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Abstract: The reliability and health of bushings in high-voltage (HV) power transformers is essential
in the power supply industry, as any unexpected failure can cause power outage leading to heavy
financial losses. The challenge is to identify the point at which insulation deterioration puts the
bushing at an unacceptable risk of failure. By monitoring relevant measurements we can trace any
change that occurs and may indicate an anomaly in the equipment’s condition. In this work we
propose a machine-learning-based method for real-time anomaly detection in current magnitude and
phase angle from three bushing taps. The proposed method is fast, self-supervised and flexible. It
consists of a Long Short-Term Memory Auto-Encoder (LSTMAE) network which learns the normal
current and phase measurements of the bushing and detects any point when these measurements
change based on the Mean Absolute Error (MAE) metric evaluation. This approach was successfully
evaluated using real-world data measured from HV transformer bushings where anomalous events
have been identified.

Keywords: transformer bushings; insulation failure; anomaly detection; LSTM; auto-encoder

1. Introduction

In high-voltage (HV) power systems a bushing is an electrical insulator that allows an
electrical conductor to pass safely through a conducting barrier such as the tank of a power
transformer [1]. Previous transformer failure and explosion incidents, about 12% in [2] and
40% cited in [3], were found to be related to bushing breakdown in power transformers.
Such failures often come with heavy financial consequences, therefore, continuous monitor-
ing of bushing condition is justified. The latter can be achieved by monitoring the leakage
current measured at the individual bushing test tap [4,5]. There exist other measurement
types to assess bushing condition such as power factor [6], capacitance, dissipation factor
and partial discharges [7]. The analysis involves monitoring the measurement’s trend,
such that when a certain value or percentage is reached, the bushing is diagnosed to be
in a state of deterioration. Few bushing monitoring methods that analyse leakage current
using Machine Learning (ML) methods have been proposed in the literature. In [8], an
artificial neural network was trained in a supervised learning manner where the measured
amplitude and phase were used as inputs and the bushing condition as an output or label.
However, this is a supervised classification task of different bushing conditions. Anomaly
detection in bushing leakage current using ML techniques has not been investigated in
the literature, to the authors’ best knowledge. To fill this gap, we develop a data analysis
method based on self-supervised ML that monitors changes in bushing leakage current
and phase angle measurements in real-time. The method aims at identifying unexpected
changes in the expected behaviour of a bushing system.
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The measurements investigated in this paper consist of real-world leakage current
magnitude and phase angle collected at three bushing taps over time. Due to the time-series
nature of the data, we propose a method based on the state-of-the-art Long Short-Term
Memory (LSTM) network [9] in an Auto-Encoder [10] framework that we call LSTMAE.
LSTM is derived from Recurrent Neural Network (RNN) [11] and the goal behind using
LSTM is to exploit its characteristic of keeping information on previous events to make
the next decision, and this makes it useful in anomaly detection problems. The proposed
method involves training the LSTMAE model on normal operation measurements as
inputs in a self-supervised way, where the decoder part of the Auto-Encoder attempts
to reconstruct and output a signal that is as close as possible to the input signal. The
similarity between the original and reconstructed values is evaluated with the Mean
Absolute Error (MAE) metric. The latter is also exploited in the anomaly identification part
of the proposed analysis method, where it is compared to a threshold derived from the
normal operation measurements.

Surveys on anomaly detection in time-series data were conducted in [12,13]. The
authors covered a number of methods that address univariate and multivariate data types
that were categorised as: statistical, pattern matching, distance-based, clustering-based
and probabilistic predictive methods. We compare our work to methods that fall under the
aforementioned categories except for pattern matching as this type of methods learn from
both anomalous and normal data in a supervised approach, however, the data available
in this work address a different scope. Two distance-based and clustering-based methods
known as the Local Outlier Factor (LOF) [14] and Natural Outlier Factor (NOF) [15] are
evaluated. For the probabilistic predictive category the autoregression-based methods
are popular in anomaly detection [12]. We further implement Seasonal Autoregressive
Integrated Moving Average (SARIMA) [16] and Vector Autoregressive (VAR) [17] models.
For the statistical category we apply the simple moving average method calculated on the
time series.

The remainder of this paper is structured as follows. The next section provides an
overview on HV bushing with more insight on bushing condition monitoring. Section 3
describes the analysis method blocks used in this work, including RNN, LSTM and Auto-
Encoder networks, and how they are combined to produce the LSTMAE architecture
along with the anomaly identification steps. Section 4 describes the data and experiments
investigated in this paper and shows the experiment’s results along with discussions
and remarks on the presented work. Finally, the last section provides a summary and
conclusions to this work with future recommendations.

2. High-Voltage Bushing Overview

A bushing provides a means for a conductor, usually high-voltage, to pass through a
barrier, which is usually grounded. The bushing provides insulation between the conductor
and the barrier. The insulation of the bushing often features stress-grading foils to ‘even
out’ the voltage stress [18]. Bushing insulation provides a capacitive path to ground,
and is not perfect, so there is a leakage current to ground through the bushing. If the
insulation deteriorates, the current will change, usually rising: offline testing is very
effective at detecting such deterioration, evaluating bushing power factor (tangent delta)
and capacitance [19]. Online monitoring to detect incipient bushing failures really became
popular in the 1990s. Originally, the idea was that a balanced system (same Root Mean
Square (RMS) per phase at 120◦ difference) with identical bushings would have the three
bushing leakage currents sum to zero [20]; this proved disappointing as the system is not
always balanced and there were too many false positives. As a result, the monitoring
migrated to looking at leakage current magnitudes and phase for each bushing. At the
time, readings of each value were taken hourly as the failure modes were suspected of
being relatively ‘graceful’ with deterioration being evident over weeks to months [21].
The actual process in successful monitors was to record leakage current waveforms and
parse those to extract the RMS value and relative phase between bushings; these values
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could then be used to derive the power factor and capacitance of each bushing [22]. These
were important steps as power factor and capacitance are stamped on the nameplate
for the bushing and can be used to directly identify deterioration, which is a significant
benefit for field staff who are comfortable with the power factor and capacitance, and there
are standards and guides available to provide acceptable limits on individual bushings.
However, it must be noted that the current RMS and phase may vary rapidly, and vary
inconsistently between phases, and provide RMS changes at a rate of up to 1.5% in a quarter
of an hour. Consequently, the derivation of power factor and capacitance are based on a
moving average, usually calculated over a day, a week and a month [23]. It is recommended
that where a power factor or capacitance indicates deterioration, the current and phase data
behind those values are investigated, as should be the original raw data of the waveforms
recorded. The result of the change to averaged individual bushing values was a number
of saves of a variety of different bushing types and designs: ABB, Westinghouse, PCore,
GE, to name a few, which were confirmed ‘bad’ through subsequent offline tests. However,
the advent of a rise in field failures of Trench COT and COTA bushings in the mid to late
2000s lead to an identified failure mode which was much more rapid—two saves using the
standard hourly measurements with Trench bushings in Australia showed that the failure
mode related to rapid deterioration of the insulation at the edges of the stress grading
foils—a domino effect as once one foil is lost by being burned through or punctured, there
is increased stress across the remaining insulation, which can accelerate the process. The
two saves in 2012 showed the nominal current rising by almost 50% in 2 h, with concurrent
rises in the power factor and capacitance. Subsequent to this, increased sampling is used
for bushings where a rapid failure mode may occur—in fact, a number of users prefer a
sampling rate of 5 min or 15 min. In addition, alerts may be set based on daily weekly and
monthly variations in power factor and capacitance values, but also directly on current
magnitudes and phase angles. The system in this article was installed in 2008 on the six
low-voltage bushings of an externally completed ungrounded delta winding; readings
were taken hourly on each bushing as was standard for systems manufactured at that time.
The owners of the bushing (and the transformer and the associated generator) were and
are very familiar with power factor and capacitance, and relied on those as their main
point of focus for alert generation; they do not usually look at the raw wave forms or
current/phase values. In addition, they rely on the monitor supplier to provide advanced
technical support—data interpretation, diagnostics and prognoses.

3. Materials and Methods

A description of RNN and LSTM networks is first provided in this section, then details
on how LSTM is incorporated in an Auto-Encoder along with anomaly detection algorithm
steps are discussed.

3.1. Recurrent Neural Network (RNN)

RNN basic architecture can be seen as a looped block, also referred to as the repeating
module, or multiple blocks connected in series, where an input observation vector xt passes
through the block consisting of a hidden vector ht as

ht = H(Wxhxt + Whhht−1 + bh) (1)

where Wxh is the input-hidden weight matrix, Whh is the hidden-hidden weight matrix,
and bh is the hidden bias vector, andH represents an element-wise operation, e.g., a tanh
or sigmoid function. Thus the RNN block consists of a single layer. The block produces
an output value yt at time point t = 0, 1, 2, . . . N with N being the time-series length, as
shown in Equation (2).

yt = Whyht + by (2)
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with Why being the hidden-output weight matrix. This shows that in RNN each block
passes a message to the next one, making this architecture suitable for sequences of data,
see Figure 1.

Figure 1. Recurrent Neural Network block.

Long-term dependency of information is important in some cases where further past
information is required to make a better prediction. It was found in [24] that in practice
RNNs are incapable of learning the long-term dependencies, however, this can be achieved
by the special case of RNN which is LSTM.

3.2. Long Short-Term Memory (LSTM)

LSTM was first introduced by [9] and has been widely used in various problems
such as speech recognition [25]. Its main functionality is to hold information for a longer
period of time. LSTM architecture is similar to RNN’s except that LSTM’s block consists
of multiple interconnected layers, along with the pointwise addition and multiplication
operations which play an important role in adding or removing relevant information
from the block. The LSTM composition used in this paper is illustrated in Figure 2 and is
defined as:

it = σ(Wxi · [ht−1, xt] + bi) (3)

ft = σ(Wxf · [ht−1, xt] + b f ) (4)

c̀t = tanh(Wxc · [ht−1, xt] + bc) (5)

ot = σ(Wxo · [ht−1, xt] + bo) (6)

ht = ot × tanh(ct) (7)

where it, ft, c̀t, ot are the input gate, f orget gate, candidate gate and output gate, respectively.
The main characteristic of LSTM block is the top horizontal line within the LSTM block, as
shown in Figure 2. The f orget gate decides which information is no longer relevant and
needs to get discarded. The candidate gate, on the other hand, decides which information
should be added to the cell state ct. The final output is produced by the output gate
multiplied by the cell state that is passed to a tanh function to obtain values between −1
and 1. The previous cell state ct−1 is updated using (8) to obtain the new state ct.

ct = ft × ct−1 + it × c̀t (8)
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Figure 2. Long Short-Term Memory block.

3.3. Long Short-Term Memory Auto-Encoder (LSTMAE)

In neural networks, Auto-Encoders [26] can be split into two main functions. The first
one is the encoder with weights We which maps the input x into a latent feature space F ,
as defined in Equation (9). The second part is the decoder with weights Wd which maps
the latent feature space into a reconstructed version of the input, denoted as x̂ and defined
in Equation (10), where φ is an activation function.

F = φ(Wex) (9)

x̂ = WdF = Wdφ(Wex) (10)

The LSTMAE model architecture used in this paper is illustrated in Figure 3, each of
the encoder and decoder contains two LSTM blocks. The input to LSTMAE is designed
to input a batch of size = 10 by 1 time stamp by 3 features. The latter correspond to three
measurement signals from each tap of the bushing, therefore, the model can be considered
as multivariate. The model was trained over 100 epochs using the ADAM optimizer [27] to
reduce the Mean Absolute Error (MAE) loss, defined in Equation (11). Of the total training
data, 5% were reserved for validation after each epoch. The model was implemented and
trained in an Anaconda environment using Keras interface with Tensorflow backend. No
GPUs were required for training the model, instead, it was performed on a Mac OS with
2.2 GHz Quad-Core Intel Core i7 CPU and 16 GB memory.

L = |x− x̂| (11)

The aim behind training the LSTMAE in this work is to learn measurements in normal
operation through encoding them into meaningful features during the encoding part. The
decoder then attempts to replicate the normal measurements. The MAE loss, defined in
Equation (11) is calculated between the original measurement xt and its reconstructed
version x̂t, and is used to evaluate the LSTMAE learning in a way that it is minimized so
the reconstructed measurements are as close as possible to the original measurements.

3.4. Anomalous Event Decision

The algorithm for anomaly detection can be partitioned in two parts. The first part is
the learning of data under normal condition, this is achieved as follows:

1. Train the LSTMAE model by reducing the MAE loss;
2. Once the training has converged, calculate the MAE loss for each time step and fit to

a distribution;
3. Derive the threshold for normal/anomaly as the boundary of the MAE score distribu-

tion calculated on the training data.
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The second step is the anomaly detection part where the trained model is used
as follows:

1. Input the time series to the LSTMAE model and derive the reconstructed version
from the decoder;

2. Calculate the MAE between the original input time series and its reconstructed
version;

3. Compare MAE score with the derived threshold for anomaly detection.

The theory behind using the MAE score as comparison between the original and
reconstructed time series for anomaly detection is that after the encoder has successfully
learned feature representation of the normal condition time-series, when an anomalous
value is inputted to the LSTMAE, the model maps this input to the normal features resulting
in reconstructed value closer to the normal condition value, therefore, the MAE score is
expected to be higher than the threshold. This is observed and discussed further in the
Section 4.

Figure 3. Long Short-Term Memory Auto—Encoder Network (LSTMAE).

4. Results and Discussion

First, a description of the data measurement and apparatus is provided. Two analysis
experiments using for LSTMAE model are conducted, and their respective results are
presented and discussed. Results from other anomaly and outlier detection methods are
also presented and discussed.

4.1. Bushing Data Measurement

The data analysed in this work were measured from taps of three bushings belonging
to a 1972 two-winding Generator Step-Up 980 MVA transformer manufactured by General
Electric, which is shown in Figure 4. The transformer’s operation receives 345 V from a
generator and outputs a voltage of 23.75 kV. The bushings under investigation in this work
are connected to the low-voltage ends in a Wye–Delta configuration. Leakage current and
phase angle were acquired every hour between 10 February 2020 at 12:00 and 17 February
2021 at 1:00 using a doblePRIME IDD Bushing Monitor device. The acquired data from
the three bushings are plotted in Figure 5. Note that in this work we are only using phase
angle data from Tap 1 and 3 as they are relative to Tap 2 which is constant and set to zero.
The data underwent a normalisation between 0 and 1 as a processing step prior to being
passed to the LSTMAE model.
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Figure 4. Site operating GE 980MVA Step-Up transformer.

Figure 5. Angle and magnitude data.

4.2. Experiment 1

In this initial experiment the first days of data measurements were identified as a
normal operation and therefore were used to train the LSTMAE model. This includes
measurements from 10 February 2020 at 12:00 until 13 December 2020 at 18:00 and is
illustrated in Figure 5. The remaining data measurements, beyond this point until 17
February 2021 at 1:00, contain both normal and anomalous events and were used to
test the model. Figure 6 shows the MAE loss of the test data when evaluated using the
LSTMAE model after training. It is observed that on 24 December 2020 at 20:00 the MAE
increased above the anomaly decision threshold. The results can be observed in Figure 7
for magnitude and angle data, where the green shaded area is identified as normal and the
red shaded area as anomalous. By looking at the overall signal, the difference beyond the
measurement of day 24 December 2020 at 20:00 is not clear, however, when looking closer
at the signal (see Figure 8), a slight increase is observed in Tap 1 and Tap 2 magnitudes
and a decrease in tap 3 magnitude after few fluctuations in Tap 2 and Tap 3 magnitudes.
Similar results are observed in phase angle data where the angle values fluctuate then
decrease to a steady value. Another anomaly is observed few months later where very high
values in magnitude were measured and a disruption in angle was also observed at the
same time. After an investigation by online monitoring engineers, the following possible
explanations were made. The anomaly could be related to shielding issues inside the
transformer. Furthermore, the winding and bushing will be susceptible to sudden failure
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through switching, a fault or transient surges. It was also concluded that the fluctuations
have stabilized, making the new leakage current and angle readings the new normal as
the sum of the leakage current from the three taps before and after the anomalous event is
the same.

Figure 6. MAE loss and the derived threshold on the data after complete training.

Figure 7. Anomaly detection result on magnitude and angle data in experiment 1.
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Figure 8. Magnified anomaly detection result on magnitude and angle data in experiment 1.

4.3. Experiment 2

In this experiment we consider the point after the measurement fluctuations as the
new normal since the values have been steady after that point without breakdown, as
per online monitoring engineers’ suggestion. The main goal behind this experiment is to
demonstrate that the model can be flexible and re-trained on later measurements that are
considered as the new normal and a new threshold was derived for this set. The test data
set from experiment 1 was split into another training and testing set on which the model
was evaluated.

Results are presented in Figure 9 for anomaly detection on current and angle data.
An anomaly was detected in both measurements between 7 February 2021 at 10:00 and
8 February 2021 at 17:00. The online monitoring engineers justified the sudden surge in
current and angle fluctuations as a data acquisition issue. Another anomaly was detected
in the current measurement only on 15 February 2021 3:00. This is due to small current
fluctuations and should be monitored closer in combination with angle measurements and
look for a repetition rate, as a false positive event may occur and may not be an indication.

Figure 9. Anomaly detection result on magnitude and angle data in experiment 2.

4.4. Comparison to Other Methods

We present results from five methods that have been previously used in anomaly
detection as follows:
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4.4.1. Autoregressive Models

Both VAR and SARIMA use an autoregressive model but differ slightly in their
parameters, more details on the algorithm can be found in [16,17]. VAR is more suitable
for multivariate and endogenous time series, which is the nature of our dataset. However,
SARIMA is more suitable for exogenous time series and supports univariate time series
only. For comparison purposes, in this work we use several SARIMA models for each of the
taps’ magnitude and angle data. This may not be ideal for edge implementation in terms
of memory and computation compared to the other methods. Since VAR and SARIMA
are predictive models, they are trained on normal events and predict the remaining of
normal and anomalous time series which is the test set. A rolling error is then calculated
between the actual test data values and the predicted values by each model. For anomaly
detection, we follow the same threshold method which is derived from the normal rolling
error boundaries.

Figure 10 shows the rolling error results for both VAR and SARIMA models. It is
observed that the second anomaly in February has successfully been identified, however,
the first anomaly in December was undetectable. This is due to the rolling error being
smaller than the threshold.

Figure 10. VAR and SARIMA rolling error between predicted and actual test data.

4.4.2. Distance and Clustering Models

The LOF and NOF methods were founded on the concept of comparing the local
density of a point with its neighbours, where the local density is calculated between the
point and its k nearest neighbours. Therefore, these two methods were evaluated on the
full available dataset. The anomaly or outlier points can be identified as points having
lower density than their neighbours, whereas regions of similar density are considered as
normal. For more details on the algorithm readers are referred to [14,15].

It is observed from the results in Figure 11 that both methods identified the anomalies
on angle data, with one false positive towards the end of the measurements identified
by LOF. For the magnitude data, both methods failed to identify the first anomaly on
the magnitude measurements. These results can be explained by the large difference in
magnitude and the small angle difference between the first and second anomaly.
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Figure 11. LOF and NOF outlier detection results.

4.4.3. Moving Average Method

The moving average is one of the simplest methods that can be used in time-series
anomaly detection which involves calculating the moving average of the historical data and
using a standard deviation to find the boundary values which can define the anomalous
points that fall beyond the boundaries. However, this technique is associated with the
following drawbacks. First, the boundaries setting is sensible and may result in too many
false positives due to moving average smoothing effect that results in a very small variance.
If the boundaries are pushed further, it may result in undetected anomalies with small
measurement variations, as seen in Figure 12. The second point is the slow response
which is affected by the moving average time window of 24 or 48 h, see Figure 13 for the
second anomaly. This makes the moving average method not ideal for a sudden change
in measurement.

Figure 12. Moving average magnified at first anomaly date, dotted line represents the anomaly
boundaries.
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Figure 13. Moving average on the entire data set.

4.5. Further Remarks

The monitoring system will react quickly to changes—the update rate for the bushing
can be set to every few seconds, if need be, but if the suspicion is that a failure mode is
available and in operation which is that fast, it would likely become an asset management
decision to change out the bushing for one where such a failure mode is unlikely to occur.
There is also a move towards continuous monitoring and linking the leakage current
magnitude/phase to simultaneous extraction of transient and PD monitoring. Technically
this is quite feasible, but the increased cost of such monitoring has to be weighed against
the benefit—at present the in-service failure rate of bushings at distribution, transmission
and generation sites around the world is usually less than 0.5% per year, resulting in a
poor cost benefit, especially as the cause of many failures external to the bushing: animals,
severe weather, vandalism, etc. Therefore, we can react to changes, sometimes a swing of
>1.5% in 15 min, with a rate of change at 6% per hour is just a change in tap position on
the transformer coupled with system loading variation. There are also interesting effects
which can result from a transformer near a source of static var compensation or at the
end of long overhead lines; the imbalance in MW/MVAr load can lead to variable phase
angles resulting in anomalous power factor readings. Cooling the bushings will have
a small effect—we do have tables for temperature correction of bushing measurements
built into monitors, but the effect is usually small. An interesting effect is possible where
pollution collects on the bushing surface, allowing for an alternate path to ground in the
measurement system—the test object changes and the resulting power factor can reduce
and become negative; a similar effect can be seen by the build-up of sludge, contaminants
or moisture inside a bushing during operation. In particular, the ingress of moisture may
lead to a rise in power factor, but if the moisture levels increase further within the bushing
an alternate path to ground may be formed which allows for the power factor to fall and, in
fact, turn negative. A little rain has very little effect in practice unless it can get inside the
bushing—the case of rising/falling power factor was one where a bad gasket on a bushing
fill plug was thought to be the cause, subsequently confirmed through offline tests and
forensic tear-down of the bushing.

5. Conclusions

Anomalous events were successfully detected on leakage current and phase angle
measured from three bushing taps that are part of a field operating transformer. Anomaly
detection was achieved by LSTMAE model combined with MAE metric. Other anomaly
detection methods were also investigated on our dataset where the methods failed to iden-
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tify the first anomaly compared to the LSTMAE, particularly in the current measurements.
It was also demonstrated that the model can be re-trained on new normal measurements
that were previously identified as a change. To conclude, the proposed method is aimed
at identifying any change in the measurement which indicates an anomaly and thus may
indicate the onset of a fault in the bushing. Identification of a ‘new normal’ for the mea-
surements does not, of itself, guarantee that there will be no new anomaly or deterioration.
Our recommendation is to closely monitor the change duration and repetition rate and
develop an action plan to respond to monitoring levels: caution, warning and action.
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Abbreviations
The following abbreviations are used in this manuscript:

HV High-Voltage
LOF Local Outlier Factor
LSTM Long Short-Term Memory
LSTMAE Long Short-Term Memory Auto-Encoder
MAE Mean Absolute Error
ML Machine Learning
NOF Natural Outlier Function
RMS Root Mean Square
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
VAR Vector Autoregressive
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