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Abstract: Microwave tomography (MWT) based control is a novel idea in industrial heating systems
for drying polymer foam. In this work, an X-band MWT module is designed and developed using a
fixed antenna array configuration and integrated with the HEPHAISTOS industrial heating system.
A decomposition of the time-reversal operator (DORT) algorithm with a proper Green’s function of
multilayered media is utilized to localize the moisture location. The derived Green’s function can be
applied to the media with low or high contrast layers. It is shown that the time-reversal imaging (TRI)
with the proposed Green’s function can be applied to the multilayered media with a moderately rough
surface. Moreover, a single frequency TRI is proposed to decrease the measurement time. Numerical
results for different moisture scenarios are presented to demonstrate the efficacy of the proposed
method. The developed method is then tested on the experimental data for different moisture
scenarios from our developed MWT experimental prototype. Image reconstruction results show
promising capabilities of the TRI algorithm in estimating the moisture location in the polymer foam.

Keywords: microwave drying; microwave tomography; time-reversal imaging; dyadic Green’s
function; multilayered media

1. Introduction

Drying by microwaves has been widely used, especially in industry, for different
applications and purposes. Microwaves can penetrate into the material and provide vol-
umetric heating in contrast to the conventional drying procedure. In microwave drying
applications, providing sufficient uniformity of heating distribution is an imperative task
especially in industrial-scale production. Not meeting this condition can lead to hot-spot
formation and thermal runaway [1]. These can decrease the efficiency of the drying system,
threaten safety issues, and can lead to low-quality processing. In addition to the mentioned
items, reducing the drying time and consumed energy and process intensification are also
worthwhile for industry. It is well known that microwave heating is a nonlinear process
which means that there is an increase in the dielectric loss factor with increasing temper-
ature as the drying progresses leads to a rapid rise in the rate of change of temperature,
causing a thermal runaway effect. This necessitates online intelligent control of the input
power to prevent overheating. Thus, in most industrial heating systems temperature is
used as the feedback parameter for online control [2]. Temperature output can be used to
(i) switch the input power off at a set temperature, (ii) maintain the temperature at a set
level for a specific period, or (iii) achieve a constant rate of heating. An excellent overview
on the control strategies for the industrial microwave oven is provided in [3,4]. In [5], for
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a continuous oven type for batch processing, intelligent temperature control was demon-
strated by controlling the power of distributed microwave power sources (magnetrons).
However, for a nonuniform moisture distribution case in the samples, a temperature con-
trolled process alone is not sufficient as the electromagnetic heating might cause some part
of the samples to be over-dried and with progress in drying, catastrophic conditions can
occur. Therefore, for precise control of the distributed magnetrons in this case [6], control
requires in situ and noninvasive measurement of the unknown distribution of moisture
inside the samples.

The microwave drying system which we are currently working with is named HEP-
HAISTOS (shown in Figure 1) from Weiss Technik Gmbh, Reiskirchen, Germany. This
industrial microwave applicator has a patented hexagonal [7] cross-section design deliver-
ing high electromagnetic field homogeneity during the drying process at an operational
frequency of 2.45 GHz. A conveyor belt, supported on a metal plate, is installed that
enables a continuous drying process with a speed of 20 cm/min. Material processing, for
instance, thermal curing of fiber composites, and drying of polymer foams (penetration
depth is between about 2 m and 12 cm for moisture ranging from 0% to 100%), are some
main target applications. For temperature controlled processes, infrared (IR) camera and
fiber optic sensors are integrated with the HEPHAISTOS. The IR camera is limited to
providing surface temperature and fiber optic sensors are not applicable in a running belt
process. A microwave tomography (MWT) system is designed and integrated with the
HEPHAISTOS to recover the volumetric information of the moisture location and its level
during the drying process of the polymer foam. The power level and pulse duration of the
magnetrons will be adjusted based on the input information from MWT. Some applications
of the MWT in industry for inspection, monitoring purposes, quality control of the goods,
and safety issues are listed in [8–10].

5
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4
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Figure 1. A side view of the HEPHAISTOS microwave oven system. Main modules of the oven are represented by number
tags 1, 2, 3, 4, 5. Tag 1 and Tag 5 represent the entrance of the wet foam and exit doors for the dry foam on the conveyor belt,
respectively. Tags 2, 3, 4 indicate the three modular heating systems which are built into the hexagonal cavity with high
power microwave heating sources and control system block.

Designing and integrating an MWT system into an industrial microwave drying
system is a challenging task. First, as mentioned earlier, the operational frequency of
the HEPHAISTOS oven is 2.45 GHz, and it delivers a total of 36 kW EM power. Hence,
the unwanted EM leakage power coming from the entrance aperture can take down the
MWT system and it has to be blocked. In this regard, many types of antennas which are
already employed for microwave imaging purposes cannot be used in this application, like
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corrugated tapered slot antennas [11], ultra wideband (UWB) tapered slot antennas [12],
cavity backed aperture stacked patch antennas [13], and Vivaldi antennas [14], etc. Here,
the X-band frequency range for the MWT is chosen, and WR-90 open-waveguide [15,16] is
employed to act simultaneously as an antenna and microwave high pass filter. Being in the
cut-off region of the WR90 waveguide for the X-band, the EM field decays with e−αz (z is
the direction of propagating) at 2.45 GHz where α is the attenuation constant, providing
more than 100 dB isolation along with the waveguide antenna. Second, fast data acquisition
is also essential to enable real-time monitoring and for process control. Hence, a limited
number of antennas are chosen and arranged in a limited-aspect configuration. Note that
here the requirement for matching media is not necessary due to the low contrast of the
foam; even if any matching media allow improvement, their placement above/surrounding
the foam in a continuous process will not be feasible. Third, for continuous or batch
processing, a metal plate is installed in a conveyor belt system that should be taken into
account in the forward model/physical formulation. Otherwise, image reconstruction
may be erroneous. For image reconstruction which can support little data from a small
number of antennas, neural networks [17–19] have shown promising capabilities that
may estimate the moisture in real time (<1 s) [20,21] in comparison to an iteration based
imaging algorithm. However, their performance can be plagued with changes in foam
type, dimensions, and electrical properties; in that case the network requires retraining.

In this work, we use qualitative time-reversal imaging (TRI) for detecting the moisture
location inside the polymer foam. Time-reversal imaging has been applied in numerous
practical applications of ultrasonic [22–25] and electromagnetics. It is also used in medical
applications such as diagnosis and treatment of breast cancer [26], and to keep track of
kidney stones for lithotripsy processes [27]. Further, this method is employed in nonde-
structive testing, such as detection of defects in pipelines [28] and solids [29], and retrieving
the permittivity of a hidden dielectric target in a cylindrical multilayered structure [30].
The high-resolution characteristic of TR facilitates the detection of the targets even under
strong clutter conditions [31,32]. To apply the TRI, an exact or approximate dyadic Green’s
function (DGF) of the medium is required [33]. In [34–39], only the transmission part of
Green’s function was considered to locate the target in the multilayered media. However, it
is not sufficient to take into account the presence of metal plates or reflecting surfaces below
the foam. Therefore, we construct an approximate expression of the DGF by incorporating
both the transmission and reflection parts of the multilayered media. The closed-form
representation of the DGF is obtained by applying stationary phase approximation (SPA).
Here, we would like to emphasise that in diffraction tomography based algorithms, e.g.,
UDT [38], MUDT [39], incorporating the reflected part will render the integral undefined as
the closed form of the object function cannot be evaluated by applying SPA. Furthermore, a
new single-frequency (SF) TRI-DORT is introduced based on the behavior of eigenvalues of
the time-reversal operator (TRO) to foster high-speed data acquisition. Performance of the
TRI and SF-TRI algorithms is tested with the numerical data considering the static condition
case under scenarios without metal plate backing, with metal plate backing, and for non-
ideal conditions where the top surface of the foam is considered rough. Finally, the outlined
methods are validated on the MWT data from our developed experimental prototype.

The paper is organized as follows: Section 2 provides an overview of the formulation
for the TRI-DORT. Furthermore, an approximate expression for the DGF of the multilayered
media is obtained using the SPA method. In Section 3, various numerical scenarios are
investigated. Experimental results are investigated in Section 4, and finally Section 5 shows
the discussion and concluding remarks.

2. Problem Formulation

The imaging setup for a fixed cross-section (i.e., y× z) is shown in Figure 2 where
layer 0 is the free space, layer 1 represents the polymer foam with thickness ∆d1, and layer 2
is either free space or a perfect electric conductor (PEC). The multistatic antenna array with
N elements is fixed and the distance of the antennas to the top of the polymer foam is
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∆d0, and the center to center distance between two adjacent antennas is d. In free space,
the relative dielectric constant is denoted as ε0 whereas the relative dielectric constants of
layer 1 and layer 2 are set to εr,1 and εr,2, respectively. In the next section, the multistatic
data matrix (MDM) for the electric field will be built and an asymptotic expression for the
Green’s function of the multilayer media will be obtained and used in TRI.

z = d0

z = d1

z = d2

∆d0

∆d1

ε0

εr,1

εr,2

y

z

x

Ω1

(1) (2) (3) (N − 1) (N)

Figure 2. Multilayer media with the wet spot(s) in the second layer illuminated by the open waveg-
uide antennas.

2.1. Scattering Model and Time-Reversal Imaging

Consider an active array of N transceivers from which an N × N MDM is con-
structed. Each element of the MDM matrix represents the received scattered field by
the lth (l = 1, 2, . . . , N) antenna when the sth (s = 1, 2, . . . , N) antenna is in the transmitting
mode due to the inhomogeneities in the region of interest (ROI) as follows [40–42]

~E(1)
sct(~ρrl ,~ρts ) = iωµ0

∫
Ω1

¯̄G(01)
eb (~ρrl ,~ρ

′) · O(~ρ′)~E(1)
tot(~ρ

′)d~ρ′. (1)

Here, ~E(1)
tot denotes the total electric field in layer 1 and ~E(1)

sct is the scattered field received
by the lth antenna. O(ρ′) = −iωε0(εΩ1 − εr,1) is the object function where εΩ1 denotes the
target relative dielectric constants in the domain Ω1, and µ0 denotes free-space permeability.
Here, time convention of e−iωt is assumed and suppressed where ω is the angular frequency.
In (1), the vectors~ρr and~ρt represent source and observation points while~ρ′ = (y′, z′) is the
location of the pixel point in the ROI. ¯̄G(01)

eb is the background (multilayer media without
any inhomogeneities) dyadic Green’s function (DGF). The superscript (01) denotes that the
source point is located in layer 1 and the observation point is in layer 0. It should be noted
that the analytical equations are written for the electric fields, however, in a real scenarios,
the S-parameters will be measured. Hence, a de-embedding procedure will be applied
later to relate the measured S-parameters to the electric field. The details of the employed
procedure are represented in [36,37,43].

Under the assumption of excitation of the medium by a point source and using
the Born approximation [41,44], the total electric field in layer 1 can be replaced by the
background Green’s function of that layer. Consequently, a multistatic model for the
received scattered field that describes each element of the MDM matrix can be written as
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E(1)
sct(~ρrl ,~ρts ) = iωµ0

∫
Ω1

Gxx
eb (~ρrl ,~ρ

′)O(~ρ′)Gxx
eb (~ρ′,~ρts )d~ρ

′. (2)

In deriving (2) from (1) the symmetry property [42] of the DGF is used and, fur-
thermore, it is assumed that both transmitting and receiving antennas are x-polarized
and equivalent currents are predominantly x-polarized, so the xx term of the DGF is em-
ployed [34]. The MDM can be expressed in the compact form in the angular frequency
domain ω as

K(ω) = iωµ0

∫
Ω1

O(~ρ′)gbρl
(~ρ′, ω)g

>
bρs

(~ρ′, ω)d~ρ′, (3)

where gbρ = [Gxx
eb (ρ, ρ1), Gxx

eb (ρ, ρ2), ..., Gxx
eb (ρ, ρN)]

>
N×1 is the frequency-domain steering vec-

tor of the xx components of the background DGF and (·)> is the transpose operator. The
decomposition of the time-reversal operator (DORT) can be applied to selectively focus
on the inhomogeneities in the medium using singular value decomposition (SVD) of the
MDM matrix [32]. The SVD of the matrix K(ω) is expressed in terms of the eigenval-
ues via the equation K(ω) = U(ω)Λ(ω)V†(ω), where Λ

Ä
diag(Λ) = [λ1, λ2, . . . , λN]

ä
is

a real diagonal matrix consisting of eigenvalues, while U
Ä

ul(ω), l = 1, 2, . . . , N
ä

and VÄ
vl(ω), l = 1, 2, . . . , N

ä
are the left and right matrices consisting of normalized eigenvec-

tors [32] of time-reversal operator (TRO) formed as follows:

λl(ω) = σl(ω) ‖ gbρl
(~ρ) ‖2, (4a)

ul(ω) =
gbρl

(~ρ)
‖ gbρl

(~ρ) ‖ , (4b)

vl(ω) =
g∗bρl

(~ρ)

‖ gbρl
(~ρ) ‖ . (4c)

The number of nonzero significant eigenvalues (EVs) denotes the number of dominant
inhomogeneities present in the background medium and the remaining eigenvalues form
the noise subspace. For focusing on the pth scatterer, we employ ep(ω) = λp(ω)up(ω) as a
new excitation [32] for the transmitting antennas and calculate the propagated fields using
the xx component of the background DGF. Here, λp is the pth eigenvalue and up is the pth
left singular vector. As a result, the location of the pth scatterer is synthetically obtained by
the following imaging function

Dp(ρ) =
∫

ω
eT

p (ω)gbρ(ρ, ω)dω, (5)

where ρ is any arbitrary point in the ROI. In the next section, we obtain Green’s function of
the multilayered media for image reconstruction using TRI-DORT.

2.2. Dyadic Green Function of Multilayered Media

Here, we obtain an asymptotic expression for the xx term of the DGF of the multilay-
ered media. Previously, an asymptotic expression for the half-space was derived in [34] and
used in TRI. However, this expression cannot be employed in the multilayered media with
the high-contrast layer since the reflected wave will no longer be negligible, for example,
with a PEC plate at the end of the layer. To address this problem, we obtain a more general
closed-form expression for the Green’s function of the layered media. As mentioned earlier,
we assume that an x-polarized line source residing in layer 0 is illuminating the media. In
this case, the spectral representations of the Green’s function in the source layer and the
first layer are given by [40]
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¯̄G(00)(~ρr,~ρt) =
∫ +∞

−∞

1
kz0

î
TTM

0 (ky)e−ikz0(z− d0)

+ RTM
0 (ky)e+ikz0(z− d0)ó · e−ikzn(z− d0)dky z > z′

(6)

G(n0)
eb (~ρ,~ρt) =

1
π

∫ +∞

−∞

1
kz0

î
TTM

n (ky)e−ikzn(z− d0) (7)

+ RTM
n (ky)e+ikzn(z− d0)ó · e−iky(y− yt)dky.

The details of the calculations are provided in Appendix A.
In Figure 3, we have compared the electric field response at 8 GHz and 12 GHz from

COMSOL multiphysics simulation software based on the finite element method (FEM) and
our analytical formulations computed in MATLAB R2018b. For the COMSOL simulation,
the imaging domain consists of foam with a domain size y ∈ [−25, 25], z ∈ [−4, 4] with
relative dielectric constant εr,1 = 1.16− 0.01i and placed in the background domain Ω
consisting of air with ε0 = 1− 0i. Open regions are truncated by using a perfectly matched
layer (PML) of a circular shape with an inner radius and outer radius of 80 cm and 90 cm,
respectively. The imaging medium is excited by a line current with an amplitude of 1 A
and placed at (0 cm, 16 cm). The following parameters are set to define the triangular mesh
in the model: maximum element size = 0.5 cm, minimum element size: 3.6× 10−2 cm,
maximum element growth rate = 1.1, curvature factor = 0.2. To simulate the electric field
response, the RF module is employed with electromagnetic wave (emw) interface in the
frequency domain. It is clear that the results of the FEM and numerical integration are in
excellent agreement. Moreover, to better represent the differences between the analytical
model and the FEM, the normalized root mean square (NRMS) error is calculated and the
result is shown in Table 1.
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Figure 3. The real and imaginary part of the total electric field inside three-layer media with dimensions 30 cm× 8 cm
and εr,1 = 1.16 for the dielectric layer at 8 GHz and 12 GHz. The observation point is in the middle of the first layer, i.e.,
z = 0 cm and −25 cm ≤ y ≤ 25 cm. Layer 2 is free space.

Table 1. NRMS error values for compared analytical model and FEM in Figure 3.

Re(Ex), 8 GHz Im(Ex), 8 GHz Re(Ex), 12 GHz Im(Ex), 12 GHz

NRMS % 1.76 2.06 2.11 2.74
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3. TRI-DORT Simulation Results

In this section, TRI-DORT simulation results are demonstrated using the derived
asymptotic Green’s function for different scenarios. To generate the synthetic data, the
3-D free-space MWT setup shown in Figure 4 is modeled in the commercial software CST
Studio Suite. In the setup, foam of size Ωfoam = [−25, 25]× [−15, 15]× [−4, 4] cm is
chosen. Seven WR90 open-ended waveguide antennas are placed with a center to center
separation distance of 5 cm and located on top of the foam at a distance of t0 = 16 cm. The
radiation condition is satisfied by truncating the free space using a perfectly matched layer.
The bottom of the foam is considered free space. However, to represent the metal plate
below the conveyor belt, it is replaced by a perfect electric conductor (PEC) plate which
resembles a high-contrast scenario. The time-domain solver of CST is chosen to simulate the
EM fields. The 7× 7 MDM matrix is extracted for the bandwidth of 4 GHz with the center
frequency at 10 GHz (X-band range) and for Nf = 1001 frequency points. It should be
noted that the response of the antennas is removed from the measured S-parameter using a
calibration proposed in [36,37]. In short, for the de-embedding process, two antennas are
located in front of each other with a distance of R (here R = 20 cm), and S21 is stored. Then,
using the following equation, the scattered electric fields from simulation or experiment
scenarios are calculated

~Esct = iωµ0
Slstot − Sls f ree

S21

e−ikR

4πR
, (8)

where Slstot and Sls f ree
are the scattered field with and without the target in the medium.

In this study, the dielectric constant of the polymer foam is assumed to be known and is
εr,1 = 1.16− 0.01i. Wet spots are given a spherical shape with the defined dielectric con-
stant corresponding to the different moisture levels. The correlation between the dielectric
constant and the wet-basis moisture levels is given in Table 2 [45]. The cavity-perturbation
method as well as transmission line technique at 2.45 GHz are used for the measurement.
It should be mentioned that the dielectric constant of the polymer foam is assumed to
also be valid and constant in the X-band frequency range. For this characterization, the
polymer foam density is 28 kg

m3 . The TRI algorithm is implemented in MATLAB R2018b
and its built-in SVD function is utilized to compute the eigenvalues of the MDM.

Figure 4. 3-D MWT setup used in this study to generate synthetic measurement data.

Table 2. Permittivity of the foam with different moisture contents M on wet basis.

M% 0 30 36

εr 1.16− 0.01i 1.69− 0.1i 1.81− 0.16i
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3.1. Low-Contrast Media

In the first scenario, the metal plate below the foam is not considered and foam is
placed in infinite half-space. We consider one wet spot in the polymer foam with a radius
of 1.5 cm located in the center of the polymer foam, i.e., (0 cm, 0 cm) in the yz plane with a
30% moisture level and surrounded by the dry part. Figure 5 (top) represents the behavior
of the first four eigenvalues. According to Figure 5 (top), we expect one dominant wet
spot in the polymer foam, and that the remaining eigenvalues construct the noise space
(background). Figure 5 (second row) shows the reconstructed image associated with the
first strong eigenvalue and employing the derived Green’s function. As can be seen, using
TRI-DORT, the image domain is decomposed into the wet spot location and dry parts.
Furthermore, reconstruction using nondominant (second and third) eigenvalues is also
provided. As can be seen from Figure 5 (third and fourth row) and as mentioned earlier,
these eigenvalues and associated eigenvectors represent the noise space.

8 10 12
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4th EV
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Figure 5. (Top) Magnitude of the first four eigenvalues versus the frequencies and (second row)
reconstruction of one wet spot moisture case with TRI-DORT where the true location is marked by
black dashed lines, (third row) reconstruction using third eigenvalue and its associated eigenvector,
(fourth row) reconstruction using fourth eigenvalue and its associated eigenvector.
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In the next scenario, two wet spots with a center to center distance of 10 cm and the
same moisture level are considered in the polymer foam. The operation frequency of the
HEPHAISTOS oven is 2.45 GHz, hence the range of the drying heating pattern is around
λ
2 ≈ 6 cm. Resolving wet spots in this range is critical for proper and effective power
conducting. By applying the SVD to the stored scattering matrix in different frequencies,
the eigenvalues can be plotted. Figure 6 (top) represents the behavior of the first four
eigenvalues. As can be seen, two dominant eigenvalues can be observed and the remained
eigenvalues belong to the null space. The corresponding TRI-DORT images associated
with the first and second eigenvalues are plotted in Figure 6 (second and third row). The
imaging domain is decomposed into the individual wet spots and the correct locations are
obtained and selectively focused.

8 10 12
f/GHz

0.0
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0.05

λ

1st EV

2nd EV

3rd EV

4th EV

−15 −7.5 0 7.5 15
y(cm)

−4

0

4

z(
cm

)

TRI

0.0

0.2

0.4

0.6

0.8

1.0
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)
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0.2

0.4

0.6

0.8

1.0

Figure 6. (Top) Magnitude of the first four eigenvalues versus the frequencies, (middle) reconstruc-
tion of the first wet spot moisture case with TRI using first dominant eigenvalue, and (bottom) recon-
struction of the second wet spot moisture case with TRI-DORT using second dominant eigenvalue.

3.2. High-Contrast Media

In this case, a metal plate (PEC) at the bottom of the polymer foam is considered, i.e.,
the third layer shown in Figure 2. Due to the introduction of the PEC, a high-contrast
dielectric constant variation between the different layers exists. In this scenario, the
reflected wave from the interface would not be negligible and should be considered in
the formulation. As mentioned earlier, Green’s function is composed of two parts that are
transmission and reflection. Since the contrast between the layers is no longer negligible,
both transmitted and reflected components of the EM field are considered in modeling of
Green’s function, i.e., G(10) = G(10)

T + G(10)
R . Figure 7 represents the comparison between

the analytical model of Green’s function and FEM. The figures are plotted in the same lines
as Figure 3. Moreover, to better represent the differences between the analytical model and
FEM, the NRMS error is calculated and the result is shown in Table 3.
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Figure 7. The real and imaginary part of the total electric field inside three-layer media with dimensions 30 cm× 8 cm and
εr,1 = 1.16 for the dielectric layer at 8 GHz and 12 GHz. Layer 2 is PEC.

Table 3. NRMS value for compared analytical model and FEM in Figure 7.

Re(Ex), 8 GHz Im(Ex), 8 GHz Re(Ex), 12 GHz Im(Ex), 12 GHz

NRMS % 2.42 1.89 1.94 2.15

We consider the presence of the two wet spots inside the foam with the same specifi-
cation as in the previous case. In addition, 3% Gaussian noise with zero mean is added
to the data in this case to perform a numerical experiment. First and second dominant
eigenvalues are employed to focus on the first and second targets, respectively. Reconstruc-
tion images with updated G(10) are depicted in Figure 8. The reconstructed images show
that the two wet spots are properly detected. Upon comparison of the TRI reconstruction
in Figure 6 (without PEC) and Figure 8 (with PEC), it can be seen that the presence of a
PEC plate may give a better reconstruction than that with no PEC layer. This is due to the
reflections from the PEC surface which increase the spatial resolution by providing more
views of the targets [46,47].
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Figure 8. Cont.
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Figure 8. (Top) Magnitude of the first four eigenvalues versus the frequencies, (second row) re-
construction of the first wet spot moisture case with TRI-DORT using first dominant eigenvalue
and (third row) reconstruction of the second wet spot moisture case with TRI-DORT using second
dominant eigenvalue when the layer 2 is a PEC plate, (fourth row) reconstruction using MUDT
imaging algorithm.

Furthermore, we have compared the TRI method with a multistatic uniform diffraction
tomography (MUDT) algorithm in which, as mentioned earlier, only the transmission part
is incorporated. Reconstruction with MUDT is shown in Figure 8 (fourth row) which
clearly depicts the erroneous target detection in this case.

3.3. Single Frequency TRI

In practical applications, fast data acquisition is a critical task. By decreasing the num-
ber of frequencies, the measurement time can be decreased. Single frequency TR multiple
signal classification (SF-TRI-MUSIC) is proposed in [34,48] to increase the resolution of
the reconstructed image after reconstructing using ultra-wideband (UWB) TRI-MUSIC.
Here, we propose an SF-TRI-DORT by observing the behavior of the eigenvalues. The
reconstructed image is formed using different orthogonal eigenvectors and corresponding
eigenvalues [49]. The orthogonality of eigenvectors in the frequency domain indicates
carrying independent information by each eigenvector. Hence, it provides a linear sum-
mation as represented in (9). In the SF-TRI, this linear summation is approximated with
one eigenvector and the associated eigenvalue, i.e., Dp,SF ≈ Dpδ(ω−ωSF). To choose this
frequency, we look at the dominant eigenvalues and compare them with those that belong
to the null space. Bigger differences mean the target domain is more distinguishable from
null space. The eigenvector associated with this eigenvalue (vp,SF) forms a new excitation
for calculating the Dp,SF. So, instead of conventional TRI-DORT, a single frequency in this
range is chosen for the image reconstruction

Dp,SF(ρ) = λSFvp,SFgbρ(ρ, ωSF) (9)

From Figure 5 (top), it can be seen that for the low frequencies the difference between
the dominant eigenvalue and those belonging to the null space is higher than at higher
frequencies. The differences of the 1st eigenvalue and 2nd eigenvalue at 4 different fre-
quencies are as follows: ∆ f8GHz × 103 = 6.7, ∆ f9GHz × 103 = 2.5, ∆ f10GHz × 103 = 2.0,
∆ f10GHz × 103 = 2.7, as shown in Table 4. So, we expect less shadow-images and higher
resolution at 8 GHz than at other frequencies. Figure 9 shows the reconstruction using
SF-TRI-DORT for one single target in the media in four different frequencies. As can be
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seen, the location of the wet spot is visible in the domain. However, the spatial resolution
was slightly decreased by using a single frequency approach.

Table 4. The difference between the first dominant eigenvalue and those belonging to the null space
at four different frequencies.

f (GHz) 8 9 10 11

∆λ× 103 6.6654 2.029 2.4659 2.694
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Figure 9. Reconstruction using SF-TRI-DORT at four frequencies.

It can be perceived from Figure 9, since the eigenvectors are orthogonal in different
frequencies, by decreasing the number of frequencies, less information from the media
under investigation is available, which leads to decrease in spatial resolution compared
to the multiple-frequencies reconstructed image. Also, the presence of multiple wet spots
can plague the performance of the TRI algorithm for which the best case strategy is to use
the multi-frequency TRI algorithm. To reduce the data acquisition time (DAQ) time for
measurements of multiple frequencies, a specific band in the X-band can also be targeted.
A pragmatic study in this direction is given in [50].

3.4. Moderately Rough Surface

Despite the previous scenarios, here we consider the foam with a moderately rough
surface. This scenario is undertaken considering pre-preparation drying process defects. In
order to investigate the performance of the TRI when the surface contains some roughness,
a polymer foam with a randomly rough surface on the top interface is considered and
modeled [51] as

z(y) =
M

∑
m=−M

m−βGm cos
Ä

2πmy + Um
ä

. (10)

Here, m is the integer number representing the spatial frequency and β denotes
the spectral exponent, Gm is sampled from the Gaussian distribution as Gm ∼ N (µ, σ)
with mean µ and standard deviation σ, and Um ∼ U (0, 2π) is sampled from the uniform
distribution as Um ∼ U (0, 2π). Under the assumption of a moderately rough surface, the
Green’s function can be replaced by the planar surface one. So, the asymptotic fields inside
the polymer foam with the rough surface for the first interface are estimated using the SPA
under the σ = 0 and β = 0.

To investigate the performance of the TRI, a wet spot with 30% moisture (1.69− 0.1i)
with the radius 1 cm at the position (10 cm, 0 cm) is considered inside the foam and a
moderately rough surface with the following parameters: µ = 0, σ = 0.2, and β = 0.8.
Figure 10 shows the TRI constructed image. The location of the wet spot is visible but,
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compared to the polymer foam with the smooth surface, the shadow images are more
prominent. It can be seen that, when increasing the roughness of the top interface, the
electromagnetic fields inside the layer cannot be fully estimated by the current asymptotic
expression (since the Green’s function is analytically calculated for the smooth multilayered
media, and it cannot estimate the multiple scattering between the rough surface and bottom
interface), and it leads to more strong shadow images in the reconstruction.

−15 −7.5 0 7.5 15
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)
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0.4
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Figure 10. Reconstruction of one wet spot using TRI-DORT for moderate random rough surface.

4. Experimental Results

This section is devoted to investigating the experimental TRI of polymer foam. As
shown in Figure 11, the integrated MWT setup consists of 7 WR90 open-ended waveguide
antennas (VSWR 1.03:1) connected (with the phase stable cables with phase stability 3◦ at
maximum frequency) to a Agilent N5224A vector network analyzer (VNA) with a P9164C
2× 16 USB solid state switch matrix with power level of 5 dBm, and IF bandwidth 500 Hz.
It should be noted that a waveguide calibration is performed to extract the response of the
medium from the stored scattering matrix. The data are acquired from 8 GHz to 12 GHz
with a frequency step of 5 MHz. Communication between the VNA, switch, and the
controlling computer is accomplished through the Ethernet cable. The data acquisition
process is entirely automated using MATLAB R2018b. The multistatic antenna array is
located in semi-infinite free space from −15 cm to 15 cm along the y-axis and the distance
of the top antenna to the top of the polymer foam is 12 cm, and the center to center distance
between two adjacent antennas is 5 cm. The setup is surrounded with the microwave
absorber to increase the signal to noise ratio. The return loss of antenna 4 (middle antenna)
for different moisture contents in the spherical we spot of radius 1.5 cm is shown in
Figure 12 which clearly indicates the sensitivity of the measured data with respect to the
change in moisture content.

In the first experiment, as a low-contrast layered medium, one PTFE Teflon sphere
(radius 1.5 cm) is placed inside the foam with the center position of (0 cm,−0.7 cm, 0 cm).
In this case, we employ only the transmission part of the Green’s function (G(10) ≈ G(10)

T )
for image reconstruction. Furthermore, since the measurement response from the back-
ground media is known, we can suppress it from the total response using a background
subtraction procedure. In essence, the detection problem is studied here in terms of resid-
ual measurement which is obtained by subtracting the measurement response from the
foam with wet spots by the measurement response from the dry foam. Later, an antenna
de-embedding is performed to convert the received S-parameters to the electric field. As
can be seen from depicted eigenvalues in Figure 13 (top), there is one dominant eigen-
value, and the reconstructed image associated with this is shown in Figure 13 (middle).
As can be observed from this figure, the location of the target can be reconstructed. To
apply the proposed SF-TRI-DORT, the fSF is chosen based on the maximum difference
between the first dominant eigenvalue and those belonging to the null space, which is here
fSF = 8.07 GHz. Figure 13 (bottom) demonstrates the SF-TRI-DORT. The position of the
target is truly obtained, however, the spatial resolution is decreased.
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Figure 11. Prototype of MWT sensor array used in this study to generate measurement data. The MWT sensor configuration
consists of 7 X-band open-ended waveguide antennas, indicated by Tag 1. The polymer foam is shown by Tag 2 and
surrounded by absorbers as shown by Tag 3. The flexible PEC plate is shown by Tag 4. To acquire the measurement the
solid switch, PC and VNA are used as shown by Tags 5, 6, and 7, respectively. This system is developed at KIT, Germany
and will be integrated with the HEPHAISTOS technology in the final stage.

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
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Figure 12. Experimental scattering response (in dB) in X-band of antenna 4 (middle antenna) for
different moisture contents in the spherical wet spot of radius 1.5 cm.

In the second experiment, we insert a PEC plate under polymer foam, as a high-
contrast layered medium. A wet spot is inserted in the polymer foam. To create the wet
spot moisture target, a spherical foam of diameter 2.5 ± 0.1 cm and with a 36% wet basis
moisture level (εr ≈ 1.87− 0.12i) is chosen. An approximate location of the target inside the
foam is centered at (−3.5 cm, 1.2 cm, 0 cm). In this case, we employ the transmission and
the reflection parts of the Green’s function (G(10) = G(10)

T + G(10)
R ) for image reconstruction.

We repeat the same steps as in the previous experiment to extract the MDM matrix from
the measurement data. The eigenvalue behavior of the MDM matrix is shown in Figure 14
(top) from which it can be observed that there is one dominant eigenvalue that indicates
the presence of one wet spot in the media. The reconstructed TRI-DORT image associated
with the first dominant eigenvalue is shown in Figure 14 which shows that the estimated
position of the target is correctly obtained with good spatial resolution.
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Figure 13. (Top) Magnitude of the first four eigenvalues versus the frequencies,(middle) TRI-DORT
reconstruction image of one PTFE Teflon, and (bottom) SF-TRI-DORT at 8.07 GHz.
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Figure 14. (Top) Magnitude of the first four eigenvalues versus the frequencies and (bottom) TRI-
DORT reconstruction image of one wet spot when the second layer is PEC plate.

5. Conclusions and Discussion

In this paper, a time-reversal based imaging algorithm was proposed for the MWT
application in the industrial microwave drying process to achieve intelligent process control.
For testing and validating the proposed algorithm, we have focused first on a specific
static case where it is applied to obtain the location of moisture in polymer foam. To
formulate the problem, a closed-form Green’s function of the multilayered media was
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obtained using the SPA method and used in the TRI function. The developed TRI was
applied to both low- and high-contrast media specifically when a low-dielectric layer is
situated above a PEC layer. Additionally, the medium with a moderately rough surface was
investigated as a nonideal condition. Furthermore, a single frequency SF-TRI was proposed
to enable high-speed data acquisition from a limited number of antennas; a challenge in
many industrial applications of MWT. The frequency for SF-TRI operation is chosen by
selecting the frequency where the maximum difference between the dominant eigenvalue
and those belonging to the null space exists. The proposed TRI and SF-TRI approach was
demonstrated with numerical studies and tested on our developed experimental MWT
prototype. The results were obtained in less than a second and show the efficiency of the
proposed TRI and SF-TRI algorithm in accurately locating the considered targets under
low-contrast and high-contrast medium conditions. However, a slight decrease in spatial
resolution was noticeable in the SF-TRI method in comparison to the TRI.

Our future work concerns (i) integrating the MWT block with the microwave heating
system and testing the developed TRI and SF-TRI method for foam moving on the conveyor
belt. To give an idea of the dynamic measurement, consider foam with approximate width
= 50 cm, height = 7 cm, and length = 100 cm. Therefore, taking into account the foam size
and conveyor belt speed of 20 cm/min, we expect to reconstruct the moisture information
in a length of 16 cm in 50 s, i.e., a total processing time which includes the measurement,
data transfer, and image reconstruction. With this sampling rate, crucial information on
the moisture content will be lost. Therefore, instead of full X-band, the measurements can
be targeted for a specific band as a way to bring down the total processing time to around
11 s. Considering the heating pattern inside the oven cavity (between λ/4 to λ/2 at an
operational frequency of 2.45 GHz of the oven), this may be sufficient for process control;
(ii) retrieving the moisture level of the detected wet spots [52,53]; (iii) testing the process
control performance with the MWT input; and (iv) in the final stages, possibly translating
from the level of prototype design to commercial design.
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Appendix A

The relation between transmission and reflection coefficients of the Green’s function
in layer n in the TMx case can be expressed as[

RTM
n+1e+ikz(n+1)d(n+1)

TTM
n+1e−ikz(n+1)d(n+1)

]
= ¯̄VTM

n(n+1)

ñ
RTM

n e+ikzndn

RTM
n e−ikzndn

ô
(A1)

where

¯̄VTM
n(n+1) =

1
2
(
1 +

kzn

kz(n+1)

)×
 e+ikz(n+1)∆dn −RTM

n(n+1)e
+ikz(n+1)∆dn

−RTM
n(n+1)e

−ikz(n+1)∆dn e−ikz(n+1)∆dn

 (A2)

RTM
n(n+1) is the Fresnel reflection coefficient for the interface between layers n and n + 1 and

is given by

RTM
n(n+1) =

kzn − kz(n+1)

kzn + kz(n+1)
. (A3)

TTM
n(n+1) is the Fresnel transmission coefficient for the interface between layers n and n + 1

and is given by

TTM
n(n+1) =

2kzn

kzn + kz(n+1)
. (A4)

By considering only the first-order reflection and transmission coefficient inside each
layer and after some straightforward calculations, an expression of the Green’s function
with the source point in the 0th layer and observation point in layer nth can be derived
as follows

G(n0)(~ρr,~ρt) =
1
π

∫ +∞

−∞

1
kz0
×
ñ n−1

∏
q=0

TTM
q(q+1)e

−i
î
kzn(z− d0 −

n−1

∑
q=0

∆dq) +
n−1

∑
q=0

kzq∆dq
ó

+
n−1

∏
q=0

RTM
q(q+1)T

TM
q(q+1)e

+i
î
kzn(z− d0 −

n−1

∑
q=0

∆dq) +
n−1

∑
q=0

kzq∆dq
óô

e−iky(y− yt)dky.

(A5)

The Green’s function in the above equation is composed of two parts and it can be written as a
summation of the transmission and reflection terms, i.e., G(n0) = G(n0)

T + G(n0)
R . In the following, we

address each part separately and obtain a closed form for the Green’s function of the multilayer media.
The stationary phase approximation estimates a solution for the oscillating integral as follows [54]

F(κ) =
∫ +∞

−∞
f (h)eiκφ(h)dh

≈
ï

2π

κ|φ′′(h0)|

ò 1
2

f (h0)e
i
[
κφ(h0)− β

2
+

π

4
]
,

(A6)

φ′′(h0) =
[
φ′′(h0)

]
eiβ φ′(h0) = 0, (A7)

where κ is real and large, f and φ are real and infinitely differentiable, so an infinite asymptotic
expansion can be obtained via the integration-by-parts method [55]. Additionally, h0 is the point
where φ′ = 0, known as a stationary point. So, the first term of (A5) reduces to a simple summation
given as
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G(n0)
T =

1
π

Ç n−1

∏
q=0

TTM
q(q+1)(ky,sp1 )

åñ
2π

|Φ′′T(ky,sp1 )|

ô 1
2

× e
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î
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e
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Å
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(A8)

where

Φ′′T(ky,sp1 ) = − k2
n

k3
zn

Ç
z− d0 −

n−1

∑
q=0

∆dq

å
+

n−1

∑
q=0

k2
q

k3
zq

∆dq (A9)

Φ′′T(ky,sp1 ) =
∣∣Φ′′T(ky,sp1 )

∣∣e−iβ, (A10)

where ky,sp1 is the stationary point and is the solution of the following equation

ky,sp1 =
y− yt

n−1

∑
q=0

∆dq

kzq
+

1
kzn

Å
z− d0 −

n−1

∑
q=0

∆dq

ã (A11)

k̃zn =
√

k2
n − k2

y,sp1. (A12)

Analogous to the transmission term, a closed form for the reflection term can also be derived
after some straightforward calculations, leading to

G(n0)
R =

1
π
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∏
q=0

TTM
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where

Φ′′T(ky,sp2 ) = − k2
n
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q=0

∆dq

å
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∆dq (A14)

where ky,sp2 is the stationary point and is the solution of the following equation:

ky,sp2 =
y− yt

n

∑
q=0

∆dq

kzq
− 1

kzn

Å
z− d0 −

n−1

∑
q=0

∆dq

ã (A15)
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