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Abstract: Patellar and Achilles tendinopathy commonly affect runners. Developing algorithms
to predict cumulative force in these structures may help prevent these injuries. Importantly, such
algorithms should be fueled with data that are easily accessible while completing a running session
outside a biomechanical laboratory. Therefore, the main objective of this study was to investigate
whether algorithms can be developed for predicting patellar and Achilles tendon force and impulse
during running using measures that can be easily collected by runners using commercially available
devices. A secondary objective was to evaluate the predictive performance of the algorithms against
the commonly used running distance. Trials of 24 recreational runners were collected with an Xsens
suit and a Garmin Forerunner 735XT at three different intended running speeds. Data were analyzed
using a mixed-effects multiple regression model, which was used to model the association between
the estimated forces in anatomical structures and the training load variables during the fixed running
speeds. This provides twelve algorithms for predicting patellar or Achilles tendon peak force and
impulse per stride. The algorithms developed in the current study were always superior to the
running distance algorithm.

Keywords: Garmin; wearables; Achilles tendon; patellar tendon; algorithm; injuries; sports medicine

1. Introduction

Exercise should be taken seriously since it is believed to have profound health ben-
efits [1]. One type of exercise activity is running, which, on a global scale, has gained
popularity in the past decades. Running is preferred by many, owing to its accessibility and
beneficial effects on various health-related outcomes, such as fitness level and health [2].

In contrast to its benefits, running can also lead to injuries in the musculoskeletal
system [3]. Patellar and Achilles tendinopathy account for more than 10% of all running-
related injuries [4]. These conditions and running-related injury, in general, are major
obstacles to exercise activity [5], so prevention of patellar and Achilles tendon injuries are
important. In-depth knowledge about forces applied to the involved anatomical structures
is needed because an injury occurs when the cumulative tendon load exceeds the structure’s
capacity to withstand the load [6–8]. Cumulative tendon load is considered a superior
metric for the prediction of injury compared to running distance [9], which has been
widely used in the previous literature [10]. Therefore, more sophisticated measures of load
are warranted.

An advanced method to quantify load is to estimate tendon force using computational
models of the musculoskeletal system [11]. Unfortunately, this method seems practically
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and logistically impossible in a real-life setting due to high computational complexity
and demands of detailed motion data. Therefore, developing a computationally simple
algorithm to predict the cumulative force in the Achilles or the patellar tendon is an
important step to improving the understanding of the etiology underpinning running
injury in these structures. If successful, such algorithms can be used to obtain session-
specific and structure-specific approximations of tissue loads in large-scale epidemiological
studies examining the “too much training load, too soon”-theory [7]. Large-scale studies
are needed to assess changes in the tendon force in different groups displaying different
recovery patterns [7], running experience [6], previous injuries [6], and pain sensitivity [12],
to name a few. In the ideal study, thousands of runners should be included to consider
various effect-measure modifiers. However, such a sample size is likely to make it difficult
to obtain full-body kinematic and kinetic data in a time-efficient manner.

To obtain enough personalized data on individual runners, an algorithm predicting
cumulative force on an Achilles or patellar tendon should rely on measures that are easy to
assess in-situ, rather than advanced measures that can only be assessed in biomechanical
laboratories. As an example, running measures (e.g., speed, cadence), which are measurable
by commercially available devices, such as smartwatches, may be used when developing
algorithms to predict step-specific forces in the patellar and Achilles tendons. Commercially
available devices are widely used by runners, as they can be worn unobtrusively during
running [13,14]. These devices have made it possible to obtain indirect measures of training
load (such as the number of strides, cadence, ground contact time, and vertical oscillation)
in an outdoor environment [15,16]. Using such measures to calculate approximations of
forces in the patellar and Achilles tendon force requires, however, that the approximations
have acceptable predictability of biomechanically-assessed forces [6,17].

Therefore, the main objective of the present study was to investigate whether an algo-
rithm can be developed to estimate patellar and Achilles tendon forces and impulses per
stride during running, using measures that can be easily collected by Garmin devices with-
out expert assistance. A secondary objective was to evaluate the predictive performance of
the algorithm while estimating patellar and Achilles tendon peak force and impulse per
stride and compare the algorithm with running distance metrics, which is the common
way in the literature of estimating cumulative load and serves as a control.

2. Materials and Methods
2.1. Subjects

Twenty-four runners (17 males and 7 females) were included in the study with an
average age of 26 ± 1.3 years. The runners weighed 82 ± 11 kg; stature 182 ± 7 cm; and
had a knee, ankle, and shoe sole height of 49.6 ± 3.1 cm, 7.6 ± 0.9 cm, and 3 ± 0.9 cm,
respectively (see Supplementary Material, Table S1 for more detailed numbers). All runners
were recreationally active for at least 60 min per week. Additionally, all runners had been
injury-free for at least six months and completed the setup described in the protocol without
any complaints, pain, or discomfort. Before testing, the runners were informed about the
purpose of the study, study design, equipment, and signed a declaration of informed
written consent. The Regional Ethics Committee of North Jutland waived the approval
of the study owing to the study design (an observational cross-sectional study) since
observational studies do not require approval from the local ethics committee according to
Danish Law.

2.2. Procedures

Prior to data collection, each runner was introduced to the Garmin Forerunner 735XT
(GFR) to become familiar with the start, stop and save function. Anthropometric data for
each runner were collected based on instructions provided by Xsens (Xsens Technologies
B.V, Enschede, The Netherlands). Seventeen inertial motion units (IMU) were mounted on
the Xsens suit on the following anatomical locations: head, sternum, pelvis, upper legs,
lower legs, feet, shoulders, upper arms, forearms, and hands using the designated clothing
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items of the Xsens system. The anthropometric data were loaded into the Xsens MVN
Studio 4.3 before calibration. Prior to the data collection, the runners performed a 20-min
warm-up at a self-selected pace, followed by five-min rest. During this resting period, a
calibration of the inertial motion capture system was performed. Segment orientations
were obtained by applying the IMU-to-segment alignment, found using a known upright
pose (N-pose) [18]. This N-pose calibration updates the joints and external contacts to
limit the position drift [18]. If the calibration was categorized as “good” according to the
system, it was accepted and redone otherwise. A visual inspection using the live view
of the joint movement was performed to ensure that the recorded data were consistent
with the movement of the runner. The calibration was performed outdoor to reduce the
amount of magnetic disturbance [18]. Roetenberg, Luinge, and Slycke provide a detailed
description of the Xsens system [18]. The runner was equipped with the GFR after the
calibration was completed.

2.3. Data Collection

Each of the runners performed three running trials of two minutes on a straight
outdoor track paved with asphalt at three different speeds (10, 12, and 14 km/h) in
randomized order. The speed was controlled by a person riding a bike in front of the
runner with a Garmin Fenix 2 GPS watch (Garmin Ltd., Olathe, KS, USA) mounted on
the bike, while another rode behind the runner on a Long John bicycle with a computer, a
battery and access point for data collection. The Xsens system was activated first. Then, the
runner was instructed to perform a jump and start the GFR upon landing to synchronize
the two datasets. 3D kinematic data of the full-body were recorded at 240 Hz with an
Xsens MVN link motion capture suit. Running dynamic data were recorded each second
(60 Hz) with the GFR paired with a heart rate strap (HRM-Run; Garmin Ltd., Olathe, KS,
USA). The GFR variables that were measured during the run and included in the present
study were: instantaneous Speed, Vertical Oscillation, Ground Contact Time, Step length,
and Cadence.

2.4. Data Processing

Data from GFR were downloaded using Garmin Connect software 7.1.4.0 (Garmin
Ltd., Olathe, KS, USA) and exported to R (v. 4.0.5). The Xsens data was captured in a
native file format called MVN), which was HD reprocessed in MVN studio to get the best
performance for the recorded motion. The data were aligned using the jump as an indicator
of the start of the Garmin data. Furthermore, 35 s of data were disregarded from the start
of both systems to make sure the runner had reached a constant speed.

The kinematic data from Xsens were exported in Biovision Hierarchy (BVH) format
and thereafter processed in a computer model (BVH_Xsens template in AnyBody Managed
Model Repository version 2.2) of the musculoskeletal system using the AnyBody Modeling
System (version 7.2). In the AnyBody Modeling System, the patellar and Achilles tendon
forces were estimated for four strides per trial [19–22], using the muscle recruitment ap-
proach described in Damsgaard et al. [21]. We predicted ground reaction forces from the
kinematics using the method described by Skals et al. [20]. Ground reaction forces were
predicted by creating 25 contact points under each foot of the musculoskeletal model. Each
contact point consisted of five unilateral force actuators, which could generate a positive
vertical force orthogonal to the ground, and static friction forces in the two horizontal
directions using a friction coefficient of 0.8. In addition, to compensate for the sole thick-
ness of the running shoes, a 25 mm height activation offset threshold was added to the
musculoskeletal model.

Each runner provided 24 running strides, giving 576 running strides in total
(=24 runners × 4 strides × 2 legs × 3 speeds) with an estimate of patellar and Achilles
tendon force. Each of the four strides was paired with the observation from Garmin closest
in time to this measure.
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2.5. Statistics

Data were analyzed using a mixed-effects multiple regression model, which was used
to model the association between the estimated forces in anatomical structures and the
training load variables during the fixed running speeds. In the mixed model, runner-
specific random effects are used to account for possible correlations between repeated
observations for each runner at different running speeds.

The response variable is either the estimated peak force or impulse per stride in either
the patellar tendon or Achilles tendon. The predictor variables are the different training
load variables from Garmin (speed, ground contact time, vertical oscillation, and cadence)
and anthropometric variables of the runners, including body mass (kilogram), sex, knee
height (centimeter), ankle height (centimeter), shoe sole height (centimeter) and body
height (centimeter) or the traditionally used running distance (approximated by distance
per stride). Once a model is established for the relation between a response variable and the
predictor variables, an algorithm for predicting the response variable is directly obtained
from the model prediction equation.

For each of the four response variables, three models were obtained. The first model is
based on the “distance” as input, which is the common way in the literature of estimating
cumulative load and serves as a control [10]. The second model is the “best fitted”,
which considers all available predictors and serves as a benchmark for the predictive
performance and should be used when possible (See Tables 1 and 2). The third model is
the “practically feasible” which considers only predictors, which may be assessed validly
by runners themselves.

The reason for fitting a best-fitted and practically feasible model stems from our expe-
rience from previous studies [7,17,22]. Some anthropometric measurements are difficult to
collect in a large-scale project (ankle and knee height), in contrast to other measures such
as running measures, sex, and body height, which may be assessed validly by runners
themselves. Hence, for the best-fitted model, all 10 variables were available, while the
practically feasible disregarded knee, ankle, and shoe sole height and the distance model
only used the distance per stride.

The best fitted, as well as the practically feasible models, were identified by fitting all
potential combinations of predictors (best fitted model:210 = 1024 and practically feasible
model:26 = 64). For each response variable, the combination of predictors that minimized
prediction error was selected. The prediction error (PE; Equation (1)) was computed for
each combination of predictors using a 5-fold cross-validation approach [23,24] comparing
the difference between the tendon force estimated using AnyBody and the tendon force
predicted by the algorithm given by the considered combination of predictors.

PE =

√
[observed − predicted]2 (1)

A relative proportion of prediction error (PPE; Equation (2)) was developed to get an
impression of the size of error within and between the structure-specific forces:

PPE =
prediction error (N)

mean structurespeci f ic (N)
100 (2)

The statistical analyses were performed in R.
The PE and PPE were also used to compare the best fitted and practically feasible

models with the distance-based model. In addition, we estimated the Pseudo R-Squared
value based on the approach described by Nakagawa and Schielzeth [25].
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Table 1. The predictive algorithms of the patellar and Achilles tendon peak force during running based on outdoor measurable features.

Structure and
Model Garmin Measurable Variables Measurable Variables by Runners Accuracy

Intercept (N) Stride
Length (cm) Speed (km/h)

Ground
Contact Time
Length (ms)

Vertical
Oscilation

(mm)

Cadence
(Step/min)

Body Mass
(kg)

Sex
(1 = Male)

Knee
Height

(cm)

Ankle
Height

(cm)

Shoe Sole
Height

(cm)

Body Height
(cm)

Standard
Deviation
between

Runners (N)

Standard
Deviation

within
Runners (N)

Prediction
Error (N)

Proportion of
Prediction
Error (%)

Pseudo
R-Squared

(Fixed Effects)

Achilles tendon peak load

Distance
algorithm

487
[480]

4
[0.33] 831 1317 1532 30 0.1

Practically
feasible

algorithm

−9928
[6853]

339 **
[29]

292
[662]

60
[39] 1267 837 1406 27 0.17

Best fitted
algorithm

−7189
[5530]

288 **
[33]

31 **
[8]

32 *
[24]

−33
[104]

−737 **
[214]

−1152 **
[201]

78
[57] 690 833 993 19 0.54

Patellar tendon peak load

Distance
algorithm

4102
[277]

1.01
[0.19] 475 778 934 18 0.02

Practically
feasible

algorithm

1615
[4731]

141 **
[25]

−46.56 *
[18]

16
[22]

484
[373]

23
[31] 641 469 743 14 0.32

Best fitted
algorithm

−1228
[5007]

147 **
[25]

−53 **
[19]

10
[23]

650¤
[363]

−140
[93]

−256
[173]

175
[172]

90 ¤
[51] 597 469 678 13 0.39

¤ indicates the p-value for the variable to be between 0.05 and 0.1; * indicates the p-value for the variable to be less than 0.05; ** indicates the p-value for the variable to be less than 0.01; [] indicates the standard
error of the estimate.

Table 2. The predictive algorithms of the patellar and Achilles tendon impulse load during running based on outdoor measurable features.

Structure and
Model Garmin Measurable Variables Measurable Variables by Runners Accuracy

Intercept
(kN)

Stride
Length (cm) Speed (km/h)

Ground
Contact Time
Length (ms)

Vertical
Oscilation

(mm)

Cadence
(Step/min)

Body Mass
(kg)

Sex (1 =
Male)

Knee Height
(cm)

Ankle
Height (cm)

Shoe Sole
Height (cm)

Body Height
(cm)

Standard
Deviation
between

Runners (N)

Standard
Deviation

within
Runners (N)

Prediction
Error (N)

Proportion of
Prediction
Error (%)

Pseudo
R-Squared

(Fixed
Effects)

Achilles tendon loading impulse

Distance
algorithm 109.5 [13.07] −0.0033

[0.009] 22.9 35.1 41.0 36 0.01

Practically
feasible

algorithm

−151.06
[184]

−0.48
[0.79]

5.85
[17.89]

1.48
[1.05] 34.2 22.8 37.9 34 0.08

Best fitted
algorithm

−32.5
[141]

0.09
[0.08]

0.57 *
[0.23]

1.08
[0.69]

−18.18 *
[6.2]

−28.08 **
[5.91]

1.1
[1.13] 20.3 23 28.2 25 0.45

Patellar tendon loading impulse

Distance
algorithm

217.3
[9.73]

−0.055
[0.01] 31.1 15.3 35.1 23 0.04

Practically
feasible

algorithm

77.5
[176]

−3.1
[0.83]

−1.9
[0.61]

0.35
[0.85]

10.4
[14]

1.3
[1.19] 24.5 15 24.2 16 0.32

Best fitted
algorithm

65.22
[148]

1.62
[1.35]

0.3 *
[0.12]

−0.46 ¤
[0.26]

−3 *
[1.03]

22.87 *
[10.57]

−4.86
[2.81]

−8.44 *
[5.6]

2.4
[5.65]

3.16 **
[1.2] 19.6 15 22.0 14 0.47

¤ indicates the p-value for the variable to be between 0.05 and 0.1; * indicates the p-value for the variable to be less than 0.05; ** indicates the p-value for the variable to be less than 0.01; [] indicates the standard
error of the estimate.
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3. Results

Garmin data for two runners could not be used owing to an error in the acquisition
of data (Zeroes in the stride length and unrealistically low vertical oscillation). For one
of these runners, the error affected the Garmin data for the 10 km/h speed and, for the
other, the error affected all three speeds (see Figure 1). For six runners, the estimated
ground reaction forces from AnyBody were unrealistically high on their right leg on either
10, 12, or 14 km/h (see Figure 1). After removing the noisy recordings, we ended up with
520 eligible strides in total (10.7% trials were lost in the process) from 23 different runners.
On average, the 23 runners displayed a peak patellar force of 5268 ± 915 N, an impulse
per stride of 152.7 ± 33.3 kNs, while the Achilles tendon peak force was 5150 ± 1500 N
and impulse per stride was 112.4 ± 40.6 kNs (See Supplementary Material: Table S2 for the
exact values).
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Figure 1. Flow diagram of the process from including runners to processing of data. Twenty-four
runners were included for trials of 10, 12, and 14 km/h, respectively, giving 576 strides in total.

3.1. Speeds Association with Step-Specific Tendon Force

Figure 2 shows the association between different speeds and loads on anatomical
structures, training load, and anthropometrics. Achilles (slope: 309; p-value: <0.001) and
patellar (slope: 59; p-value: 0.001) tendon peak forces were positively affected by increased
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running speed. Achilles tendon (slope: −920; p-value: 0.305) impulse per stride was
negatively but insignificantly related to running speed.
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Figure 2. The association between running speed and step-specific tendon force, impulse per stride, stride length, vertical
oscillation, ground contact time, and cadence.

Patellar (slope: −5928; p-value: <0.001) peak forces were negatively affected by
running speed. Stride length (slope: 82; p-value: <0.001), vertical oscillation (slope: 1.66;
p-value: <0.001) and cadence (slope: 1.08; p-value: <0.001) were positively associated with
increased running speed, while ground contact time (slope: −10; p-value: <0.001) was
negatively associated with increased running speed. Moreover, the exact values for the
intended running speeds are descripted in Supplementary Material: Table S2).

3.2. The Algorithms

For each of the four force variables, the best fitted and practically feasible models were
selected according to the PE defined in equation 1 (See Figures 3 and 4 and Tables 1 and 2)
resulting in best fitted and practically feasible algorithms for predicting each of the four
force variables.

With regards to peak patellar tendon force, speed, cadence, body mass, sex, and body
height were chosen for both the best fitted and the practically feasible algorithms (see
Table 1). The signs of the coefficients for these predictors were consistent between the two
algorithms. Moreover, for the algorithms predicting patellar tendon impulse per stride,
speed, ground contact time, vertical oscillation, cadence, sex, and body height were selected
for both algorithms and with consistent coefficient signs. Moreover, knee, ankle, and shoe
sole height were selected in the best-fitted algorithms for both the peak patellar tendon
force and impulse per stride.
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Speed and body height were selected in both algorithms for peak Achilles tendon force
with the same signs and similar coefficients (see Table 1). For Achilles tendon impulse per
stride, vertical oscillation, body mass, and body height were selected in both algorithms,
again with the same signs (see Table 2). Moreover, ankle and shoe sole height were
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selected in the best-fitted algorithms both for the peak Achilles tendon force and impulse.
Equation (3) demonstrates how the algorithms can be used to predict the patellar tendon
peak force (PTF) based on the practically feasible algorithm:

PTF ≈ 1615+ 141Speed− 46.56Cadence+ 10Bodyweight+ 484Male+ 90Body height (3)

The performance of the algorithms was evaluated as the standard deviation between
and within runners and the absolute accuracy (standard deviation of the prediction error)
computed by cross-validation. The standard deviation (SD) within runners remained the
same in both approaches, while the SD between runners were larger for the practically
feasible algorithms (See Figures 3 and 4). This is also in agreement with PE and PPE, which
increases with a similar trend as the between SD for best fitted and practically feasible
algorithm. Since knee, ankle, and shoe sole height are not included in the practically
feasible algorithms, force variation explained by these variables in the best-fitted models is
instead considered to be random runner-specific variation in the practically feasible models.
This explains the higher between SDs for the practically feasible algorithms.

3.3. Predictive Performance

The proportion of prediction error was 16% or below for all patellar tendon algorithms
and 34% or below for all Achilles tendon algorithms. The algorithms fitted using distance
per stride revealed, for the patellar tendon, a prediction error of 934 N for peak force and
35.1 kNs for impulse, while the proportions of prediction error were 18% and 23%, respec-
tively. For the Achilles tendon, the prediction error was 1532 N for peak force and 41.0 kNs
for impulse, giving proportions of the prediction error of 30% and 36%, respectively. A
graphical comparison of the different algorithms is provided in Figures 3 and 4, with the
predicted structure-specific force plotted against the AnyBody-estimated force. From a
visual inspection of the figures, it is evident that the scatters fall closer to the identity black
line for the best fitted and practically feasible algorithms, compared to the distance-based
prediction. The Pseudo R-squared value of the fixed effects improved for both algorithms
compared to the Distance algorithm (see Tables 1 and 2).

4. Discussion

The purpose of this study was to explore the predictive performance of algorithms
to predict patellar and Achilles tendon force. The algorithms were based on self-reported
data from runners and data from a Garmin running device quantifying running measures
while running in an outdoor environment.

4.1. Predictive Performance

For both the patellar tendon and Achilles tendon, the prediction error and proportion
of prediction error were greatest for the distance algorithm and smallest for the best
fitting algorithm. This could indicate that, when possible, the best fitting algorithm may
be preferred over the practically feasible algorithm. Moreover, adding anthropometric
information to the training load variables measured from the Garmin running device
improved the accuracy of all algorithms. This indicates that anthropometric measurements
should be used when feasible.

4.2. Comparing Structure Specific Forces

Using AnyBody to Predict ground reaction force has previously been demonstrated to
yield valid estimates [19,20]. Different musculoskeletal models have also demonstrated
agreement on changes of structural forces at different movement speeds.

Moreover, the estimated structural forces are similar to forces in other studies. The
patellar tendon peak force increased from 10 km/h to 12 km/h, while no increase was found
with the increase from 12 km/h to 14 km/h. A similar study mimicking the patellar tendon
force by applying the peak muscle activity in the vasti muscles, demonstrated a similar
pattern, although the muscle activity decreased from 18.6 km/h to 25 km/h [26]. Moreover,
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using a force transducer on the Achilles tendon, Kharazi et al. [27] demonstrated that
the Achilles tendon peak force grows linearly from 5–12.6 km/h. With a similar method,
Komi [28] demonstrated that the Achilles tendon peak force was increasing until around
21 km/h (6 m/s) and thereafter decreasing at higher speeds. They directly measured the
forces in the Achilles tendon under local anesthetization and found similar forces as in the
present study. At 10.8 km/h (3 m/s) the force was around 5 kN, while we found that, at 10
and 12 km/h, it was on average 4.86 kN and 5.16 kN, respectively. At 14.4 km/h (5 m/s)
they found the force to be around 6 kN which compares well with the 5.7 kN that we found
at 14 km/h.

4.3. Limitations

The study design is limited to low-range running speeds from 10 km/h to 14 km/h
and by the lack of precise running speed measurement. A plateau likely exists regarding
vertical oscillation, ground contact time, stride length, and cadence at faster speeds. In
the present study, a linear increase was found for stride length, ground contact time, and
cadence, while a slightly progressive increase in vertical oscillation was found. However,
studies including higher speed have demonstrated that stride length increases at a lower
rate when the speed increases [26]. Consequently, the opposite seems to be the case for
cadence, which had progressively higher increases in cadence over time. However, Dorn
et al. [26] demonstrated a linear reduction in ground contact time from 12.5–32 km/h which
may cover the range of speed performed during endurance running. This may indicate
that the present study was limited in the speed range and the algorithm should be used
with caution for predicting structural forces below 10 km/h and above 14 km/h. Moreover,
the dataset was rather small and it can be questioned whether the runners included are
representative of all types of runners.

Since the data had rather large noise/random variance, the prediction algorithms
may display reduced predictive performance. Several improvements have the potential
to reduce this noise: Firstly, the Garmin device is not providing stride-to-stride data.
Consequently, it was not possible to synchronize the stride-to-stride data from Xsens
precisely with the stride-to-stride data from Garmin. Instead, we used second-to-second
data from the Garmin device. Secondly, the measures we used are only an average of a
series of previous steps, which together with the lack of stride data may lead to imprecise
predictions of the tissue loading. Stride-to-stride data without averages of previous steps
will improve the fitting of the algorithm. This will ensure an appropriate synchronization
between data. Thirdly, another way of reducing the noise could be to change the prediction
of ground reaction forces from full-body kinematics to measuring ground reaction forces.
Finally, control of running speed could be improved by better measurement techniques,
and this might reduce random noise and enhance the significance of the findings. Still,
the algorithms may prove beneficial in their current form, as the prediction error of the
algorithms were at least 100 N below the prediction error derived from using the running
distance algorithm, which is the commonly used exposure metric in previous literature [10].

4.4. Perspectives

Running injuries are commonly affecting runners and can lead to a temporary or
permanent stop of running activities. Insight into injury etiology is therefore necessary.
Here, the algorithms from the present study could provide epidemiological researchers
with new tools to quantify training load with improved validity. To accomplish this,
researchers can use the equations in the present manuscript to estimate second-specific
approximations of load during running. They can be summed up to calculate the session-
specific cumulative load in the Achilles and patellar tendons. Ultimately, researchers may
then investigate whether increases in session-specific cumulative loads are associated with
injury occurrence. This can be combined with other exposures to investigate how changes
in cumulative training load and other parameters (running shoes, cadence, surface, etc.)
influence running injury occurrence.
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This could potentially evolve into a wearable technology that can guide runners in
terms of quantity and intensity of running activities considering the injury risk.

5. Conclusions

The algorithms developed in the current study were always superior to the distance
algorithm. Moreover, the best fitting algorithm was consistently superior to the practically
feasible algorithm. Therefore, it can be concluded that, when the necessary data is available,
the best-fitted algorithm should be used to approximate the peak force and/or impulse in
the patellar and Achilles tendon. When only data for the practically feasible algorithm are
available, this should be used in favor of the distance algorithm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217418/s1, Table S1: Shows the descriptive statistics of the anthropometrics, Table S2:
Shows the descriptive statistics and the effect of running speed on tendon force and impulse across
running speed.
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Nomenclature

GFR Garmin Forerunner 735XT
IMU inertial motion units
N Newton
kN kilonewton
N-pose Neutral standing calibration

PE prediction error;
√
[observed − predicted]2

PPE Proportion of prediction error; absolute acccuracy (N)
mean structure speci f ic (N)

100

Eq equation
SL Stride length
Sp Speed
Cad Cadence
BH Body height
BW Bodyweight
KH Knee height
AH Ankle height
SSH Shoe sole height
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