
sensors

Article

An Improved Self-Training Method for Positive Unlabeled
Time Series Classification Using DTW Barycenter Averaging

Jing Li †, Haowen Zhang †, Yabo Dong *, Tongbin Zuo and Duanqing Xu

����������
�������

Citation: Li, J.; Zhang, H.; Dong, Y.;

Zuo, T.; Xu, D. An Improved

Self-Training Method for Positive

Unlabeled Time Series Classification

Using DTW Barycenter Averaging.

Sensors 2021, 21, 7414.

https://doi.org/10.3390/s21217414

Academic Editor: Wai Lok Woo

Received: 30 August 2021

Accepted: 5 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;
zjujing@zju.edu.cn (J.L.); cszhw@zju.edu.cn (H.Z.); zuotongbin@zju.edu.cn (T.Z.); xdq@zju.edu.cn (D.X.)
* Correspondence: dongyb@zju.edu.cn
† These authors contributed equally to this work.

Abstract: Traditional supervised time series classification (TSC) tasks assume that all training data are
labeled. However, in practice, manually labelling all unlabeled data could be very time-consuming
and often requires the participation of skilled domain experts. In this paper, we concern with the
positive unlabeled time series classification problem (PUTSC), which refers to automatically labelling
the large unlabeled set U based on a small positive labeled set PL. The self-training (ST) is the most
widely used method for solving the PUTSC problem and has attracted increased attention due to its
simplicity and effectiveness. The existing ST methods simply employ the one-nearest-neighbor (1NN)
formula to determine which unlabeled time-series should be labeled. Nevertheless, we note that the
1NN formula might not be optimal for PUTSC tasks because it may be sensitive to the initial labeled
data located near the boundary between the positive and negative classes. To overcome this issue,
in this paper we propose an exploratory methodology called ST-average. Unlike conventional ST-
based approaches, ST-average utilizes the average sequence calculated by DTW barycenter averaging
technique to label the data. Compared with any individuals in PL set, the average sequence is more
representative. Our proposal is insensitive to the initial labeled data and is more reliable than existing
ST-based methods. Besides, we demonstrate that ST-average can naturally be implemented along
with many existing techniques used in original ST. Experimental results on public datasets show that
ST-average performs better than related popular methods.

Keywords: positive unlabeled time series classification; self-training; dynamic time warping; DTW
barycenter averaging

1. Introduction

With the rapid development of the Internet of Things technology, a large number of
time series generated by sensor devices have appeared in various fields, including PM2.5
sensing systems [1], activity tracking [2], real-time patient-specific ECG classification [3],
and many more. Ubiquitous time-series have received a substantial research interest in
clustering, classification, querying, prediction, and indexing of such data. Time-series
classification (TSC) is the most widely used among all techniques applied to time-series
data and has always attracted great attention [4].

Conventional supervised TSC tasks assume that all training data are labeled, and
they train a high-quality classification model based on these labeled data. However, in
practice, manually collecting and labelling all unlabeled training data could be very time-
consuming and often requires the participation of skilled domain experts. On the other
hand, with the popularity of various cheap sensors and the increase in storage capacity,
a large number of unlabeled time-series data are being generated every day. Thus, the
paradigm of supervised TSC is not practical in many real-life applications. Rather, the
TSC tasks in real-life often involve positive unlabeled TSC (PUTSC) [5,6], which we study
in this paper. Suppose that PL is a set containing only a small number of positive labeled
time-series and U is a large set of unlabeled (positive and negative) time-series, the task

Sensors 2021, 21, 7414. https://doi.org/10.3390/s21217414 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21217414
https://doi.org/10.3390/s21217414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217414
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217414?type=check_update&version=1

Sensors 2021, 21, 7414 2 of 17

of PUTSC is to automatically label the U set based on PL set. Figure 1 shows an example
of PUTSC.

...

positive labeled

unlabeled

unlabeled

?

?
...

positive labeled

negative

positive

PUTSC

unlabeled labeled?
Figure 1. A simple example of PUTSC. Here we assume that the size of the PL set |PL| = 1. The task
of PUTSC is to automatically label the large set of unlabeled time-series U based on PL set.

The PUTSC is a proper solution in the time-series data mining community when
unlabeled time-series are easy to obtain but labelling them is difficult. In the past few
years, numerous inspiring algorithms have been proposed to solve the PUTSC problem.
The self-training based method (ST) [7] is the most popular PUTSC method and has been
successfully used [5,8–14]. In this paper, we will particularly focus on ST technique due
to its effectiveness and popularity. The idea behind ST method is straightforward: if an
unlabeled time-series in U is very similar to a labeled time-series in PL, then this unlabeled
one has a very high probability of being positive. Based on this idea, the ST labels the most
similar time-series in U set to PL set as a positive one and adds this time-series to the PL.
The process continues until a certain stopping criterion is met. The detailed description and
illustration of the ST algorithm can be found in Section 2.

We note that all the ST based methods simply employ the one-nearest-neighbor (1NN)
formula to determine which unlabeled time-series should be labeled and added to PL set.
The 1NN formula is straightforward; however, it is challenging to explicitly recognize
the class boundary and may be sensitive to the initial labeled time-series located near the
boundary between the positive and negative classes. For example, in Figure 2a, the PL
set has three initial positive labeled data (circle-1, 7 and 9). The conventional ST based
methods will label square-17 as the positive one and add it to PL because it is the most
similar data in U to PL. Nevertheless, it is obvious that square-17 is negative data; thus,
it leads to an incorrect result. More seriously, a chain effect of wrongs will follow after
adding square-17 to the PL set (the square-15 will be added to PL because it is now the
most similar data in U to PL). Surprisingly, despite this extensive literature, we are not
aware of any work overcoming the drawback presented in Figure 2a.

Facing the aforementioned drawback, inspired by [15] which uses the centroid of time
series to improve TSC efficiency and accuracy, in this paper, we propose an exploratory
methodology called self-training based on the average sequence of the time-series (ST-average).
Our proposal, ST-average, is different from all the ST based works in that: ST-average labels
the time-series in U which is the most similar to the average sequence of the PL set as a
positive data. Figure 2b illustrates our idea. ST-average first calculates the average sequence
of the PL set (circle-C in Figure 2b). Then, circle-2 is labeled as a positive one and added
to PL set because it is the most similar time-series in U to circle-C. It can be seen from
Figure 2b that our method is largely insensitive to the circle-1. Therefore, it is much more
reliable than existing ST methods.

The ST-average is an apparent solution to PUTSC problem. Unfortunately, it is a
challenging task to define the average sequence of the time-series. The simplest way
is to compute mean value of all time-series using Euclidean Distance. However, this
naive method is not feasible because time-series data are always shifted in time axis.
Besides, this point-by-point averaging approach cannot capture actual shape of two time-

Sensors 2021, 21, 7414 3 of 17

series. For instance, Figure 3a presents two shifted time-series collected from the UCR
archive [16]. Anyone could confirm that they are very similar to each other although
they appear dephased in time. However, if we use Euclidean Distance averaging, the
resultant undesired average sequence shown in Figure 3b will resemble none of the parent
time-series. To obtain a reasonable average sequence, we compute average sequence of the
time-series under the Dynamic Time Warping (DTW) [17] distance because DTW allows
time-series to be locally shifted and stretched. Specifically, in this paper, we adopt a well-
known technique, DTW barycenter averaging (DBA) [18], to compute average sequence
of the time-series. Figure 3c shows the resultant average sequence when DBA is applied.
Obviously, the result is correct and more natural when averaged using DBA technique.

1

2

12

3
4

5

6
7

89

10

11

13

14

15

16 17 1

2

12

3
4

5

6
7

89

10

11

13

14

15

16 17

C

（a） （b）

 positive labeled positive unlabeled negative unlabeled

Figure 2. An illustration of the difference between ST based methods (a) and our ST-average method
(b). ST labels the unlabeled data (square-17) which is closest to PL set while ST-average labels the
unlabeled data (circle-2) which is closest to the average sequence of the PL set.

0 55 110 165 220 275

-2.0

-0.5

1.0

2.5

4.0

0 55 110 165 220 275

-2.0

-0.5

1.0

2.5

4.0

0 55 110 165 220 275

-2.0

-0.5

1.0

2.5

4.0

(a) (b) (c)

Figure 3. (a) two shifted time-series collected from the UCR archive. (b) the resulting average sequence when averaged under
the Euclidean Distance. (c) the resulting average sequence when averaged under the DTW distance using DBA technique.

To summarize, we make the following contributions.

• We point out that traditional ST-based methods may be sensitive to the initial labeled
time-series located near the boundary between the positive and negative classes.
To overcome this issue, we propose a novel method ST-average to solve the PUTSC
problem by using the average sequence of the PL set to decide which unlabeled
time-series should be labeled and added into PL set.

• It is not a trivial task to calculate the average sequence of the time-series set and we
demonstrate the necessity of using DBA through experiments.

• The ST-average method is orthogonal to some of the stopping criteria and similarity
measures used in ST-based methods. We show how ST-average can naturally be
implemented along with them and present an explicit implementation of ST-average.

Sensors 2021, 21, 7414 4 of 17

• We conduct experiments using public well-know time-series datasets to evaluate the
performance of our proposal. Experimental results demonstrate that our method
performs better than related competitors.

Our paper is organized as follows. Section 2 introduces the necessary background
knowledge and related work of our research. Particularly, we focus on describing self-
training technique for solving PUTSC problem. Our proposed method can be found
in Section 3. Section 4 presents the experimental results on real-world datasets. The
effectiveness and efficiency of the proposed method are reported in this part. We finally
conclude this paper in Section 5.

2. Background and Related Work

Before formally elucidating the proposed ST-average algorithm, this section provides a
brief overview of the background and related work.

2.1. Positive Unlabeled Time Series Classification

The deficit of labeled time-series data in the time-series data mining domain has
motivated increasing research in the positive unlabeled TSC (PUTSC) topics. Given a PL
set which contains only a small number of positive labeled time-series and a U set which
is a large set of unlabeled (positive and negative) time-series, the task of PUTSC is to
automatically label the U set based on PL set. For example, the PUTSC can be applied to
classify ECG heartbeats as abnormal or normal based on some labeled abnormal ones.

The PUTSC can be regarded as a special case of semi-supervised learning (SSL) [19,20].
However, most existing SSL approaches cannot be used in PUTSC due to the specific
characteristics of time-series data such as high dimension, noisy, different lengths and
high feature correlation. In the specialized literature, as far as we know, only two main
approaches have been proposed to tackle the PUTSC problem effectively. The first one
is based on the clustering technique [6,21]. Representative methods include Learning
from Common Local Clusters (LCLC) [6] and Ensemble based Learning from Common
Local Clusters (En-LCLC) [21]. The second one is based on self-training technique [5,8–14].
We note that the majority of related works solving the PUTSC problem have used the
self-training approach because its instance-based classifier best suits the particular features
of time-series. Thus, in this paper, we follow this tendency.

2.2. Self-Training Technique for the PUTSC

In this subsection, we discuss how the ST algorithm works. The pseudo-code of the
ST method for PUTSC can be found in Algorithm 1.

Algorithm 1 The pseudo-code of the self-training method for PUTSC.

Require:
PL: Original positive labeled data; U: Unlabeled data.

Ensure:
Positive: The time-series set labeled as positive.
Negative: The time-series set labeled as negative.

1: list = {}; i = 1; in f o = {}; PL′ = PL;
2: while U 6= ∅ do
3: x = arg minx∈U minx′∈PL Distance(x, x′);
4: list(i) = x; in f o(i) = Information(x, i); i = i + 1;
5: U = U\{x}; PL = PL ∪ {x};
6: end while
7: stop = StoppingCriterion(in f o);
8: Positive = PL′ ∪ {list(1), list(2), ..., list(stop)};
9: Negative = {list(stop + 1), list(stop + 2), ..., list(i)};

10: return Positive, Negative;

Sensors 2021, 21, 7414 5 of 17

The ST is an iterative method and it iteratively labels all time-series in U (line 2–6). In
each iteration, ST first finds the unlabeled time-series x in U which is closest to PL based on
the one-nearest-neighbor (1NN) formula (line 3). The Distance() is a function to measure the
similarity between two time-series. Then, ST records the x and Information(x, i) in the map
list and info in i-th iteration, respectively (line 4). The Information() is a function to record
the important information of x. Note that the Information() is related to the stopping
criterion StoppingCriterion(). For example, later we will see that when the stopping
criterion confidence [8] is used, the Information(x, i) is the minimal distance between x
and PL. Next, in line 5, the time-series x is removed from the U set and added into the
PL set. After all time-series are labeled, the StoppingCriterion() estimates the number of
positive time-series (line 7). The top stop time-series in list are labeled as positive (line 8)
while the rest are labeled as negative (line 9). ST finally obtain the Positive set and Negative
set which will be returned (line 10). We present a concrete example illustrated in Figure 4
to help reader gain an appreciation of the ST.

In Figure 4, at the initial state, the three red circles indicate the original PL set and all
the blue instances indicate U set. In each iteration, the unlabeled instance which is closest
to PL is labeled as positive and added to PL. For example, in iteration 1, the circle-1 is
labeled because it is now closest to PL. We can observe that the labeled set PL is augmented
gradually until all instances are labeled. After labelling all the instances in the set U
(iteration 11), the stopping criterion calculates the stopping point to build the final positive
set and negative set. Specifically, in our example, the value of stop is equal to 4 and at
the stopping state, all red instances indicate the positive set while the rest are labeled as
negative set.

1

Initial state Iteration 1

1

2

Iteration 2

1

2

3

Iteration 3

1

2

3

4

Iteration 4

1

2

3

4

Iteration 5

5

9

Stopping state

1

2

3

4

Iteration 6

5

6

1

2

3

4

Iteration 11

5

6 7

8
10

11

Figure 4. An illustration of ST procedure. In this example, the initial PL set has three instances.

Sensors 2021, 21, 7414 6 of 17

2.3. Related Work for the Self-Training

From the Algorithm 1, we can observe that the similarity measure between two time-
series (Distance) and the stopping criterion (StoppingCriterion) are two important parts of
the ST method. The current researches for the ST method also focus on devising suitable
similarity measures and stopping criteria. For similarity measure, representative similarity
measures in the scope of ST include Euclidean Distance (ED) [7], Dynamic Time Warping
(DTW) [8], DTW-D distance [13], and Maximum Diagonal Line of the Cross-Recurrence
Quantification Analysis (MDL-CRQA) [14]. Note that the classic ED and DTW are two
similarity measures that are widely used in the time-series mining community. As for
stopping criterion, representative stopping methods include minimal nearest neighbor
criterion [7], stopping criterion confidence (SCC) [8], Minimum Description Length principle
based criterion [9–11], and Class Boundary Description by Graphic Analysis [12].

Our proposal is different from all the related works mentioned above in that: we focus
on improving the performance of classic ST method by changing the one-nearest-neighbor
selection formula (instruction 3 in Algorithm 1). We do not claim a contribution to the
similarity measure or stop criterion used in ST method. Rather, we note that our proposal
is orthogonal to the above works and can naturally be implemented along with state-of-the-
art similarity measures or stop criteria (we will see an example in Section 3.4). In general,
our contribution is an effective solution to the drawback of ST which may otherwise plague
any attempt to ST.

3. Proposed Method

In this section, we first introduce the motivation behind our approach. Then, we
describe two key techniques used in our method. We finally elaborate on our ST-average
method and study the time complexity in detail.

3.1. Motivation

Despite the prevalence of the ST, we observe that it still has a drawback: the overall
performance of ST may be sensitive to the initial labeled time-series. Usually, the probability
to be mislabeled will be high when PL set includes the instances located near the boundary
between the positive and negative classes. For example, in Figure 2a, we can see that ST
incorrectly labels a negative data as positive class. This drawback motivates us to devise a
more reliable and robust method.

In this paper, we propose the ST-average approach to overcome the drawback of
conventional ST. Unlike ST, the proposed ST-average first calculates the average sequence
of PL set and then finds the time-series x in U which is closest to average sequence. ST-
average eliminates the effects of instances located near the negative and positive boundary
by using the average sequence. Compared with any individuals in PL set, the average
sequence may be more representative. A concrete example can be found in Figure 2b.

The key to ST-average algorithm is to calculate the average sequence of the PL set.
However, it is not a trivial task to define the average sequence. The classical data can be
averaged by their mean value using the traditional point-by-point averaging approach, but
time-series cannot because they always vary in length and shifted in time axis (temporal
aberrations) [22–24]. In the field of time-series data mining, the DTW distance is a well-
established and widely used technique to address both issues, which can cope with shifted
time-series of different lengths by looking for optimal alignment between two time-series.
Thus, in ST-average, the average sequence is obtained in the DTW distance space. Since our
method utilizes DTW technique and its averaging method, we first describe them in the
next subsection.

3.2. Dynamic Time Warping

DTW [17,25] is the most popular distance in time-series, and performs well in sim-
ilarity search because it allows time-flexible alignment and can find the best matching
between two time-series by searching for optimal alignments; hence, it allows time-series to

Sensors 2021, 21, 7414 7 of 17

be locally shifted along the temporal axis and can handle time-series of unequal lengths.
Figure 5 illustrates that compared with Euclidean Distance, DTW guarantees to obtain the
optimal alignment between two time-series A = (1, 1, 2, 2.5, 3, 3, 3, 3, 2.5, 2.5, 2, 2, 1, 1) and
B = (1, 1, 1, 2, 2.5, 3, 3, 3, 2.5, 2, 2, 2, 1, 1).

Time Time

Figure 5. An optimal alignment generated by DTW (left), and a strictly time-rigid alignment generated by Euclidean
Distance (right).

In DTW, an alignment from time-series A = (a1, a2, ..., am) to time-series B = (b1, b2, ..., bn)
is described by a warping path: W = (w1, w2, ..., wL), where L is the length of the warping path.
The kth element wk = (i, j) represents the alignment from ai in A to bj in B. The warping path
must satisfy the following constraints [26,27].

• Boundary constraint: w1 = (1, 1) and wL = (m, n).
• Continuity-monotonically constraint: wk − wk−1 ∈ {(1, 1), (0, 1), (1, 0)}.

Given a warping path W, the distance cost between A and B under W is calculated
as follows:

DisW(A, B) =
L

∑
i=1

d(awi [1], bwi [2]), (1)

where d(x, y) = (x− y)2. Suppose that W∗ denotes the set of all warping paths, then the
DTW distance between A and B is defined as follows:

DTW(A, B) = min
W∈W∗

DisW(A, B). (2)

The optimal alignment from A to B is

WOPT(A, B) = arg min
W

DisW(A, B). (3)

Note that brute-force examining all possible warping paths to calculate the DTW
distance could be very expensive or even infeasible because there are exponentially many
possible warping paths. Fortunately, the DTW can be calculated by dynamic programming.
Specifically, we can calculate DTW distance between A and B as follows.

D(0, 0) = 0; D(0, 1 : n) = +∞; D(1 : m, 0) = +∞ (4)

D(i, j) = d(ai, bj) + min

D(i, j− 1)

D(i− 1, j)

D(i− 1, j− 1)

(5)

DTW(A, B) = D(m, n). (6)

The D is called the accumulated cost matrix and the optimal warping path can be
found by back-tracking matrix D [24]. In this way, the time complexity of calculating DTW
is O(mn).

Sensors 2021, 21, 7414 8 of 17

3.3. Time-Series Averaging

Suppose T = {T1, T2, ..., TN} is a set of N time-series. Generally, the time-series
can have different lengths. The average sequence of T under the DTW distance can be
formulated as follows [18,24].

T = arg min
1
N

N

∑
i=1

DTW(Ti, A), ∀A ∈ Sl , ∀l ∈ [1,+∞), (7)

where Sl indicates the space of all time-series of length l. We have to consider all possible
values for length l because the information on the average sequence length is not available.

Many effective algorithms have been proposed to solve the time-series averaging
problem [18,23,24,28,29]. Among these existing time-series averaging algorithms, the
DTW barycenter averaging (DBA) [18] is the most cited solution up to date (more than
510 citations) and is widely used as the basis of many time-series applications such as
clustering and classification [15]. Thus, in this paper, DBA is used as our averaging method
and we briefly introduce how DBA works.

The DBA is an iterative method and it iteratively refines the initial selected randomly
average sequence to obtain the final average sequence. In each iteration, the element T(k)
in average sequence T is updated by averaging the elements in Ti(i = 1, 2, ..., N) which
align with T(k) based on DTW. We provide the pseudo-code of DBA (Algorithm 2) to help
reader reproduce our proposed method.

Algorithm 2 The pseudo-code of the DBA method for averaging time-series set.

Require:
T = {T1, T2, ..., TN}: the time-series set to average.
T: initial average sequence (length l) selected from T randomly.
IT: number of iterations.

Ensure:
T: the average sequence.

1: for i = 1 : IT do
2: alignedSet(k) = ∅, k = 1, ..., l;
3: for j = 1 : N do
4: Using DTW to align T and Tj;
5: for k = 1 : l do
6: Identifying the elements Ck in Tj which align with element T(k);
7: alignedSet(k) = alignedSet(k) ∪ Ck;
8: end for
9: end for

10: for k = 1 : l do
11: T(k) = mean(alignedSet(k));
12: end for
13: end for
14: return T;

3.4. The ST-Average Method

In this subsection, we present a formal and detailed description of the ST-average
method. The pseudo-code can be found in Algorithm 3. It can be seen from Algorithm 3
that ST-average is based on the similar process of ST but adds the DBA technique (line 3).
Besides, the unlabeled time-series which is closest to the average sequence is labeled (line 4).
Figure 6 visualizes ST-average.

Sensors 2021, 21, 7414 9 of 17

4

5

7

8

1

2

12

3

6

9

10

11

13

14

15

16 17

C

（a）

 positive labeled positive unlabeled negative unlabeled

1

2

12

3
4

5

6
7

89

10

11

13

14

15

16 17

C

（b）

12

4

6
7

89

11

13

14

1

2

3

510 15

16 17

C

（c）

1

2

12

3
4

5

6
7

89

10

11

13

14

15

16 17

C

（d）

average sequenceC

 Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 6. An illustration of the first four iterations of the ST-average. In each iteration, ST-average first computes average
sequence C and then labels the time-series which is closest to C.

Algorithm 3 The pseudo-code of the ST-average method for PUTSC.

Require:
PL: Original positive labeled data; U: Unlabeled data.

Ensure:
Positive: The time-series set labeled as positive.
Negative: The time-series set labeled as negative.

1: list = {}; i = 1; in f o = {}; PL′ = PL;
2: while U 6= ∅ do
3: center = DBA(PL);
4: x = arg minx∈U Distance(x, center);
5: list(i) = x; in f o(i) = Information(x, i); i = i + 1;
6: U = U\{x}; PL = PL ∪ {x};
7: end while
8: stop = StoppingCriterion(in f o);
9: Positive = PL′ ∪ {list(1), list(2), ..., list(stop)};

10: Negative = {list(stop + 1), list(stop + 2), ..., list(i)};
11: return Positive, Negative;

Note that in Algorithm 3, the three functions Distance(), Information() and Stop-
pingCriterion() are implicit. When using ST-average in practice, these three functions need
to be implemented by explicit algorithms. For example, the Distance() can be simply
implemented by DTW distance, Euclidean Distance or DTW-D distance and the Stop-
pingCriterion() can be implemented by minimal nearest neighbor criterion [7], stopping
criterion confidence [8] or Minimum Description Length principle based criterion [9–11].

For concreteness, in this part, we describe an explicit implementation of ST-average
method which will be used in our experiments. Specifically, the function Distance() is
implemented by DTW distance due to its effectiveness and popularity in the time-series
domain. The StoppingCriterion() is implemented by stopping criterion confidence (SCC) [8],
which is an improvement method of the seminal stopping criterion proposed in [7]. The SCC
is defined as follows.

SCC(i) =
|in f o(i)− in f o(i− 1)|

Std(in f o(1), ..., in f o(i))
× |U| − (i− 1)

|U| , (8)

in which |U| is the number of initial unlabeled time-series, Std is a standard deviation
calculation function, and in f o(i) denotes the minimum DTW distance between the selected
time-series x in iteration i and the closest time-series from PL set. That is,

in f o(i) = Information(x, i) = min
x′∈PL

DTW(x, x′). (9)

When using SCC criterion, the value of stop (line 8 in Algorithm 3) is calculated as follows
(In literature [8], stop = arg maxi∈[1,|U|] SCC(i)− 2. However, we find that when combined

Sensors 2021, 21, 7414 10 of 17

with our method, stop = arg maxi∈[1,|U|] SCC(i)− 1 can achieve better performance in our
experiments.):

stop = StoppingCriterion(in f o) = arg max
i∈[1,|U|]

SCC(i)− 1. (10)

We here just simply use the SCC criterion and we direct the reader to [8] for a comprehensive
survey of SCC.

3.5. Time Complexity Analysis

This subsection shows the time complexity of ST-average. The ST-average process can
be divided into four parts: (1) Computing DBA; (2) Finding the selected time-series x in
iteration i. (3) Recording the information of x. (4) Calculating the stopping point. In this
part, we assume that the similarity measure between time-series is implemented by DTW
distance and all time-series have the same length L; thus, the complexity of computing
DTW is O(L2). Suppose that |PL| and |U| are the number of initial labeled time-series and
unlabeled time-series, respectively, and N is the sum of |PL| and |U|, and I denotes the
number of iterations in each DBA computation. From [18] we know that the DBA has a
time complexity of O(IKL2) to compute the average sequence from the K time-series. Thus,
we can obtain the computation of DBA in ST-average requires

C(DBA) = O(I|PL|L2 + I(|PL|+ 1)L2 + · · ·+ INL2)

= O(IN2L2).
(11)

In each iteration, ST-average must scan all the data in positive labeled set at that time
to find the selected time-series x. Thus,

C(f ind_x) = O(|PL|L2 + (|PL|+ 1)L2 + · · ·+ NL2)

= O(N2L2).
(12)

The functions information() and StoppingCriterion() typically require time complex-
ity that linearly with the L and |U|; thus, they are relatively minor and can be ignored in
our analysis. Therefore, the overall S-average requires

CST−average = C(DBA) + C(f ind_x)

= O((I + 1)N2L2).
(13)

As for ST, to improve its efficiency, we can store a look-up table which contains all of
the DTW distance between pairs of time-series. Then, the distance DTW(x, x′) (line 3 in
Algorithm 1) can be read from this look-up table. In this way,

CST(f ind_x) = O(N2L2). (14)

Like ST-average, the time complexity of information() and StoppingCriterion() in ST can
also be ignored. Thus, the conventional ST requires

CST = O(N2L2). (15)

Therefore, the time complexity of ST is smaller than our method ST-average. The speedup
obtained by ST is

Speedup =
CST−average

CST
= I + 1. (16)

Sensors 2021, 21, 7414 11 of 17

4. Experimental Evaluation
4.1. Experimental Setup
4.1.1. Algorithms

In this evaluation, four representative methods are used to illustrate the effectiveness
of ST-average and we give a short introduction of each of them.

• ST-SCC is proposed in [8], and is one of the state-of-the-art algorithms for PUTSC
problem, which uses DTW distance as the similarity measure and SCC as the stopping
criterion.

• C-MDL is proposed in [9], which uses the constraint-based MDL principle for PUTSC
problem. This method does not use any stopping criteria, but stops the self-training
process when the number of time-series which does not satisfy the constraints exceeds
the predefined threshold.

• SCC-center-dtw is our proposed method presented in Section 3.4, which utilizes the
idea of ST-average and is an explicit implementation of ST-average.

• SCC-center-ed is similar to our SCC-center-dtw approach. The only difference is that
SCC-center-ed uses the Euclidean Distance (ED) to calculate the average sequence while
SCC-center-dtw uses DTW distance.

The above four algorithms are sufficient to show whether ST-average is effective.
Specifically, from the comparison of ST-SCC and SCC-center-dtw, we can know whether
the idea of ST-average can improve the performance of the original ST-SCC. From the
comparison of SCC-center-dtw and SCC-center-ed, we can know whether it is necessary to
calculate the average sequence under the DTW distance. Besides, the C-MDL and SCC-center-
dtw can be regarded as two variants of ST technique, we are interested in which of these
two variants performs better.

4.1.2. The Performance Metric

We focus on evaluating the performance of labelling the original unlabeled instances
(U set). This is equivalent to classifying the U set. The F1-score is used in our experiments
to evaluate the performance of the proposal and baseline methods. F1-score is the harmonic
mean of the recall (r) and precision (p), and can be defined as follows:

F1 =
2× p× r

p + r
, (17)

in which
p =

number o f correct positive predictions
number o f positive predictions

(18)

and
r =

number o f correct positive predictions
number o f positive instances

. (19)

From Equation (17) we know that the F1-score can be large only when both r and p are
excellent. Therefore, F1-score is suitable for our purpose of classifying positive and negative
instances accurately. Too low p or too low r is unacceptable, and can be reflected by a small
value of F1-score.

To provide a more intuitive comparison of the performances among different ap-
proaches, we sort the labelling results [30]. The best-performing method ranks 1. If
multiple approaches have the same F1-score, we set their rankings as the average of their
corresponding rankings. For example, if ST-SCC and SCC-center-ed have same labelling
results on the ECG5000 dataset, their rankings are supposed to be 1 and 2, respectively;
therefore, we set their rankings as (1+ 2)/2 = 1.5. In addition, the standard deviation of the
ranking is used to illustrate the performance difference of the method on different datasets.

Sensors 2021, 21, 7414 12 of 17

4.1.3. Datasets

In this study, 10 time-series datasets collected from the UCR Archive are used to
evaluate the performance of all algorithms. The selected datasets vary highly in their
time-series length, classes, number of positive samples and application fields. Detailed
information about these widely used datasets can be found in Table 1.

The reader should note that the goal of our experiments is to perform the classification
only for U set provided by training data; thus, unlike traditional machine learning tasks,
our experiments do not involve any testing data. We aim to label the data in U as positive
or negative. However, some of the datasets have more than two classes. Therefore, we
select the data whose class label = 1 as positive class, and all others as negative classes.

Table 1. Datasets descriptions.

No. Dataset Size of Training Data Time-Series length Classes Number of Positive Samples Type

1 CBF 30 128 3 10 Simulated
2 Meat 60 448 3 20 Spectro
3 Coffee 28 286 2 14 Spectro
4 FaceAll 560 131 14 40 Image
5 ECG5000 500 140 5 292 ECG
6 Strawberry 370 235 2 132 Spectro
7 FiftyWords 450 270 50 52 Image
8 TwoleadECG 23 82 2 12 ECG
9 ItalyPowerDemand 67 24 2 34 Sensor

10 FreezerRegularTrain 150 301 2 75 Sensor

4.1.4. Implementation Details

We implemented all algorithms in MATLAB (version R2019b), and ran all the exper-
iments using Windows 10 enterprise with 2.30 GHz CPU (i7-9750H) and 16GB memory.
We set the size of initial PL set |PL| = 3 and the number of iterations in DBA I = 15. In
order to see the effects of the initial positive instances on the performance and eliminate the
randomness, for each dataset, we repeat the experiments 20 times with various randomly
selected initial positive instances.

In our implementation of DBA, the initial average sequence is selected randomly. We
find that this will affect the F1 value. To eliminate the impact of randomness, we run each
of the 20 sets of randomly selected initial positive instances 20 times and calculate the
mean and standard deviation of these 400 F1 values. For other algorithms, since there is no
uncertainty like DBA does, we only calculated the mean and standard deviation of the F1
values of 20 sets of initial positive instances for each data set.

As for C-MDL, we set the predefined threshold to 5 according to [9] and the cardinality
used in the MDL principle to 16.

4.2. F1-Score

This part presents the performance of labelling the U set. Table 2 reports the mean
and standard deviation of F1 values of each algorithm on different datasets. To compare
the advantages and disadvantages of different algorithms more intuitively, we rank the
mean of the F1 value among different algorithms on the same dataset, as Table 3 illustrates.
SCC-center-dtw attains the highest average ranking in the labelling the U set tasks. It
proves that SCC-center-dtw performs well overall. Under the smallest standard deviation
of ranking, the ranking of SCC-center-dtw is quite stable compared with other methods. It
demonstrates that SCC-center-dtw is more effective and robust on different datasets than
other methods.

In Table 3, it is apparent that SCC-center-dtw performs better than ST-SCC except in the
FiftyWords dataset. It demonstrates that our ST-average idea can improve the performance
of original ST-SCC method. From Table 2, we can find that SCC-center-dtw and ST-SCC
perform similarly on the FiftyWords dataset. The mean F1 value of ST-SCC is 0.780, while

Sensors 2021, 21, 7414 13 of 17

it is 0.759 of SCC-center-dtw. Table 3 also shows that there are eight datasets on which
SCC-center-dtw outperforms SCC-center-ed, which illustrates the necessity of using the DTW
distance to average time-series. Besides, we can find that SCC-center-dtw performs better
than C-MDL except in the ItalyPowerDemand and ECG5000 dataset. The mean F1 value of
SCC-center-dtw and C-MDL on the ECG5000 dataset are 0.758 and 0.796 separately, and they
are 0.603 and 0.684 when these two algorithms run on the ItalyPowerDemand dataset. Their
labelling performance on these datasets is similar.

Note that, in some rare cases, the SCC-center-dtw and SCC-center-ed have the similar
mean F1 value. For example, in ECG5000 dataset, the average F1 value of SCC-center-dtw
is 0.758 while is 0.891 for SCC-center-ed. It is because SCC-center-dtw and SCC-center-ed
can obtain similar resultant average sequence. Figure 7a presents two average sequences
calculated by Euclidean Distance and DTW distance in ECG5000 dataset, respectively. It is
obvious that these two sequences have the similar shape. In such case, there is no significant
different between Euclidean Distance and DTW in averaging time-series. Therefore, SCC-
center-dtw and SCC-center-ed have the similar performance in ECG5000. However, in
FiftyWords dataset, averaged sequences shown in Figure 7b are totally different. Figure 7c
shows the actual time-series in FiftyWords dataset. Obviously, this actual time-series has a
similar shape to the average sequence calculated by DTW. Therefore, in FiftyWords dataset,
SCC-center-dtw performs better than SCC-center-ed.

Table 2. The mean(µ) and standard deviation(σ) of F1 value of four methods on various datasets.

Dataset ST-SCC
µ ± σ

SCC-Center-dtw
µ ± σ

SCC-Center-ed
µ ± σ

C-MDL
µ ± σ

CBF 0.669 ± 0.123 0.805 ± 0.101 0.771 ± 0.103 0.488 ± 0.175
Meat 0.550 ± 0.096 0.561 ± 0.083 0.580 ± 0.066 0.460 ± 0

Coffee 0.608 ± 0.200 0.814 ± 0.145 0.735 ± 0.210 0.611 ± 0
FaceAll 0.508 ± 0.144 0.552 ± 0.201 0.353 ± 0.073 0.469 ± 0.192

ECG5000 0.551 ± 0.087 0.758 ± 0.234 0.891 ± 0.015 0.796 ± 0.150
Strawberry 0.547 ± 0.088 0.615 ± 0.118 0.546 ± 0.129 0.520 ± 0
FiftyWords 0.780 ± 0.140 0.759 ± 0.135 0.063 ± 0.020 0.409 ± 0.206

TwoleadECG 0.563 ± 0.169 0.657 ± 0.174 0.464 ± 0.176 0.628 ± 0.076
ItalyPowerDemand 0.431 ± 0.147 0.603 ± 0.183 0.469 ± 0.218 0.684 ± 0.039
FreezerRegularTrain 0.285 ± 0.107 0.708 ± 0.046 0.702 ± 0.097 0.591 ± 0.131

Table 3. Ranking of different methods for the labelling performance for U set.

Dataset ST-SCC SCC-Center-dtw SCC-Center-ed C-MDL

CBF 3 1 2 4
Meat 3 2 1 4

Coffee 4 1 2 3
FaceAll 2 1 4 3

ECG5000 4 3 1 2
Strawberry 2 1 3 4
FiftyWords 1 2 4 3

TwoleadECG 3 1 4 2
ItalyPowerDemand 4 2 3 1
FreezerRegularTrain 4 1 2 3

Average ranking 3.0 ± 1.0 1.5 ± 0.67 2.6 ± 1.11 2.9 ± 0.94

Sensors 2021, 21, 7414 14 of 17

-5

-4

-3

-2

-1

0

1

2

3

1 11 21 31 41 51 61 71 81 91 101 111 121 131

-2

-1

0

1

2

3

4

5

1 21 41 61 81 101 121 141 161 181 201 221 241 261

-2

-1

0

1

2

3

4

5

1 21 41 61 81 101 121 141 161 181 201 221 241 261

(a)

(b)

(c)

Euclidean Distance Dynamic Time Warping Actual Time Series

Figure 7. Average sequences obtained by Euclidean Distance and DTW distance in ECG5000 dataset
(a) and FiftyWords dataset (b). (c) The actual time-series in the FiftyWords dataset.

4.3. Running Time

Efficiency is another criteria for assessing algorithms. In this subsection, we evaluate
the running time of four approaches. The average time required to label each unlabeled
time-series is recorded and the results can be found in Figure 8. The results show that SCC-
center-dtw is significantly more time-consuming than ST-SCC, SCC-center-ed and C-MDL on
all datasets as we expected. We note that ST-SCC is 9.3 to 15 faster than SCC-center-dtw.
In our experiments, the number of iterations in DBA I = 15. Therefore, according to
Equation (16), theoretically, the speedup obtained by ST-SCC is around 16. The results
illustrated in Figure 8 generally confirm the time complexity analysis in Section 3.5.

Overall, compared to ST-SCC, SCC-center-ed and C-MDL, the SCC-center-dtw achieves
better results with more running time. For some applications which are sensitive to the
computational time, there exists some techniques to speed up SCC-center-dtw. First, the
lower bound techniques [31] and the PrunedDTW [32] can be used to accelerate DTW
computation. Second, the Sakoe-Chiba Band [33] or Itakura Parallelogram [34] can be
utilized to speed up DBA procedure.

Sensors 2021, 21, 7414 15 of 17

0.001

0.01

0.1

1

10

100

CBF Meat Coffee FaceAll ECG5000 Strawberry FiftyWords TwoLeadECG ItalyPowerDemand FreezerRegularTrain

Ti
m

e
 in

 se
co

nd
. (

lo
g

sc
al

e)

ST-SCC SCC-center-dtw SCC-center-ed C-MDL

Figure 8. The efficiency of each method on different datasets. The ST-SCC, SCC-center-ed and C-MDL have similar
performance. However, SCC-center-dtw is significantly more time-consuming than them.

5. Conclusions and Future Work

In this paper, we propose the ST-average method to solve the PUTSC problem. Unlike
traditional ST-based method, our proposal utilizes the average sequence of the PL set to
decide which unlabeled time-series should be labeled and added into PL set. The average
sequence is calculated by DBA technique, and we explain in detail the necessity of using
DBA. We conduct extensive experiments on public datasets to demonstrate the efficiency
and effectiveness of the proposed method. Experimental results show that our proposal
achieves better results. The theoretical analysis and actual running time show that our
method is slower than related approaches. We acknowledge this weakness and provide
some feasible solutions.

It is worth noting that ST-average can possibly be combined with many similarity
measures and stopping criteria used in classic ST-based method to provide even better
results. In this paper, the SCC-center-dtw algorithm which utilizes DTW distance and SCC
stopping criterion is presented. It is an interesting topic for future work to identify the
best combination, and we might be able to use active learning technique to select the best
combination, as literature [5] did. Another promising direction is examining another way
to decide which unlabeled time-series should be labeled. For example, the time-series x
which has the smallest sum of DTW distance from all instances in the PL can be labeled
and added into PL set. It will be interesting to know what kind of selection method is the
most effective.

Author Contributions: Conceptualization, J.L. and T.Z.; methodology, J.L.; software, H.Z.; valida-
tion, H.Z.; formal analysis, H.Z.; investigation, H.Z. and J.L.; writing—original draft preparation, H.Z.;
writing—review and editing, J.L. and Y.D.; visualization, H.Z.; supervision, Y.D. and D.X.; project
administration, Y.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
(No. 2019YFC1520905) ; Zhejiang Provincial Cultural Relics Protection Science and Technology
Project (No. 2020010, No.2017007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: UCR datasets: https://www.cs.ucr.edu/~eamonn/time_series_data_
2018/.

Acknowledgments: We would like to acknowledge the Key Scientific Research Base for Digital
Conservation of Cave Temples (Zhejiang University), State Administration for Cultural Heritage,
and Professor Eamonn Keogh and his students for their great contributions to the UCR datasets.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Sensors 2021, 21, 7414 16 of 17

References
1. Chen, L.J.; Ho, Y.H.; Hsieh, H.H.; Huang, S.T.; Lee, H.C.; Mahajan, S. ADF: An anomaly detection framework for large-scale PM2.

5 sensing systems. IEEE Internet Things J. 2017, 5, 559–570.
2. Norgaard, S.; Saeedi, R.; Gebremedhin, A.H. Multi-Sensor Time-Series Classification for Activity Tracking Under Variable Length.

IEEE Sens. J. 2019, 20, 2701–2709.
3. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans.

Biomed. Eng. 2015, 63, 664–675.
4. Chen, W.; Shi, K. A deep learning framework for time series classification using Relative Position Matrix and Convolutional

Neural Network. Neurocomputing 2019, 359, 384–394.
5. Liang, S.; Zhang, Y.; Ma, J. Active Model Selection for Positive Unlabeled Time Series Classification. In Proceedings of the 2020

IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 361–372.
6. Nguyen, M.N.; Li, X.L.; Ng, S.K. Positive unlabeled learning for time series classification. In Proceedings of the Twenty-Second

International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.
7. Wei, L.; Keogh, E. Semi-supervised time series classification. In Proceedings of the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 748–753.
8. Ratanamahatana, C.A.; Wanichsan, D. Stopping criterion selection for efficient semi-supervised time series classification. In

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing; Springer: Berlin/Heidelberg, Germany,
2008; pp. 1–14.

9. Vinh, V.T.; Anh, D.T. Constraint-based MDL principle for semi-supervised classification of time series. In Proceedings of the 2015
Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh, Vietnam, 8–10 October 2015; pp.
43–48.

10. Begum, N.; Hu, B.; Rakthanmanon, T.; Keogh, E. Towards a minimum description length based stopping criterion for semi-
supervised time series classification. In Proceedings of the 2013 IEEE 14th International Conference on Information Reuse &
Integration (IRI), San Francisco, CA, USA, 14–16 August 2013; pp. 333–340.

11. Vinh, V.T.; Anh, D.T. Two novel techniques to improve mdl-based semi-supervised classification of time series. In Transactions on
Computational Collective Intelligence XXV; Springer: Berlin/Heidelberg, Germany, 2016; pp. 127–147.

12. González, M.; Bergmeir, C.; Triguero, I.; Rodríguez, Y.; Benítez, J.M. On the stopping criteria for k-nearest neighbor in positive
unlabeled time series classification problems. Inf. Sci. 2016, 328, 42–59.

13. Chen, Y.; Hu, B.; Keogh, E.; Batista, G.E. DTW-D: Time series semi-supervised learning from a single example. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–13 August
2013; pp. 383–391.

14. de Carvalho Pagliosa, L.; de Mello, R.F. Semi-supervised time series classification on positive and unlabeled problems using
cross-recurrence quantification analysis. Pattern Recognit. 2018, 80, 53–63.

15. Petitjean, F.; Forestier, G.; Webb, G.I.; Nicholson, A.E.; Chen, Y.; Keogh, E. Faster and more accurate classification of time series by
exploiting a novel dynamic time warping averaging algorithm. Knowl. Inf. Syst. 2016, 47, 1–26.

16. Dau, H.A.; Keogh, E.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Hu, B.; Begum, N.; Bagnall, A.; et al.
The UCR Time Series Classification Archive. 2018. Available online: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
(accessed on 4 November 2021).

17. Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series; KDD workshop: Seattle, WA, USA, 1994;
Volume 10, pp. 359–370.

18. Petitjean, F.; Ketterlin, A.; Gançarski, P. A global averaging method for dynamic time warping, with applications to clustering.
Pattern Recognit. 2011, 44, 678–693.

19. Zhu, X.J. Semi-Supervised Learning Literature Survey; Technical Report; University of Wisconsin-Madison Department of Computer
Sciences: Madison, WI, USA, 2005.

20. Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130.
21. Nguyen, M.N.; Li, X.L.; Ng, S.K. Ensemble based positive unlabeled learning for time series classification. In International

Conference on Database Systems for Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2012, pp. 243–257.
22. Niennattrakul, V.; Srisai, D.; Ratanamahatana, C.A. Shape-based template matching for time series data. Knowl.-Based Syst. 2012,

26, 1–8.
23. Morel, M.; Achard, C.; Kulpa, R.; Dubuisson, S. Time-series averaging using constrained dynamic time warping with tolerance.

Pattern Recognit. 2018, 74, 77–89.
24. Liu, Y.T.; Zhang, Y.A.; Zeng, M. Adaptive global time sequence averaging method using dynamic time warping. IEEE Trans.

Signal Process. 2019, 67, 2129–2142.
25. Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, J.; Keogh, E. Searching and mining

trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012, pp. 262–270.

26. Keogh, E.J.; Pazzani, M.J. Derivative dynamic time warping. In Proceedings of the 2001 SIAM International Conference on Data
Mining, Chicago, IL, USA, 5–7 April 2001; pp. 1–11.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Sensors 2021, 21, 7414 17 of 17

27. Candan, K.S.; Rossini, R.; Wang, X.; Sapino, M.L. sDTW: Computing DTW distances using locally relevant constraints based on
salient feature alignments. Proc. VLDB Endow. 2012, 5, 1519–1530.

28. Niennattrakul, V.; Ratanamahatana, C.A. On clustering multimedia time series data using k-means and dynamic time warping.
In Proceedings of the 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE’07), Seoul, Korea, 26–28
April 2007; pp. 733–738.

29. Leon-Alcaide, P.; Rodriguez-Benitez, L.; Castillo-Herrera, E.; Moreno-Garcia, J.; Jimenez-Linares, L. An evolutionary approach for
efficient prototyping of large time series datasets. Inf. Sci. 2020, 511, 74–93.

30. Zhang, M.; Pi, D. A new time series representation model and corresponding similarity measure for fast and accurate similarity
detection. IEEE Access 2017, 5, 24503–24519.

31. Tan, C.W.; Petitjean, F.; Webb, G.I. Elastic bands across the path: A new framework and method to lower bound DTW. In
Proceedings of the 2019 SIAM International Conference on Data Mining, Calgary, AB, Canada, 2–4 May 2019; pp. 522–530.

32. Silva, D.F.; Batista, G.E. Speeding up all-pairwise dynamic time warping matrix calculation. In Proceedings of the 2016 SIAM
International Conference on Data Mining, Miami, FL, USA, 5–7 May 2016; pp. 837–845.

33. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Process. 1978, 26, 43–49.

34. Itakura, F. Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 1975,
23, 67–72.

	Introduction
	Background and Related Work
	Positive Unlabeled Time Series Classification
	Self-Training Technique for the PUTSC
	Related Work for the Self-Training

	Proposed Method
	Motivation
	Dynamic Time Warping
	Time-Series Averaging
	The ST-Average Method
	Time Complexity Analysis

	Experimental Evaluation
	Experimental Setup
	Algorithms
	The Performance Metric
	Datasets
	Implementation Details

	F1-Score
	Running Time

	Conclusions and Future Work
	References

