9 k Hz. The higher the speed of the faulty bearing, the greater the vibration. The
inner race fault bearing also has four transmission modes: increase, decrease, increase and
decrease, and decrease and increase. Each mode has three measurements. The rotation
speed is different during each measurement, and there is a total of 12 test data; these data
are all converted into images of Hilbert’s marginal spectrum.
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Figure 6. VMD analysis from an inner race fault bearing under increasing rotational speed condition
in Hilbert spectrum.

Figures 7 and 8 show the VMD analysis results of the outer race fault-bearing state.
Among them, Figure 6 is the time-domain waveform of the vibration signal variational
mode decomposition. Figure 8 is the component spectrogram. Each state vibration signal is
decomposed into five mode components. The results show that the IMF Hilbert marginal
spectrum of the vibration data processed by VMD has a higher frequency resolution. There
are five frequencies in healthy bearings, the most obvious being 65 k Hz, 37 k Hz, 10 k Hz,
5 k Hz, 750 Hz. The higher the speed of the faulty bearing, the greater the vibration.
The outer race fault bearing also has four speed modes: increase, decrease, increase and
decrease, and decrease and increase. There are three measurements for each mode, and the
rotation speed is different during each measurement. There are 12 test data in total; these
data are all converted into images of Hilbert’s marginal spectrum.
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Figure 8. VMD analysis from an outer race fault bearing under increasing rotational speed condition
in Hilbert spectrum.

Figures 9 and 10 are the VMD analysis results of the ball fault-bearing state. Figure 9
is the time-domain waveform of the vibration signal’s VMD. Figure 10 is the component
frequency spectrum. The results show that the IMF Hilbert marginal spectrum of the vibra-
tion data processed by VMD has a higher frequency resolution. There are five frequencies
in healthy bearings, the most obvious being 33 k Hz, 22 k Hz, 10 k Hz, 5 k Hz, 1.9 k Hz.
The higher the speed of the faulty bearing, the greater the vibration. The ball fault bearing
also has four speed modes: increase, decrease, increase and decrease, and decrease and
increase. There are three measurements for each mode, and the rotation speed is different
during each measurement. There are 12 test data in total; these data are all converted into
images of Hilbert’s marginal spectrum.
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Figure 10. VMD analysis from a ball fault bearing under increasing rotational speed condition in
Hilbert spectrum.

Figures 11 and 12 are the VMD analysis results of the combined fault-bearing state,
and Figure 11 is the time-domain waveform of the vibration signal’s VMD. Figure 12 is a
component spectrum diagram; each state vibration signal is decomposed into four mode
components. The results show that the IMF Hilbert marginal spectrum of the vibration
data processed by VMD has a higher frequency resolution. There are four frequencies in
healthy bearings, the most obvious being 9 k Hz, 7 k Hz, 5 k Hz, 1.5 k Hz. The higher the
speed, the greater the vibration of the faulty bearing. The combined fault bearing has four
speed modes: increase, decrease, increase and decrease, and decrease and increase. There
are three measurements for each mode, and the rotation speed is different during each
measurement. There are 12 test data in total. These data are all converted into images of
Hilbert’s marginal spectrum.
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In this study, all five categories of data, which included healthy, inner race fault, outer
race fault, ball fault, and combined fault, were analyzed by VMD and converted into the
Hilbert spectrum. Each category contained 12 test data; a total of 60 test data and 60 Hilbert
spectrograms of VMD were obtained.

VMD time-domain waveform diagrams and component spectrograms of faults in
different parts of the bearing are also different. This part is mainly to carry out the VMD
of the fault vibration signals of different parts of the rolling bearing. In this way, the
feature extraction of different parts of the bearing is realized, and finally, the diagnosis of
the bearing fault is realized by comparing and analyzing the characteristic information
of the healthy state and the fault state of different parts. From the analysis of the time-
domain waveform diagram, it can be found that in the four failure states of the bearing, the
vibration signal has a certain impact, and the frequency of each mode component is also
different. It can be seen from the spectrogram of the four state components of the bearing
that the vibration signal is processed by the VMD method. The bearing signals of different
parts are effectively decomposed according to a certain bandwidth, and there is almost no
mode aliasing between the mode components. By comparing and analyzing the component
spectrograms under the four failure states, it is possible to simply analyze several failure
states of the rolling bearing from the frequency distribution range, the energy level of the
corresponding component spectrum, and the vibration intensity.

The IMF components obtained by VMD decomposition of the above healthy and four
types of motor faults are subjected to Hilbert transformation, although the obtained Hilbert
marginal spectra are different. However, because there are four different speed modes and
the frequencies are close, engineers without professional training cannot understand the
fault situation at first glance. In order to evaluate the method proposed in the text more
comprehensively, it is compared with the current mainstream methods on the same test set,
from both qualitative and quantitative aspects.

Efforts are also being made in the field of deep learning to promote the development
of the miniaturization of neural networks. While ensuring the accuracy of the model, it is
smaller and faster. This study has proposed a comparison of lightweight network models
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that make it possible for mobile terminals and embedded devices to run neural network
models.

This research uses three deep learning image classification models/methods for iden-
tification: MobileNet, ShuffleNet, and DenseNet, to find the method with the highest
recognition rate. Each category has only 12 images; in order to retain more images for veri-
fication testing, 60% of each category of images are trained, and 40% are verified. Therefore,
there are seven images of each category for training and five images for verification testing.
The size of the image in the training process is 224 × 224 × 3, and the pixels of the image
will affect the training accuracy. The higher the pixel of the image, the higher the accuracy
can be obtained, but the calculation time will increase.

By plotting various indicators during training, researchers can understand the training
progress. For example, the figure can determine whether the accuracy of the network has
improved and the speed at which it has improved, as well as whether the network has
begun to overfit the training data. Figure 13 shows the results of DenseNet training and
verification network monitoring. The figure demonstrates the following:

• Training accuracy—the classification accuracy of each mini-batch.
• Smooth training accuracy—Smooth training accuracy is obtained by applying a

smoothing algorithm to training accuracy. It is less noisy than unsmoothed precision,
and it is easier to spot trends.

• Validation accuracy—The classification accuracy of the entire validation set.
• Training loss, smooth training loss, and validation loss—the loss of each mini-batch,

its smoothed version, and the loss of the validation set, respectively. If the last layer
of the network is the classification layer, for example, then the loss function is the
cross-entropy loss.
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Once the training is complete, results are checked, which shows the final verification
accuracy and reason for the end of the training. The final verification index is marked as
Final in the drawing. After the training is over, the results are checked, which shows the
final verification accuracy and the reason for the end of the training. The final verification
index is marked as Final in the drawing. The figure on the right shows information about
training time and settings.

In order to test the three methods with the same parameter settings, the specified
algorithm, the Stochastic Gradient Descent (SGDM) optimizer with momentum, is used.
The parameters can be explained as follows.

• Verbose is 0. Verbose is an indicator that displays training progress information.
Verbose consists of 1 (true) and 0 (false).

• Verbose Frequency is 50. Frequency of verbose printing, which is the number of
iterations between printing to the command window.

• Max epochs is 10. Max epochs is the maximum number of epochs. It is used for the
maximum number of epochs of training. Iteration is a step in the gradient descent
algorithm that uses small batch processing to minimize the loss function. An epoch is
a full traversal of the training algorithm on the entire training set.

• Mini batch size is 4. Mini-batch size, the size of the mini-batch used for each training
iteration. Mini-batch processing is a subset of the training set used to evaluate the
gradient of the loss function and update the weights.

• Validation frequency is 3. Validation frequency is the frequency of network validation.
• Validation patience is 5. Validation patience is the patience of validation stopping.
• Initial learn rate is 0.0001. The initial learning rate is 0.01, but if the network training

does not converge, you may wish to choose a smaller value. Learn rate schedule is
none. Learn rate schedule is an option for dropping the learning rate during training.

• Learn rate drop period is 10. Learn rate drop period is number of epochs for dropping
the learning rate.

• Learn rate drop factor is 0.1. Learn rate drop factor is the factor for dropping the
learning rate.

• L2 Regularization is 0.0001. L2 Regularization is a factor for L2 regularization.
• Momentum is 0.9. Momentum is the contribution of the previous step.
• Gradient threshold is Inf. The gradient threshold can be Inf or a positive value.

Gradient threshold method is L2 norm.
• Sequence length is longest. Sequence length fills the sequence in each mini-batch to

make it the same length as the longest sequence. This option will not discard any data,
but padding may cause noise to the network.

• Sequence padding value is 0. Sequence padding value is the value to pad input
sequences.

• Execution environment is GPU. GPU is the hardware resource for training the network.
Due to the popularity of deep learning, convolutional neural network models in the
field of computer vision, such as MobileNet, are emerging in an endless stream, and
the application of deep learning network models in image processing is improving.
Neural networks are expanding, their structures are becoming more complex, and
the hardware resources required for prediction and training are gradually increasing.
Often, deep learning neural network models can only be run on servers with high
computing power, and on mobile devices are difficult to run complex deep learning
network models due to the limitations of hardware resources and computing power.

The classification results of MobileNet are shown in Figure 14. The classification
accuracy rate of the predicted five categories is as follows: 100% for ball fault bearing, inner
race fault bearing, and outer race fault bearing; 71.4% for combination fault bearing; 83%
for healthy bearing; and the total classification accuracy rate of 88%.
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The authors’ proposal is to use the ShuffleNet network and Point group convolution
to improve the computational efficiency of convolution. The proposed channel shuffle
operation can realize information exchange between different channels, which helps to en-
code more information. Compared with many other advanced network models, ShuffleNet
greatly reduces the calculation cost and achieves excellent performance while ensuring
calculation accuracy. In fact, grouped convolution was used in the AlexNet network model
at the earliest, and some efficient neural network models such as Xception and MobileNet
proposed later introduced deep separable convolution on the basis of grouped convolu-
tion. Although the ability of the model and the amount of calculation can be coordinated,
the calculation amount of point-by-point convolution in the model occupies a large part.
Therefore, the pixel-level group convolution is introduced in the ShuffleNet structure to
reduce the computational complexity caused by the convolution operation. The ShuffleNet
classification results are shown in Figure 15. The classification accuracy rate in the pre-
dicted three categories shows a classification accuracy rate of 100% for ball fault bearing,
combination fault bearing, and inner race fault bearing; 71.4% for healthy bearing; 80% for
outer race fault bearing; and a total classification accuracy rate of 88%.
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Huang [31] proposed the use of DenseNet network following ResNet [32], which
inherited the idea of residual network and improved the connection method. The DenseNet
network takes image features as the starting point, and achieves better results, and reduces
a large number of parameters through the reuse of image features. Instead of learning
redundant features multiple times, feature reuse is a better feature extraction method. The
advantages of DenseNet network compared to other deep networks are as follows:

(1) Compared with other deep network structures, it has fewer parameters.
(2) Based on the idea of residual network, the idea of feature reuse is added to the

bypass.
(3) For network training, it prevents over-fitting, is easy to train, and has a certain

regularization effect.
(4) The problem of vanishing gradient is alleviated.
There are many Dense block modules in the DenseNet network structure. In the Dense

block module, the feature maps of different layers need to be connected. Therefore, the
size of the feature maps in the Dense block must be kept the same.

The DenseNet classification results are shown in Figure 16. The classification accuracy
rate of the predicted 100% in the five categories is 71.4% for combination fault bearing,
healthy bearing, inner race fault bearing, outer race fault bearing, and ball fault bearing.
The total classification accuracy rate is 92%.
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In order to verify the computing time, this study compares the typical networks
Alexnet, GooleNet, and ResNet with the three models of this study under the same standard,
and shows the results in Table 2. The table compares the computing time and accuracy
of the six models. All models have good classification prediction performance, but the
DenseNet computing time is 146 s and the accuracy of 92% is the best in this study.

Table 2. Comparing the computing time and accuracy of different models.

Alexnet GooleNet ResNet MobileNet ShuffleNet DenseNet

Computing time (s) 162 173 160 151 148 146
Accuracy (%) 80 84 84 88 88 92

Based on the above research results, these three predictive classification methods
have excellent performance, but the accuracy rate of DenseNet can reach 92%, which is
the highest. The advantages of DenseNet are compared with other convolutional neural
networks. DenseNet has excellent performance, mainly in the number of parameters,
less calculation, and strong anti-fitting ability. DenseNet also has a strong anti-overfitting
ability, which is suitable for network training when data is relatively scarce. Because the
information flow and gradient flow in the entire network are improved, it is easy to train;
the directly connected dense block structure itself has a regularization effect. It allows
each layer to receive in-depth supervision and obtain gradient information from the loss
function and input signal, which is more helpful for training deep network structures and
is suitable for bearing fault diagnosis.

This study has some limitations. First, there must be sufficient data length. In this
study, a total of 2,000,000 points were recorded for 10 s. If the data length is too small,
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VMD cannot present a complete Hilbert spectrogram, and deep learning cannot correctly
classify it. Second, obtaining data must not be interfered with by noise. When the original
signal is submerged in noise, it cannot be analyzed or is analyzed incorrectly. Third, the
original limitation of VMD still exists, and will have mode mixing and end effect. Finally,
the disadvantage of DenseNet is that training takes up a substantial amount of memory.
Each splicing operation will open up a new memory to store the spliced features. This
results in an n-layer network, which consumes the memory equivalent to n(n + 1)/2-layer
network (the output of the i-th layer is stored in memory (n − i + 1)).

5. Conclusions

Modern industrial production equipment has made great contributions to improving
productivity, saving natural and human resources, reducing the scrap rate, and ensuring
product quality. Rotating machinery and equipment are developing in the direction of large
volume, compact and complex structure, automation, and continuity of operation. Once it
breaks down, if it cannot be shut down for maintenance in time, it will cause immeasurable
economic losses to individuals and enterprises as well as unfavorable social repercussions.
Equipment status monitoring, status early warning, and fault diagnosis technology can
prevent, to a certain extent, such issues. This paper combines the requirements of bearing
fault diagnosis and the characteristics of monitoring signals and attempts to introduce
the existing deep neural network recognition model into bearing fault diagnosis. The
research uses VMD to analyze the Hilbert spectrum conversion method to convert the one-
dimensional bearing signal into a two-dimensional time-frequency diagram and combines
it with the deep neural network DenseNet to realize intelligent fault diagnosis. VMD
analyzes shows that the Hilbert spectrum contains the time-frequency domain contour
characteristics of the fault signal and the fault location feature and combines the deep
neural network to diagnose the fault. It uses a combination of time-frequency graphs and
deep neural networks to realize high-accuracy and intelligent identification of faults. This
research uses MobileNet, ShuffleNet, and DenseNet deep learning lightweight network
classification prediction results. The data verification is divided into training set and
test set samples, and a fault diagnosis model based on the VMD-DenseNet method is
established. Finally, the deep neural network built by training and testing is used to obtain
the diagnosis accuracy. DenseNet’s classification prediction accuracy rate was found to be
92%, ShuffleNet’s accuracy rate was 88%, and MobileNet’s accuracy rate was 88%. The
proposed method does not require a large amount of prior knowledge of bearing fault
diagnosis, including needing to denoise the signal, and simplifies the feature extraction
process of bearing fault diagnosis, as well as has a high fault diagnosis accuracy rate.
Recommendations for future research include the following. (1). Study the optimization
of the parameters of the VMD and DenseNet algorithms; the use cases have different
parameters and thus make for another topic. (2). This research database is verified by the
University of Ottawa database, and more typical motor faults can be added for verification
in future research. (3). In the future, there will be better time-frequency analysis and deep
learning image classification algorithms, for which comparisons can be acquired to add to
the evidence. (4). Some traditional methods, which also have advantages compared with
the experimental results of the method in this study, can be further explored. (5). A more
extensive statistical analysis of the experimental results could be performed to calculate
and compare the confidence interval for the accuracy of the report.
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