
sensors

Article

Adaptive Neural Network Control of Time Delay Teleoperation
System Based on Model Approximation

Yaxiang Wang 1, Jiawei Tian 2, Yan Liu 2 , Bo Yang 2, Shan Liu 2,* , Lirong Yin 3 and Wenfeng Zheng 2

����������
�������

Citation: Wang, Y.; Tian, J.; Liu, Y.;

Yang, B.; Liu, S.; Yin, L.; Zheng, W.

Adaptive Neural Network Control of

Time Delay Teleoperation System

Based on Model Approximation.

Sensors 2021, 21, 7443. https://

doi.org/10.3390/s21227443

Academic Editors:

Sebastiano Battiato, Francesco Rundo

and Alessandro Ortis

Received: 28 September 2021

Accepted: 4 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Innovation and Entrepreneurship, Xi’an Fanyi University, Xi’an 710105, China;
Yaxiang.wang.cn@gmail.com

2 School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China;
jravis.tian23@gmail.com (J.T.); EEvian.Liu@gmail.com (Y.L.); yangbo.sd@gmail.com (B.Y.);
wenfeng.zheng.cn@gmail.com (W.Z.)

3 Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA;
yin.lyra@gmail.com

* Correspondence: shanliu@uestc.edu.cn

Abstract: A bilateral neural network adaptive controller is designed for a class of teleoperation
systems with constant time delay, external disturbance and internal friction. The stability of the
teleoperation force feedback system with constant communication channel delay and nonlinear,
complex, and uncertain constant time delay is guaranteed, and its tracking performance is improved.
In the controller design process, the neural network method is used to approximate the system
model, and the unknown internal friction and external disturbance of the system are estimated by
the adaptive method, so as to avoid the influence of nonlinear uncertainties on the system.

Keywords: neural network method; adaptive method; teleoperation system; time delay; force
feedback; friction and disturbance

1. Introduction

Teleoperation robot systems have developed rapidly and been applied to many fields,
such as space robots [1], remote surgery robots [2,3], teleoperation mobile robots [4] and so
on. The general remote operation robot system mainly includes: a master module, operator
module, master controller, communication channel, slave controller, slave, environment
and so on. The frame diagram is shown in Figure 1. However, in the actual teleoperation
mechanical system, it is difficult to obtain accurate mechanical parameters of the robot,
such as mass, length, center of mass or moment of inertia, etc., resulting in the system
dynamics parameters (inertia vector matrix, centrifugal force matrix and gravity term
matrix) not being accurate [5], as well as uncertain external interference and mechanical
internal friction, which are common in robot workspace control [6–9]. The complex working
environment or the robot’s mechanical structure is, therefore, more complicated or can
be destroyed. After modeling using mathematical models, these may be random or time-
varying nonlinear functions. Therefore, we cannot accurately establish the mathematical
model of the system. That is, the mathematical model of the system contains uncertainty.
These problems are often encountered in teleoperation systems, and their manifestations
are quite variable. Moreover, the uncertainty of these teleoperation system models not only
affects the performance of the system but also makes the entire system unstable [10–12].
Therefore, how to solve the above problems has been a wide concern in the field of
control [13,14].

The methods proposed in reference [15–17] cannot effectively solve the problem of
system model uncertainty in the form of time-varying functions. However, the neural
network can approach the linear and nonlinear model by learning, so the neural network
can be integrated into the system control. Therefore, the adaptive neural network and fuzzy
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control method [18–23] have good performance for the system with time delay, nonlinear
control, complexity and uncertainty, and the method is widely used in the field of robot
control. However, the number of adaptive laws depends on the number of neural network
points. The accuracy of model approximation can be improved by increasing the number
of neural network points. Thus, it takes a long time to learn online. Therefore, it is of
great significance to design a bilateral neural network adaptive controller with short online
learning time for the teleoperation system with time-delay force feedback [24–27].
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Figure 1. The control structure of the bilateral teleoperation robot system. 

The methods proposed in reference [15–17] cannot effectively solve the problem of 

system model uncertainty in the form of time-varying functions. However, the neural net-

work can approach the linear and nonlinear model by learning, so the neural network can 

be integrated into the system control. Therefore, the adaptive neural network and fuzzy 

control method [18–23] have good performance for the system with time delay, nonlinear 

control, complexity and uncertainty, and the method is widely used in the field of robot 

control. However, the number of adaptive laws depends on the number of neural network 

points. The accuracy of model approximation can be improved by increasing the number 

of neural network points. Thus, it takes a long time to learn online. Therefore, it is of great 

significance to design a bilateral neural network adaptive controller with short online 

learning time for the teleoperation system with time-delay force feedback [24–27]. 

Based on the above discussion and analysis, this paper designs a bilateral neural net-

work adaptive controller for a class of teleoperation systems with constant time delay, 

external interference and mechanical internal friction, which is closer to the actual dy-

namic model of the teleoperation system. Finally, it guarantees the existence of constant 

communication channel delay, and nonlinear, complex and uncertain constant delay. The 

stability of the teleoperation force feedback system is improved and its tracking perfor-

mance is improved. In the controller design process, the neural network method is used 

to approximate the system model, and the unknown internal friction and external disturb-

ance of the system are estimated by the adaptive method so as to avoid the influence of 

nonlinear uncertainties on the system. 

1.1. Spatial Dynamic Model of MasterSlave–Robot Joint 

Without considering the joint friction and external interference, the general dynamic 

equations of the master robot and the slave robot of the teleoperation system can be ex-

pressed by the following Euler–Lagrange equation [28] 

( ) ( ) ( ), ( )
m m m

T

q m m q m m m q m m m m hM q q C q q q G q J q F+ + = +
 

(1) 

( ) ( ) ( ), ( )
s s s

T

q s s q s s s q s s s s eM q q C q q q G q J q F+ + = −
 

(2) 

In order to simplify the description, we can see Table 1. 

Table 1. Symbol meaning. 

Meaning Symbol 

The master and slave robots ( ),i i m s=
 

Joint angular position 
1n

iq 
 

Angular velocity 
1n

iq 
 

Angular acceleration 
1n

iq 
 

The inertia matrix ( )
i

n n

q iM q 
 

The Coriolis force and centripetal force matrix ( ),
i

n n

q i iC q q   

Figure 1. The control structure of the bilateral teleoperation robot system.

Based on the above discussion and analysis, this paper designs a bilateral neural
network adaptive controller for a class of teleoperation systems with constant time delay,
external interference and mechanical internal friction, which is closer to the actual dynamic
model of the teleoperation system. Finally, it guarantees the existence of constant commu-
nication channel delay, and nonlinear, complex and uncertain constant delay. The stability
of the teleoperation force feedback system is improved and its tracking performance is
improved. In the controller design process, the neural network method is used to approx-
imate the system model, and the unknown internal friction and external disturbance of
the system are estimated by the adaptive method so as to avoid the influence of nonlinear
uncertainties on the system.

1.1. Spatial Dynamic Model of Master Slave–Robot Joint

Without considering the joint friction and external interference, the general dynamic
equations of the master robot and the slave robot of the teleoperation system can be
expressed by the following Euler–Lagrange Equation (28)

Mqm(qm)
..
qm + Cqm

(
qm,

.
qm
) .
qm + Gqm(qm) = τm + JT

m(qm)Fh (1)

Mqs(qs)
..
qs + Cqs

(
qs,

.
qs
) .
qs + Gqs(qs) = τs − JT

s (qs)Fe (2)

In order to simplify the description, we can see Table 1.

Table 1. Symbol meaning.

Meaning Symbol

The master and slave robots i(i = m, s)
Joint angular position qi ∈ <n×1

Angular velocity
.
qi ∈ <n×1

Angular acceleration
..
qi ∈ <n×1

The inertia matrix Mqi (qi) ∈ <n×n

The Coriolis force and centripetal force matrix Cqi

(
qi,

.
qi
)
∈ <n×n

Jacobian matrix Ji(qi) ∈ <n×n

Transposition of the Jacobian matrix JT
i (qi)

The force exerted by the operator on the master robot Fh ∈ <n×1

The interaction force between the slave robot and the
environment module Fe ∈ <n×1

The dynamic equations of the master robot and slave robot in the teleoperation
system [29], namely Equations (1) and (2), have the following properties:
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Property 1. The inertia matrix Mqi (qi) is symmetric and positive definite, with maximum and
minimum values.

0 < λmin
{

Mqi (qi)
}

I ≤ Mqi (qi) ≤ λmax
{

Mqi (qi)
}

I < ∞ (3)

Property 2. The matrix of Coriolis and centrifugal force Cqi

(
qi,

.
qi
)

and satisfies:
.

Mqi (qi) −
2Cqi (qi,

.
qi) is skew symmetric. Namely

ζT
( .

Mqi (qi)− 2Cqi (qi,
.
qi)
)

ζ = 0, ∀ζ ∈ <n×1 (4)

Property 3. The terms on the left side of the dynamic Formulas (1) and (2) of the master robot
and slave robot of the teleoperation system are transformed linearly, and the unknown constant
parameter vector θd = [θd1, · · ·, θdr]

T of the robot is defined as

Mqi (qi)
..
qi + Cqi

(
qi,

.
qi
) .
qi + Gqi (qi) = τi = Yd

(
qi,

.
qi,

..
qi
)
θd (5)

Among them, Yd
(
qi,

.
qi,

..
qi
)
∈ <n×r is called the dynamic regression matrix, which is

the known function matrix about the joint variables of the robot.

1.2. Space Dynamic Model of Combined Teleoperation System Joint

We can observe that the dynamic model of the master and slave robot is in the joint
space, and the dynamic model of the operator and the environment is in the working space.
Thus, the dynamic model of the teleoperation system cannot be unified, so the dynamic
model is increased. It is difficult to design a bilateral controller [30–33]. Therefore, it is
necessary to use the master robot and slave robot workspace kinematics model to transform
the dynamic model of the operator module and environment module workspace into joint
space. Finally, the joint space dynamic model of the master robot and slave robot is sorted
out, and then the simplified joint space model of the teleoperation system is obtained. The
joint space dynamic model of the operator and environment is obtained as follows

Fh = f ∗h −Mh Jm
..
qm −

(
Bh Jm + Mh

.
Jm

) .
qm − Khh(qm) (6)

Fe = f ∗e + Me Js
..
qs −

(
Be Js + Me

.
Js

) .
qs − Keh(qs) (7)

The two sides of Equations (6) and (7) are multiplied by JT
m and substituting into

Equations (1) and (2), respectively, and the simplified joint space model of the teleoperation
system is obtained

Mi(qi)
..
qi + Ci

(
qi,

.
qi
) .
qi + Gi(qi) = τi, i = m, s (8)

among which
Mm(qm) = Mqm(qm) + JT

m Mh Jm (9)

Cm
(
qm,

.
qm
)
= Cqm

(
qm,

.
qm
)
+ JT

mBh Jm + JT
m Mh

.
Jm (10)

Gm(qm) = Gqm(qm) + JT
mKhhm(qm)− JT

m f ∗h (11)

Ms(qs) = Mqs(qs) + JT
s Me Js (12)

Cs
(
qs,

.
qs
)
= Cqs

(
qs,

.
qs
)
+ JT

s Be Js + JT
s Me

.
Js (13)

Gs(qs) = Gqs(qs) + JT
s Kehs(qs) + JT

s f ∗e (14)

After unifying the dynamics of each module in the teleoperation system into the joint
space, according to Property 1–3, we can deduce the mathematical models of the combined
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teleoperation system, Equation (8) has the following new properties: for all, they represent
the master and the slave.

Property 4. The inertial matrix Mi(qi) is symmetric and positive definite, with maximum and
minimum values.

0 < λmin{Mi(qi)}I ≤ Mi(qi) ≤ λmax{Mi(qi)}I < ∞ (15)

Property 5. For ∀ξ ∈ <n×1, the Coriolis matrix
.

Mi(qi) and the centrifugal force matrix Ci
(
qi,

.
qi
)

satisfy
ξT
( .

Mi(qi)− 2Ci(qi,
.
qi)
)

ξ = −2ξT Biζ (16)

Property 6. Unify the mathematical models of each module in the teleoperation system into the
joint space and substitute them into the joint space mathematical models of the master robot and the
slave robot. After sorting out the dynamic models, the items on the left of Equation (8) are obtained.
The unknown constant parameter vector of the robot can also be defined as θz = [θz1, · · ·, θzr]

T .
After linear transformation, it is obtained that the parameter vector θz of the robot is linear

Mi(qi)
..
qi + Ci

(
qi,

.
qi
) .
qi + Gi(qi) = τi = Yz

(
qi,

.
qi,

..
qi
)
θz (17)

where, i = m, s, Yz
(
qi,

.
qi,

..
qi
)
∈ <n×r is called the dynamic regression matrix, which is the

known function matrix about the joint variables of the robot.

2. Materials and Methods
2.1. Problem Statement

The main goal of this paper is to consider the existence of mechanical internal friction
and external friction between master robot and slave robot in teleoperation system. Based
on the position error control structure, a bilateral controller is designed for the teleoperation
system to make the slave robot follow the position signal of the master robot, to improve the
performance and ensure the stability of the system. The RBF (Radial Basis Function) neural
network (RBFNN) is used to approximate the system model because RBFNN is a single
hidden layer, feedforward neural network based on function approximation proposed in
the late 1980s.

At present, the commonly used function approximation methods are neural network
and fuzzy system approximation methods [34], namely neural network adaptive control
and fuzzy adaptive control. In the process of control law design, Lyapunov’s direct method
is used to design control law and adaptive law. By designing appropriate adaptive law
parameters, the stability and convergence of the whole closed-loop nonlinear system are
guaranteed. At present, there are two kinds of radial basis function and multi-layer neural
networks. Through comparative analysis, it can be found that the former can approximate
any nonlinear function, and can solve the problem that the system cannot be established
by a mathematical model under the condition of fewer network points, and has good
generalization ability and fast learning convergence speed. To sum up, this paper chooses
RBF neural network, and the system dynamic model contains time delay signal [35].

The unknown friction and external disturbance of each joint between the master robot
and the slave robot are taken into account in the teleoperation system studied in this
chapter. Therefore, according to the general joint space dynamic model of the combined
teleoperation system described in Section 1.2, Equations (35) and (36) can be used to
describe a joint space dynamic model with internal friction The mathematical model of
teleoperation system with external interference is as follows

Mi(qi)
..
qi + Ci

(
qi,

.
qi
) .
qi + Gi(qi) + fi

(
qi,

.
qi
)
+ fci

( .
qi
)
= τi, i = m, s (18)
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Among them, fcm
( .
qm
)
, fcs

( .
qs
)
∈ <n×1 represents the mechanical internal friction

of the master robot and the slave robot is bounded, and fm
(
qm,

.
qm
)
, fs
(
qs,

.
qs
)
∈ <n×1

represents the uncertain bounded external interference of the master robot and the slave
robot, respectively [36].

In the teleoperation system based on position error control structure, there is a constant time
delay Tm, Ts in the forward communication channel and the reverse communication channel.

em = qs(t− Ts)− qm(t) (19)

es = qm(t− Tm)− qs(t) (20)

The goal of the time-delay force feedback teleoperation system is to keep the control
torque of the master robot and the slave robot bounded so as to ensure that the position
tracking error of the master–slave robot in the system can converge to zero and make the
system stable. Therefore, the sliding mode function is defined as

rm =
.
em + Λmem (21)

rs =
.
es + Λses (22)

where Λj = ΛT
j > 0, j = m, s, which is a constant diagonal matrix.

By substituting Equations (21) and (22) into Equation (18), the following results are
obtained

Mi(qi)
..
ri + Ci

(
qi,

.
qi
) .
ri = f̃i(Xi)− τi + fi

(
qi,

.
qi
)
+ fci

( .
qi
)
, i = m, s (23)

Here, f̃m(Xm) and f̃s(Xs) are the uncertainties of the master robot model and the slave
robot model of the system

f̃m(Xm) = Mm(qm)
..
qs(t− Ts) + Mm(qm)Λm

.
em + Cm

(
qm,

.
qm
) .
qs(t− Ts)

+ Cm
(
qm,

.
qm
)
Λmem + Gm(qm)

(24)

f̃s(Xs) = Ms(qs)
..
qm(t− Tm) + Ms(qs)Λs

.
es + Cs

(
qs,

.
qs
) .
qm(t− Tm)

+ Cs
(
qs,

.
qs
)
Λses + Gs(qs)

(25)

Usually, the uncertainty f̃ j
(
Xj
)
, j = m, s of teleoperation system model is nonlinear

and unknown. Therefore, in order to make the teleoperation system have practical signifi-
cance, we can use the method of model approximation to obtain the approximate value
of the uncertainty f̃ j

(
Xj
)

so as to solve the above problems. In the control of nonlinear
systems, the performance of the controller can be improved by using function approxima-
tion method when there are nonlinear uncertainties [36]. This chapter chooses RBF neural
network to approximate the system model uncertainty f̃ j

(
Xj
)
.

2.2. Preliminary Knowledge

The following is the design and stability analysis of the bilateral controller of the
teleoperation system with time-delay force feedback.

We choose to use RBFNN method to approximate the system model. Therefore,
according to the Equations (24) and (25) of the uncertainties f̃ j

(
Xj
)

of the system model,
we can select the network input signals of the master controller and the slave controller
as follows

Xm =
[ ..
qs(t− Ts),

.
qs(t− Ts), qs(t− Ts),

.
qm(t), qm(t)

]T (26)

Xs =
[ ..
qm(t− Tm),

.
qm(t− Tm), qm(t− Tm),

.
qs(t), qs(t)

]T (27)

RBFNN consists of two layers: the hidden layer, which is used to project the input
network signal into a high-dimensional space, and the output layer, which is used to output
the linear combination of output signals of hidden layer with adaptive parameter weight
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adjustment. It is a linear parameterized neural network and has excellent approximation
performance. Suppose the uncertain continuous function is F0(X) : <p → < approximated
by RBFNN

Fnn(X) = WT
0 σ0(X) (28)

X ∈ ΩX ∈ <p represents the network input vector, WT
0 = [w01, w02, · · ·, w0l ] ∈ <l

represents the weight of the parameters to be adjusted, here l > 1 represents the number of
neural network points, and σ0(X) = [σ01(X), σ02(X), · · ·, σ0l(X)]T represents the Gaussian
basis functions, which are defined as

σ0(X) = e
− (X−vi)

T (X−vi)
η2 , i = 1, · · ·, l (29)

where, vi ∈ ΩX and η > 0 denote the center and width of the Gaussian function, respec-
tively. The working principle of RBFNN is shown in Figure 2.
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The conclusion of Reference [13] shows that for a compact set ΩX ∈ <p, when it
is large enough, the radial basis function neural network of Equation (19) can arbitrar-
ily approximate the uncertain continuous function F0(X). For any accuracy rate ε > 0,
there are

F0(X) = W∗T0 σ0(X) + δ0(X) (30)

where X ∈ ΩX ∈ <p is the estimation error, its upper boundary is ε, and W∗0 is the optimal
weight vector and satisfies the following conditions

W∗0 := arg min
W0∈<l

{
sup

X∈ΩX

∣∣∣F0(X)−WT
0 σ0(X)

∣∣∣} (31)

For the radial basis function neural network Equation (30), which contains Gaus-
sian function Equation (31), assuming ρ := 1

2 mini 6=j‖vi − vj‖, the following inequality
is established.

‖σ0(X)‖ ≤
∞

∑
m=0

3p(m + 2)
p−1

e−2ρ2m2/η2
:= s (32)

where s is the finite value, m is the number of convergent infinite sequence terms {3p(m +

2)p−1e−2ρ2m2/η2}.

2.3. Design and Stability Analysis of Bilateral Controller

Firstly, for the telerobot system introduced in Section 2.2, we defined a high calculus
Lyapunov–Krasovskii candidate function V(t) that satisfies the following requirements,
and which is used to analyze the stability and location tracking performance of the operat-
ing system

V(t) =
1
2

rT
m Mm(qm)rm +

1
2

rT
s Ms(qs)rs +

1
2λm

θ̃2
m +

1
2λs

θ̃2
s +

1
2γm

d̃2
m +

1
2γs

d̃2
s (33)
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where let, j = m, s, θ̃j = θj − θ̂j, d̃j = dj − d̂j, λj, γj > 0 be a constant.

By deriving the two sides of Equation (33),
.

V(t) is obtained by

.
V(t) = 1

2 rT
m

.
Mm(qm)rm + rT

m Mm(qm)
.
rm + 1

2 rT
s

.
Ms(qs)rs + rT

s Ms(qs)
.
rs

+ 1
λm

θ̃m

.
θ̃m + 1

λs
θ̃s

.
θ̃s +

1
γm

d̃m

.

d̃m + 1
γs

d̃s

.

d̃s
(34)

From Property 5, rT
j

( .
Mj
(
qj
)
− 2Cj(qj,

.
qj)
)

rj = −2rT
j BirT

j , j = m, s, i = h, e. Again, by

estimation error of θj, θ̃j = θj − θ̂j where
.
θ̃ j = −

.
θ̂ j by estimation error of dj, d̃j = dj − d̂j

where
.

d̃j = −
.
d̂j. By substituting the above Equation into Equation (34), we can obtain the

following results

.
V(t) = rT

m

(
f̃m(Xm)− τm + fcm(

.
qm) + fm

(
qm,

.
qm
))
− 2rT

mBh(qm)rm

+rT
s

(
f̃s(Xs)− τs + fcs(

.
qs) + fs

(
qs,

.
qs
))
− 2rT

s Be(qm)rs

− 1
λm

θ̃m

.
θ̂m − 1

λs
θ̃m

.
θ̂m − 1

γm
d̃m

.
d̂m − 1

γs
d̃s

.
d̂s

(35)

By using radial basis function neural network WT
j σj
(
Xj
)
∈ <n, Wj ∈ <n×n, the

uncertain term f̃ j
(
Xj
)
, j = m, s is approximated

f̃ j
(
Xj
)
= WT

j σj
(
Xj
)
+ δj

(
Xj
)

(36)

where δj
(
Xj
)

is the estimation error that satisfies ‖δj
(
Xj
)
‖ ≤ ε j where ε j > 0, which is

the constant.
By substituting Equation (36) into Equation (35), the following results are obtained

.
V(t) = rT

m
(
WT

mσm(Xm) + δm(Xm)− τm + fcm(
.
qm) + fm

(
qm,

.
qm
))

+rT
s
(
WT

s σs(Xs) + δs(Xs)− τs + fcs(
.
qs) + fs

(
qs,

.
qs
))

−2rT
mBhrm − 2rT

s Bers − 1
λm

θ̃m

.
θ̂m − 1

λs
θ̃s

.
θ̂s − 1

γm
d̃m

.
d̂m − 1

γs
d̃s

.
d̂s

(37)

By using the properties of matrix norm inequality, the following inequalities can be
obtained

rT
j WT

j σj
(
Xj
)
≤ ‖rj‖‖Wj‖F‖σj

(
Xj
)
‖ ≤ 1

2a2
j

rT
j rjθjσ

T
j σj +

1
2

a2
j (38)

where, let θj = ‖Wj‖2
F be the weight of the radial basis function to be estimated and

adjusted, aj is a normal number. According to Properties 2–4, the internal friction fcj(
.
qj)

between master robot and slave robot in the system is continuous and bounded, and the
unknown external interference f j(qj,

.
qj) of master robot and slave robot is continuous

bounded, assuming dj ≥
(
‖δj
(
Xj
)
‖+ ‖ fcj(

.
qj)‖+ ‖ f j(qj,

.
qj)‖

)
j = m, s, then

rT
j

(
δj
(
Xj
)
+ fcj(

.
qj) + f j(qj,

.
qj)
)

≤ ‖rj‖
(
‖δj
(
Xj
)
‖+ ‖ fcj(

.
qj)‖+ ‖ f j(qj,

.
qj)‖

)
≤ ‖rj‖dj

(39)

Substituting Equations (38) and (29) into Lyapunov derivative Equation (37), we obtain
the following results

.
V(t) ≤ ∑

i=m,s

(
rT

i

(
1

2a2
i
riθiσ

T
i σi − τi

)
+ ‖rj‖dj +

1
2 a2

j

)
− 2rT

mBhrm

−2rT
s Bers − 1

λm
θ̃m

.
θ̂m − 1

λs
θ̃s

.
θ̂s − 1

γm
d̃m

.
d̂m − 1

γs
d̃s

.
d̂s

(40)
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We can design the neural network adaptive control law of time delay teleoperation
system based on model approximation

τj = k jrj +
rj

2a2
j

θ̂jσ
T
j σj +

rj

‖rj‖+ e−ajt
d̂j (41)

Here, j = m, s, k j is the normal number. Thus, from Equation (41), there are

− rT
j τj = −k jrT

j cjrj −
1

2a2
j

rT
j cjrj θ̂jσ

T
j σj −

1
‖rj‖+ e−ajt

rT
j cjrjd̂j (42)

By substituting Equation (42) into Equation (40), the following results are obtained

.
V(t) ≤ −kmrT

mrm − ksrT
s rs +

1
2 a2

m + 1
2 a2

s − 2rT
mBhrm − 2rT

s Bers

+ ∑
i=m,s

(
1
λi

θ̃i

(
λi

2a2
i
rT

i riσ
T
i σi −

.
θ̂i

)
+ 1

γi
d̃i

(
γirT

i ri
‖ri‖+e−ai t

s
−

.
d̂i

))
+‖rm‖dm + ‖rs‖ds − rT

mrm
‖rm‖+e−amt dm − rT

s rs
‖rs‖+e−ast ds

(43)

Therefore, we can design the neural network adaptive controller of the master robot
and the slave robot based on model approximation

.
θ̂ j =

λj

2a2
j

rT
j rjσ

T
j σj − ψj θ̂j (44)

.
d̂j =

γjrT
j rj

‖rj‖+ e−ajt
− υjd̂j (45)

where ψj, υj are the normal number. By substituting the Adaptive Law (44) and Equa-
tion (45) into Equation (43), the following results are obtained

.
V(t) ≤ −kmrT

mrm − ksrT
s rs +

1
2 a2

m + 1
2 a2

s − 2rT
mBhrm − 2rT

s Bers

+ ∑
i=m,s

(
ψi
λi

θ̃i θ̂i +
υi
γi

d̃i d̂i + ‖ri‖di −
rT

i ri
‖ri‖+e−ai t di

)
(46)

Therefore, the time-delay force feedback teleoperation system based on model approx-
imation in this paper includes a bilateral position control closed-loop, and the adaptive
neural network control block diagram is shown in Figure 3. As can be seen from the
figure, we combine the operator model with the master robot, and the environment model
with the slave robot. In order to simplify the processed teleoperation system, two-sided
controller Equation (41) and adaptive estimation law Equations (44) and (45) are designed
to ensure the system stability. At the same time, this can solve the problems of time delay
and nonlinear uncertainties of the system model, so as to improve the tracking performance
and instantaneous performance of Equation (18) of time-delay force feedback teleoperation
systems based on position error.

The stability of the closed-loop teleoperation system with time-delay force feedback,
as shown in Figure 3, is discussed, and the position tracking performance between the
master robot and the slave robot is analyzed.

In the case of contact, the closed-loop time-delay force feedback teleoperation system
is controlled by two-sided neural network adaptive controller Equation (41) and adaptive
law Equations (44) and (45). For this teleoperation system, the communication channel has
constant time delay Tm, Ts.
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on model approximation.

It is stable under the neural network adaptive bilateral control law and adaptive law;
that is, the tracking errors em, es are bounded at the joint space robot’s speed

.
qm,

.
qs, and

when the time approaches infinity, the velocity
.
qm,

.
qs and tracking errors em, es of the joint

space robot converge to a small area where it is close to zero.
For proof, from θ̃j = θj − θ̂j and d̃j = dj − d̂j, j = m, s, there are

θ̃j θ̂j = θ̃j

(
θj − θ̃j

)
≤ 1

2
θ2

j −
1
2

θ̃2
j (47)

d̃jd̂j = d̃j

(
dj − d̃j

)
≤ 1

2
d2

j −
1
2

d̃2
j (48)

By substituting Equations (47) and (48) into Equation (46), the results are as follows

.
V(t) ≤ − ∑

i=h,e,j=m,s

(
k jrT

j rj + 2rT
j Birj +

ψj
2λj

θ̃2
j +

υj
2γj

d̃2
j

)
+ ∑

j=m,s

(
ψj

2λj
θ2

j +
υj

2γj
d2

j + e−ajtdj +
1
2 a2

j

) (49)

where a0 = min
{

2kj

λm(Mj(qj))
, ψj, υj, j = m, s

}
, and b0 = ∑

j=m,s

(
ψj

2λj
θ2

j +
υj

2γj
d2

j +
1
2 a2

j + dj

)
and if Bh, Be is a positive definite constant diagonal matrix, then Equation (49) can be
written as follows .

V(t) ≤ a0V + b0 (50)

The Equation (50) is integrated as follows

V(t) ≤
(

V(0)− b0

a0

)
e−a0t +

b0

a0
(51)

When t→ ∞ , there were V(t) ≤ b0
a0

. Finally, we achieve the following results

‖rj‖ ≤
√

2b0

λm
(

Mj
(
qj
))

a0
, t→ ∞, j = m, s (52)

To sum up, by selecting appropriate parameters, when the time approaches infinity,
the sliding mode function rm, rs can approach to the sliding mode of small area of 0, and
the teleoperation system is stable under the bilateral neural network adaptive control law
and adaptive law. That is, the tracking error em, es is bounded at the joint space robot’s
speed

.
qm,

.
qs, and when the time approaches infinity, the velocity

.
qm,

.
qs and tracking error

em, es of the joint space robot converge to a small area close to zero.

3. Results

In order to verify the effectiveness of the above control algorithm, the master robot and
slave robot are simulated in the presence of contact with the operator and the environment.
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Simulink is used for simulation verification, and the S-function is used to establish the
system model, and then the neural network adaptive control closed-loop system of the
time-delay force feedback teleoperation system based on model approximation is built, as
shown in Figure 3.

Considering the external interference and the internal friction of the robot, the dynamic
models of the teleoperation system are Equation (18). In this paper, the master robot and
slave robot in the teleoperation system adopt the 2-DOF, 2-link, rotary joint manipulator
robot. Here, for the sake of simplicity and generality, the moment of inertia of the rod is
ignored. The mathematical model of joint space dynamics is as follows

Mqi (qi) =

[
mi1l2

i1 + mi2l2
i1 + mi2l2

i2 + 2mi2li1li2 cos(qi2) mi2l2
i2 + mi2li1li2 cos(qi2)

mi2l2
i2 + mi2li1li2 cos(qi2) mi2l2

i2

]
(53)

Cqi

(
qi,

.
qi
)
=

[
−mi2li1li2

.
qi2 cos(qi2) −mi2li1li2

( .
qi1 +

.
qi2
)

sin(qi2)
mi2li1li2

.
qi1 sin(qi2) 0

]
(54)

Gqi (qi) =

[
(mi1li2 + mi2li1)g cos(qi1) + mi2li2g cos(qi1 + qi2)

mi2li2g cos(qi1 + qi2)

]
(55)

In addition, in the experiment, the external interference of the master robot and
the slave robot is set as fi

(
qi,

.
qi
)
=
[

0.1qi1
.
qi1 sin(t) 0.1qi2

.
qi2 sin(t)

]T . Set the internal
friction of the master robot and the slave robot as fcm(

.
qm) = [ fd1

.
qm1 + k1sign(

.
qm1) fd2

.
qm2+

k2sign(
.
qm2)]

T Here, fd1, fd2, k1, k2 is a constant, and fcs(
.
qs) = [ fd3

.
qs1 + k3sign(

.
qs1) fd4

.
qs2+

k4sign(
.
qs2)]

T where fd1, fd2, k1, k2 are constant.
At the same time, the external force from the operator is selected as f ∗h = [25(1−

cos(0.05πt)) 0]T , and the external force from the interaction between robot and environ-
ment is selected as f ∗e =

[
0 0

]T .
In the process of building a closed-loop teleoperation system, the mechanical con-

stant parameters related to the dynamics of the master robot, slave robot, operator and
environment are shown in Table 2.

Table 2. Master–slave robot parameters, operator and environment parameters.

mm1 lm1 mm2 lm2 ms1 ls1 ms2 ls2
0.5 kg 0.6 m 0.5 kg 0.4 m 0.5 kg 0.6 m 0.5 kg 0.4 m

g fd1 fd2 fd3 fd4 k1 k2 k3
9.81 m/s2 1 2 3 3 3 2 4

k4 Mh Bh Kh Me Be Ke

6 0.2 kg 50 Ns/m 1000
N/m 0.1 kg 20 Ns/m 1000

N/m

In the simulation, the initial position of the master robot and slave robot is set as
qm(0) =

[
0.4pi 0.2pi

]T , qs(0) =
[

0.25pi 0.1pi
]T . The time delay of the forward

communication channel and reverse communication channel of the teleoperation system is
Tm = Ts = 0.6s.

In the simulation teleoperation system, the controller of the master robot and slave
robot adopts Equation (41), which contains adaptive laws of Equations (44) and (45). After
repeated debugging, the controller parameters in the teleoperation system are selected
as km = ks = diag(30, 30), am = as = 5. Select the parameters Λm = Λs = 5I in the
sliding mode function. The parameters of the adaptive law are γm = γs = λm = λs = 1
ψm = ψs = 0.2, υm = υs = 0.01. The neural network WT

mσm(Xm), where Xm ∈ <10, contains
50 network points, of which the center points are evenly distributed on; the neural network
here contains 50, and its center points are evenly distributed on [−10, 10]. The simulation
results of the experiment are shown in Figures 4–8.

The tracking performance between the master robot and the slave robot is shown
in Figure 4. Figure 4a shows the track of the joint position of the master robot and the
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slave robot of the teleoperation system. We can see that the slave robot of the teleoperation
system can track the movement of the upper master robot and keep the teleoperation
system stable under the condition of the contact motion and the constant time delay of the
stable communication channel. Figure 4b shows the error between the joint angle of the
master robot and that of the slave robot passing through the reverse channel, and the error
between the joint angle of the slave robot and the joint angle signal of the master robot
passing through the forward channel.
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Figure 4. Tracking performance between master and slave robots. (a) Tracking of the joint position of the master and slave
robots; (b) Tracking error of the joint position of the master and slave robots.
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Figure 5. Master–slave robot adaptive parameters
∧
θ j and

∧
d j. (a) Value of

∧
θ j; (b)Value of

∧
d j.

The values of the adaptive parameters are shown in (a,b) in Figure 5, respectively.
Figure 6 shows the input torque diagram of joint 1 and joint 2 of the master robot and slave
robot of the teleoperation system.
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Figure 6. Input torque of master–slave robot joint.

In order to further study how different controller parameters affect the control per-
formance of the adaptive neural network controller, we carry out simulation experiments,
and select different control parameters to compare and analyze the influence of control
parameters on the control performance of the controller. The specific experiments are as
follows: select three groups of different parameters, respectively, for the following three
cases: km = ks = 50I, am = as = 10; km = ks = 30I, am = as = 5; km = ks = 15I,
am = as = 2.5. The simulation results are shown in Figures 7 and 8.
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Figure 7. em and τm under different control parameters. (a) The joint position tracking error em of the main robot; (b) Joint
input torque τm of master robot.

Figure 9 shows the results of another method used for the time delay control system,
which is an adaptive control of the teleoperation system based on position error struc-
ture [37]. Compared with the method mentioned in Figure 9, the teleoperation system
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studied in this paper also considers the unknown internal friction and external interference
of each joint between the master robot and the slave robot. We can observe from it that the
position curves of the master robot and the slave robot’s end almost overlap after about
3.5 s in Figure 9a. Adaptive control of the teleoperation system is based on position error
structure. Compared with Figure 4a, the position curves of the master robot and the slave
robot’s end almost overlap at about 3 s, the method applied in this paper enables the slave
robot of the teleoperation system to track the position of the master robot faster, and, with
regards to the degree of overlap between the subsequent two curves, the method in this
article overlaps better than the method mentioned in Figure 9. The method in this paper
can enable the slave robot of the teleoperation system to track the position of the master
robot. Figure 9b shows the input torque of joint 1 and joint 2 of the master robot and slave
robot of the teleoperation system. Compared with Figure 6, both delay force feedback
teleoperation systems can maintain stability.
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Figure 8. es and τs under different control parameters. (a) The joint position tracking error es of the slave robot; (b) Joint
input torque τs of slave robot.
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4. Discussion

In this paper, aiming at the dynamic parameter uncertainty, nonlinear parameter
uncertainty and time delay of the teleoperation system model linearization, in order to
effectively improve the control performance and tracking performance of the teleoperation
system, an adaptive neural network controller based on Lyapunov’s method is designed,
which is integrated into the position error control structure. The stability of the closed-loop
system and the boundedness of the position tracking error convergence are theoretically
proved. Finally, the effectiveness of the proposed control scheme is verified by MATLAB
Simulink numerical simulation, and the influence of the different controller parameters on
the control performance of the system is studied. The effectiveness of our control method
is proved by the above simulation data.

The advantages of the proposed controller are as follows [26–28]: (1) the RBF neural
network is used to approximate the system model with communication delay signal, and
the adaptive control method is combined. In this way, the unknown internal friction of
each joint of the master–slave robot, the unknown external interference and the constant
communication delay in the combined teleoperation system model can be dealt with,
and it has good robustness. (2) The control method designed in this chapter contains
less online update learning parameters, which reduces the online learning time, thus
improving the tracking performance of the system, and is more easily applied to the actual
time-delay force feedback teleoperation system. (3) This method not only guarantees the
stability of the teleoperation system with time-delay force feedback but also has good
control performance.

5. Conclusions

From Figure 4, we can see that the slave robot of the teleoperation system can track the
movement of the upper master robot, and the teleoperation system can maintain the motion
of the upper master robot under the condition of the contact motion and the constant time
delay of the communication channel stable [23,24]. Figure 4b shows the error between
the joint angle of the master robot and that of the slave robot passing through the reverse
channel in the teleoperation system, and the error between the joint angle of the slave robot
and the joint angle signal of the master robot passing through the forward channel. From
the figure, we can see that the tracking error of the joint position of the master robot and
the slave robot can approach 0 in about 5 s. By calculating the average tracking error of the
closed-loop constant time-delay force feedback teleoperation system, the average tracking
error of the main robot joint 1 is 0.0765 rad, the average tracking error of joint 2 is 0.0521
rad, the average tracking error of slave robot joint 1 is 0.0741 rad, and the average tracking
error of joint 2, 0.0612 rad, can be achieved, which shows that the control method in this
chapter has good control performance.

The three diagrams from Figures 4–6 show that the teleoperation system with time-
delay force feedback has good stability and transient performance under the bilateral
control method of the teleoperation system designed in this paper.

Figure 7a,b show the position tracking error signal curve and input torque signal
curve of the main robot joint 1 and joint 2 of the teleoperation system under three groups
of different controller parameters. (a,b) in Figures 4–7 show the position tracking error
signal curve and input torque signal curve of the teleoperation system from the robot joint
1 and joint 2 under three groups of different controller parameters. From the comparison
of the two graphs, it can be concluded that the larger the value of km, ks, am, as, the faster
the convergence speed will be, the chattering phenomenon will occur, and the value of the
corresponding control torque signal at that moment is greater.
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