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Abstract: Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for
sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the
transfer curve often drifts in an electrolyte solution during measurements, making it difficult to
accurately estimate the analyte concentration. One possible reason for this drift is that p-doping
of GFETs is gradually countered by cations in the solution, because the cations can permeate into
the polymer residue and/or between graphene and SiO2 substrates. Therefore, we propose doping
sufficient cations to counter p-doping of GFETs prior to the measurements. For the pre-treatment,
GFETs were immersed in a 15 mM sodium chloride aqueous solution for 25 h. The pretreated GFETs
showed that the charge neutrality point (CNP) drifted by less than 3 mV during 1 h of measurement
in a phosphate buffer, while the non-treated GFETs showed that the CNP was severely drifted
by approximately 50 mV, demonstrating a 96% reduction of the drift by the pre-treatment. X-ray
photoelectron spectroscopy analysis revealed the accumulation of sodium ions in the GFETs through
pre-treatment. Our method is useful for suppressing drift, thus allowing accurate estimation of the
target analyte concentration.

Keywords: graphene field effect transistors; drift suppression; sensor drift; biosensors

1. Introduction

The demand for sensing analytes in aqueous environments is rapidly increasing in
various fields, including life sciences [1], environmental monitoring [2], and food safety [3].
Solution-gated field-effect transistors (SG-FETs), also known as ion-sensitive FETs (ISFETs),
are promising candidates with which to meet this demand; thus, they have attracted
considerable attention since their invention in the 1970s [4]. In particular, graphene is an
ideal channel material owing to its high electron/hole mobilities [5,6] and 2D nature [7,8].
Moreover, substantial efforts have been made to produce chemical vapor deposition (CVD)-
grown graphene, which makes large-area and high-quality graphene sheets available
to everyone [9]. Therefore, solution-gated graphene FETs (SG-GFETs) have achieved
considerable high sensitivity, and can be employed for the detection of analytes in solutions,
such as ions [10–12], proteins [13], viruses [14], and bacteria [15,16]. However, SG-GFETs
feature an inherent drawback, known as sensor drift or baseline drift, in ISFETs and SG-
GFETs. Some studies have shown that the drift of ISFETs as well as SG-GFETs continue
for more than 1 h [17–19]. Various models have been proposed and studied extensively to
describe the drift in ISFETs, which include the diffusion of ions from electrolyte solutions
into the oxide layers [20,21]. However, in most SG-GFETs, the graphene channels directly
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contact an electrolyte solution, that is, no oxide covers the graphene channels. Therefore,
the established theories on ISFETs cannot be applied to SG-GFETs; thus, the drift in GFETs
should be studied further. One possible reason for this drift is that the p-doping of GFETs
is countered by cations in the solution, since the cations can permeate into the polymer
residue and/or between graphene and SiO2 substrates. Here, we propose a method to
suppress the drift, in which sufficient cations are doped to counter the p-doping of GFETs
prior to the measurements, as shown in Figure 1. As a pre-treatment, GFETs were immersed
in 15 mM sodium chloride (NaCl) aqueous solution for 25 h. The pretreated GFETs showed
that the charge neutrality point (CNP) drifted by less than 3 mV during a 1 h measurement
in a phosphate buffer. Our method is useful for suppressing drift, which enables the
accurate estimation of the concentration of target analytes.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 11 
 

 

channels directly contact an electrolyte solution, that is, no oxide covers the graphene 
channels. Therefore, the established theories on ISFETs cannot be applied to SG-GFETs; 
thus, the drift in GFETs should be studied further. One possible reason for this drift is that 
the p-doping of GFETs is countered by cations in the solution, since the cations can per-
meate into the polymer residue and/or between graphene and SiO2 substrates. Here, we 
propose a method to suppress the drift, in which sufficient cations are doped to counter 
the p-doping of GFETs prior to the measurements, as shown in Figure 1. As a pre-treat-
ment, GFETs were immersed in 15 mM sodium chloride (NaCl) aqueous solution for 25 
h. The pretreated GFETs showed that the charge neutrality point (CNP) drifted by less 
than 3 mV during a 1 h measurement in a phosphate buffer. Our method is useful for 
suppressing drift, which enables the accurate estimation of the concentration of target an-
alytes. 

 
Figure 1. Schematic illustration of cation permeation into polymer residue and/or between graphene and SiO2 substrates. 
Graphene is initially p-doped by the effect of PMMA residue and SiO2 substrate. The diffusion of cations, which have n-
doping effects to graphene, has a counter-effect on initial p-doping, resulting in CNP drifts. 

2. Materials and Methods 
Graphene films were grown on Cu foils using a CVD method. A poly(methyl meth-

acrylate) (PMMA) solution was coated onto the graphene/Cu foils. The Cu foils were 
etched away using an ammonium persulfate solution. The graphene films were trans-
ferred onto Si/SiO2 substrates with a thickness of 525 μm/290 nm. A source/drain electrode 
of 10 nm Ti and 90 nm Au was formed using electron-beam physical vapor deposition. 
Graphene channels were formed by oxygen plasma etching. After etching, the PMMA 
coat on the graphene was removed using an organic solvent. Thereafter, the graphene was 
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Figure 1. Schematic illustration of cation permeation into polymer residue and/or between graphene and SiO2 substrates.
Graphene is initially p-doped by the effect of PMMA residue and SiO2 substrate. The diffusion of cations, which have
n-doping effects to graphene, has a counter-effect on initial p-doping, resulting in CNP drifts.

2. Materials and Methods

Graphene films were grown on Cu foils using a CVD method. A poly(methyl
methacrylate) (PMMA) solution was coated onto the graphene/Cu foils. The Cu foils
were etched away using an ammonium persulfate solution. The graphene films were
transferred onto Si/SiO2 substrates with a thickness of 525 µm/290 nm. A source/drain
electrode of 10 nm Ti and 90 nm Au was formed using electron-beam physical vapor
deposition. Graphene channels were formed by oxygen plasma etching. After etching,
the PMMA coat on the graphene was removed using an organic solvent. Thereafter, the
graphene was annealed at 300 ◦C in an Ar/H2 atmosphere for 1 h to reduce organic residue.

Figure 2A shows an optical image of a GFET. The channel length and width were
10 µm and 100 µm, respectively. Multiplex GFETs were fabricated using the same substrate.
A silicone rubber container was attached onto the GFET-array chip to hold an electrolyte
solution (Figure 2B).

The electrical measurements were conducted as follows: The GFET arrays were
immersed in 0.1× D-PBS(-) (Nacalai Tesque, Inc., Tokyo, Japan). A bias voltage (VDS) of
0.1 V was applied between a source/drain electrode, and a top-gate voltage (VGS) was
applied through the electrolyte solution using an Ag/AgCl electrode. While sweeping the
VGS in the positive direction, the drain current (IDS) was measured using a semiconductor
parameter analyzer (Keysight Technologies, B1500A). The CNP, where VGS was applied
at the minimum IDS in the transfer curve, was calculated using polynomial fitting. We
selected D-PBS(-) as the electrolyte owing to its suitability for biological applications.
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Figure 2. (A) Optical image of a GFET, in which a patterned graphene sheet is bridged between
source/drain electrodes. Scale bar is 100 µm; (B) a photo of a device chip. A silicone rubber container
was set onto the chip to hold a solution on GFETs.

Measurement with X-ray photoelectron spectroscopy (XPS) (ULVAC-PHI, Inc. Ver-
saProbe) was used to verify the permeation of cations to the GFETs. The measurement
spot is located at the center of the channel region. The Na1s and C1s peaks were analyzed
to assess the cation accumulation and graphene quality, respectively. The baseline was
subtracted, and the signal intensity was normalized to the peak area of C1s.

3. Results and Discussion
3.1. Transfer Curve Variability and Drifts of Transfer Curves

Figure 3A shows the typical transfer curves measured from a chip, where 40 GFETs
were integrated. The bold black line in Figure 3A is the calculated average transfer curve.
There are three types of variations in electrical characteristics: (i) current variation, (ii) CNP
variation, and (iii) transconductance variation. These variations in the transfer curves may
be attributed to the graphene tearing, PMMA residue on the graphene, and the impurity
charge from the substrate. We previously reported that graphene tearing increases the
resistance and decreases the transconductance [22]. It was also reported that both the
PMMA residue and SiO2 substrate have a p-doping effect on graphene [23–25]. Moreover,
water molecules also have a p-doping effect on graphene [26]. Therefore, our GFETs are
expected to be p-doped, and it was proven that the observed CNPs were positive, as shown
in Figure 3.
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We used CNP as a representative feature value for a GFET because the sensing
mechanism in GFETs is often demonstrated by the gating effect, which appears as the CNP
shift [27]. Each CNP for the transfer curves in Figure 3A was calculated, and a histogram
with a Gaussian distribution fit is displayed in Figure 3B. The calculated average and
standard deviation of CNPs from 40 GFETs was calculated as 267 ± 21 mV, which are
typical values for the initial state of GFETs under the measurement conditions used.

We found that the transfer curve was not stable but rather changed during the mea-
surements. Figure 4 shows that the transfer curves from a specific device changed dur-
ing the continuous measurements. As can be observed, the CNP, current value, and
transconductance changed over time. In this study, we focused on CNP changes as a
representative characteristic.
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measurement (red square).

Figure 5 shows the time-course change of the calculated CNPs for the same 40 GFETs
as in Figure 3 during electric measurements performed in 0.1 × D-PBS(-). The change
in the calculated average CNP is also shown by the black bold line. The CNPs shifted
by more than 50 mV towards the negative direction after 5 h of measurement. The trend
was qualitatively the same among the GFETs, although the shift amounts were slightly
different for each. The drift was initially large, but gradually decreased over time. Some
reports have shown that when GFETs are used as biosensors or ion sensors, the CNP shift
induced by target molecules ranges from a few to hundreds of mV [27–30]. Therefore, the
drift of the CNP should be suppressed to less than a few mV to accurately estimate the
concentration of analytes. To suppress the CNP drift, we investigated the factors that cause
CNP drift.

3.2. Intermittent Electrical Measurements to Evaluate the Electrical Effects on the CNP Drift

Because the CNP drift was observed during the electrical measurements performed
in an electrolyte solution containing D-PBS(-), it was expected that the drift was derived
from electrical effects and/or surrounding effects induced by water molecules or ions. To
clarify whether the CNP drift was induced by electrical effects, we conducted electrical
measurements of the GFETs with a time interval. First, the GFETs were immersed in
0.1× D-PBS(-), and then the electrical measurements were conducted for 1 h. Subsequently,
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the GFETs were left electrically floated for 1.5 h; that is, all the input voltages from the gate
and source/drain electrodes were stopped. Thereafter, the measurements were conducted
again for 1 h; in the same manner, the GFETs were electrically floated for 1.5 h. Finally, the
measurements were performed for 1 h. The average CNP was calculated from the data
acquired from several GFETs on the same chip.
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Figure 6 shows the time course of the CNP obtained from the intermittent electrical
measurements (blue circle). For comparison, the average curve in Figure 5, which was
obtained through continuous measurements, also overlapped in Figure 6 (broken line). The
results indicate that both plots seem to display the same trend, even though the measure-
ment conditions were different. If the drift was caused by electrical effects alone, the two
plots were separated because the effective elapsed time under the electrical measurements
was 50% for the intermittent electrical measurement case. Therefore, we concluded that the
CNP drifted even without electrical measurements.
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3.3. Effects of Pre-Treatments on the CNP Drift

Because the drift was not affected by the electrical effects, we inferred that the elec-
trolyte solutions were responsible for the drift. Put simply, the water molecules and/or ions
in contact with the graphene were attributed to the drift. As the effect may differ depending
on the solution, we immersed the GFETs into two different solutions, with and without
ions, prior to the electrical measurements. The experimental procedure is illustrated in
Figure 7. The GFETs were first immersed in deionized water or 0.1 × D-PBS(-) for 25 h as
pre-treatments. Subsequently, the solution used in the pre-treatments was replaced with
0.1 × D-PBS(-), and electrical measurements were conducted. The results were compared
with the initial properties, as shown in Figure 3.
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Figure 7. Schematic illustration of pre-treatments and electrical evaluation. (A) No immersion (B)
immersion in deionised water (C) immersion in 0.1× D-PBS(-).

Figure 8A shows typical examples of the transfer curves without pre-treatment, after
deionized water immersion, and after electrolyte immersion (0.1 × D-PBS(-)). Figure 8B
shows the histograms of the CNPs corresponding to each process. The calculated average
and standard deviation of the CNPs from 40 devices for water immersion, electrolyte
immersion, and non-treatment were 267 ± 21 mV, 240 ± 17 mV, and 132 ± 11 mV, respec-
tively. Figure 8 indicates that the pre-treatments were effective in suppressing p-doping.
It is known that water molecules are slowly intercalated between graphene and sub-
strates [31,32]. This intercalation may potentially weaken the p-doping from the substrate,
resulting in slight n-doping by water immersion. Although the effect of water immersion
was not certain, the effect of electrolyte immersion was apparent n-doping on the GFETs.
The results indicate that the ions were the main n-dopants. Jia et al. demonstrated that ions
slowly penetrated between graphene and substrates, and graphene was gradually n-doped
over time [33]. This phenomenon should also occur in the proposed system.

Based on these results, we developed a method to suppress CNP drift. If the CNP drift
arises from gradual ion penetration, the GFETs, where ions are sufficiently penetrated prior
to the measurements, should be stable during long-term electrical measurements. To verify
this concept, we evaluated the CNP drift of GFETs immersed in 0.1× D-PBS(-) for 25 h and
compared it with that of the non-treated samples. Figure 9A shows the time course of the
average CNP values from the GFETs with and without pre-treatment. As can be observed,
for the GFETs with pre-treatment, the CNP values were stable, but these values changed
gradually for the GFETs without pre-treatment; this is because, as the CNP changes rapidly,
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the rate of change decreases over time. We believe that this rate correlates with that of the
ion diffusion into the GFET. As the ions are accumulated in the GFET, the diffusion rate of
the ions decreases. As such, the rate of change of CNP is thought to decrease. Figure 9B
shows a comparison of the amount of CNP that changed during the first hour. The CNP
for the sample without pre-treatment drifted by 49 mV in the first hour. However, the
drift was reduced to 2 mV in the pre-treated sample. The results clearly indicate that the
electrolyte immersion pre-treatment was effective in suppressing the CNP drift by 96%.
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3.4. Types of Ions Affecting CNP Drift

Although we demonstrated that pre-immersion in the electrolyte solution suppressed
the CNP drift, it still remains unclear which ions in D-PBS(-) account for drift suppression.
It is known that cations, including K+, Na+, and Ca2+, are adsorbed onto graphene via
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cation-π interactions, leading to the same n-doping effect on graphene [33,34]. Therefore,
we presumed that the cations in the electrolyte solution may have a significant impact on
the CNP drift. To confirm this effect, we designed an experiment. We prepared GFETs
immersed in a 15 mM NaCl aqueous solution for 50 h, which was used as a cation-
containing solution. For comparison, other GFETs were immersed in a 15 mM HCl aqueous
solution, which was used as a cation-free solution. After immersion in each solution,
the solutions were replaced with 0.1 × D-PBS(-), and the drift characteristics of the CNP
were evaluated.

Figure 10A shows the CNP drift of the GFET immersed in the NaCl aqueous solution
and aqueous HCl solution. Figure 10B shows a comparison of the amount of CNP drift
in the first hour. The drift for the GFETs with the HCl aqueous solution immersion was
43 mV, while that with the NaCl solution was 5 mV. As can be observed in Figure 10, the
CNP drift was significantly reduced by immersing GFETs in the NaCl aqueous solution,
namely the cation-containing solution. Therefore, we concluded that the cations played an
important role in suppressing the drift.
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3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis to Verify Cation Accumulation

Based on the effect of pre-treatment on the CNP drift, it was expected that cations
would permeate the GFETs. To determine whether cations accumulated around the
graphene, an XPS analysis was performed on the graphene before and after immersion
in the electrolyte solution. Two GFET substrates were prepared as samples for the XPS
evaluation. After the GFETs were fabricated, one substrate was immersed in 0.1× D-PBS(-)
for 25 h, while the other was not. Finally, both substrates were rinsed with deionized water,
and the water was blown with N2 gas and removed on a hot plate at 120 ◦C.

Figure 11 shows the XPS analysis results for the Na1s and C1s. Figure 11A shows
that the sodium-derived signals were detected only from the GFETs immersed in D-PBS(-),
which indicates that the GFETs absorbed cations during the immersion. The relative
atomic concentration of Na to Carbon was calculated at 3%, considering the peak area
of the Na1s and C1s. However, from the XPS analysis, it was difficult to understand
where sodium accumulated because of the low spatial resolution and low intensity of
the Na1s. Some reports have shown that water molecules penetrate between graphene
and substrates [31,32] and into PMMA resin [35]. Therefore, we expected that sodium
would be located in these places, together with water molecules, as positively charged
sodium ions may be adsorbed on the negatively charged substrate surface and PMMA.
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In addition, cation–π interactions should also facilitate the adsorption of Na+ onto the
graphene’s surface [33,34]. Furthermore, based on the results, Na+ as well as other cations,
such as K+, should be adsorbed.
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Figure 11B shows the peak of the C1s. The sp2 C–C bonding in graphene is assigned at
approximately 285 eV, and some other tails appearing on the high-energy side correspond
to the binding energy of species in PMMA or functional groups on graphene [36]. In the
case of the GFET without electrolyte immersion, the graphene-derived 285 eV peak was
more prominent than the PMMA-derived 289 eV peak; thus, the surface of the GFET was
less contaminated with PMMA. The GFET with electrolyte immersion has a wider C1s
peak, especially on the high-energy side, compared to those without electrolyte immer-
sion. This result implies that C–C bonds of graphene partly become C–O bonds during
electrolyte immersion. In the GFETs, the graphene and gold electrodes were electrically
connected with the electrolyte solution. Under such circumstances, a galvanic current
may flow through the graphene, gold electrodes, and electrolytes, which occurs when two
different metals are present in an electrolyte solution. The current possibly caused a redox
reaction on the graphene surface [37]. Consequently, the graphene may have been partially
oxidized. This oxidation of the graphene could also have contributed to the change in the
electrical properties, although the transfer curves were not significantly changed by the
pre-treatments, aside from the CNP shift.

4. Conclusions

We developed GFETs and evaluated the changes in their electrical characteristics. The
GFETs using CVD graphene sheets and fabricated on SiO2 were highly p-doped, which was
confirmed by the positive values of CNP. There are two main origins of p-doping: (i) PMMA
residue and (ii) SiO2 substrates. The p-doping seemed to be gradually countered; that is,
the CNP became close to zero during the electrical measurements over time. We proposed
a possible mechanism for the drift, in which the two origins of p-doping were gradually
countered by cations, such as the K+ and Na+ included in the D-PBS(-). This mechanism
was supported by the experimental results: (i) when the GFETs were sufficiently countered
with cations, which are known as n-dopants to graphene, the transfer curves were stable
during long-term electrical measurements, and (ii) cations were detected in the GFETs after
immersion in the electrolyte solution. Finally, by countering the GFETs with cations prior
to evaluation, the CNP drift was suppressed by 96%. Our method should produce a stable
GFET sensor platform.
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Further experiments are needed to comprehensively understand the mechanism of
cation accumulation in graphene. It might be possible to discover a more effective pre-
treatment method by studying the mechanism in more detail. Furthermore, the functional-
ization of graphene sensors is possible by controlling the amount of accumulated cations.
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