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Abstract: The integral imaging system has received considerable research attention because it can
be applied to real-time three-dimensional image displays with a continuous view angle without
supplementary devices. Most previous approaches place a physical micro-lens array in front of the
image, where each lens looks different depending on the viewing angle. A computational integral
imaging system with a virtual micro-lens arrays has been proposed in order to provide flexibility
for users to change micro-lens arrays and focal length while reducing distortions due to physical
mismatches with the lens arrays. However, computational integral imaging methods only represent
part of the whole image because the size of virtual lens arrays is much smaller than the given
large-scale images when dealing with large-scale images. As a result, the previous approaches
produce sub-aperture images with a small field of view and need additional devices for depth
information to apply to integral imaging pickup systems. In this paper, we present a single image-
based computational RGB-D integral imaging pickup system for a large field of view in real time.
The proposed system comprises three steps: deep learning-based automatic depth map estimation
from an RGB input image without the help of an additional device, a hierarchical integral imaging
system for a large field of view in real time, and post-processing for optimized visualization of the
failed pickup area using an inpainting method. Quantitative and qualitative experimental results
verify the proposed approach’s robustness.

Keywords: light field imaging; monocular depth map estimation; computational integral imaging

1. Introduction

The integral imaging system has played an important role in the field of three-
dimensional (3D) displays, creating a light field using two-dimensional (2D) micro-lens
arrays. Integral imaging that incorporates autostereoscopic and multiscopic imaging pro-
vides 3D images through a micro-lens array because they do not require users to wear
glasses and offer more viewing flexibility for 3D broadcasting, real-time motion imaging,
virtual/augmented reality, etc. Lippmann [1] introduced the concept of integral imaging
to provide a 3D display using different perspectives according to the viewing direction.
Traditional integral imaging systems [2] have been based on pickup and display procedures.
The pickup stage records a ray emitted from the object onto an image sensor through each
micro-lens center. Thus, the system generates many packed distinct elemental images,
which are then viewed through an array of convex lenses or pinholes. The display stage
passes the ray from the elemental image array through each micro-lens center, produc-
ing a 3D autostereoscopic image from an elemental image array. However, traditional
integral imaging methods using physical micro-lens arrays have two limitations. First, it
is difficult to set the micro-lens arrays to the exact positions to avoid the interference of
rays between different micro-lenses. Furthermore, more complex and larger micro-lens
arrays are needed to generate a desirable elemental image array from a large-scale object
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without distortion. To tackle these limitations, some approaches used pixel mapping [3–7].
Li et al. [7] proposed a simplified integral imaging pickup method using a depth camera.
The computational integral imaging method takes a pair of RGB images and a depth image
obtained from the KINECT as inputs, and calculates pixel mapping from the object image
plane to the elemental image plane. Recent computational integral imaging pickup systems
also attempt to overcome the above limitations without prior information or auxiliary
devices, but they struggle to obtain a large-field-of-view (FOV) sub-aperture image without
distortion [3–7]. As shown in Figure 1, current integral imaging systems using physical
or virtual micro-lens arrays still have problems in representing large FOV images, from
panoramic images to fisheye images. Since integral imaging systems are affected by the
micro-lens array size, number of micro-lenses in the lens array, or input image resolu-
tion, resultant sub-aperture images have low resolution and small FOV when applying
the system to large-scale images, such as high-resolution or panorama images, where a
sub-aperture image can be obtained by transposing the pixels in each elemental image
(light field parametrization [8]).

Figure 1. Typical integral imaging pickup system that has limited field of view.

The second limitation of the existing computational integral imaging system is the pro-
cessing time. Most proposed methods have accelerated the processing time of generating
an elemental image array with the help of a GPU, but they are still restricted to real-time
applications for small object images.

To overcome the major limitations of the previous physical and computational inte-
gral imaging methodology, as well as to provide convenience for users to generate large
elemental image arrays without supplementary devices, we propose a large-FOV integral
imaging pickup system from a single image in real time. Specifically, we utilize the hi-
erarchical integral imaging pickup system, where multiple virtual lens arrays work on
different parts of the given large-scale image to improve the performance of the current
integral imaging system and to obtain a sub-aperture RGB-D image with a large FOV.
The resulting images are integrated into a large-FOV elemental image array, which gen-
erates large-FOV sub-aperture images. In particular, the computational deployment of
the virtual micro-lens arrays in an overlapped manner enables us to provide seamless
large-FOV integral images, as well as to minimize the failed pickup area during the pro-
cedure. Figure 2 shows the proposed large-FOV integral imaging pickup system. We
first estimate the depth map using a deep neural network (DNN) embedding attention
network to emphasize meaningful features while reducing redundant noise from a given
input image. We also propose a hierarchical integral imaging pickup system to extend the
FOV. Finally, we apply post-processing by inpainting failed pickup areas (FPAs) for better
human visual perception.
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Figure 2. Proposed large-field-of-view RGB-D integral imaging pickup system comprising automatic
depth map estimation and hierarchical integral imaging pickup system.

The major contributions of this study can be summarized as follows:

• We present an end-to-end computational large-FOV RGB-D integral imaging pickup
system from single input images using a hierarchical integral imaging pickup proce-
dure;

• The proposed RGB and depth integral imaging pickup system computationally elimi-
nates the distortion of elemental images and contamination;

• We present quantitative and qualitative analyses for the proposed method to be
applied to various applications in real time.

The remainder of this paper is organized as follows. Section 2 explains the proposed
algorithm in detail. Section 3 verifies the proposed algorithm experimentally. Section 4
summarizes and concludes the paper.

2. Large-Field-of-View Rgb-D Integral Imaging System

This section explains the technical details regarding extracting depth maps from a
single image and designing the hierarchical integral image pickup system to provide a large-
FOV elemental RGB-D image array and sub-aperture image array. The hierarchical integral
RGB-D image pickup process to provide a large FOV comprises two stages: multiple
computational shift lens array manipulation within a virtual main lens, and sub integral
RGB-D image pickup for each virtual shift lens. We also describe how to overcome FPA
using inpainting to obtain improved elemental imaging visualization, where we assume
that the main lens is a virtual lens for generating sub-aperture images [9,10].

2.1. Multi-View Attention Module-Based Monocular Depth Map Estimation

Stereo vision captures two different scene views in a manner similar to the human
vision system and has been used to estimate the depth map in the area of computer vision.
Although stereo vision is becoming increasingly common, there are still barriers to accu-
rately estimating the depth map, including barrel and tangential distortion adjustment,
image rectification, and automatic feature extraction and matching procedures. The pro-
posed approach estimates the depth map from a given single image without assumptions
or supplementary devices by employing machine learning.

We propose DNN-based depth estimation from a single image by training a huge
number of RGB-D datasets, such as the NYU-V2 RGB-D dataset [11]. The dataset consists
of video sequences of various indoor scenes, which are captured by Microsoft Kinect, and
each RGB image is paired with its depth image. Our proposed network is trained with this
dataset and the RGB images and the depth images are used as the input and the ground-
truth images, respectively. The proposed DNN comprises encoder and decoder blocks
with multi-view attention (MVA) modules by extending channel and spatial attention from
the 3D feature map [12]. Convolution layers in the encoder extract features from input
images for robust depth estimation and are subsequently down-sampled by pooling layers
in the encoder phase. Therefore, we obtain the latent features to reconstruct a depth map
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using the DNN. The decoder passes latent features through convolution and up-sampling
layers to reconstruct a depth map corresponding to the RGB image. Feature maps from
the decoder block pass through the MVA block to emphasize meaningful features and
reduce redundant features. Encoder and MVA blocks are connected by skip connections to
update the features at the appropriate rate. Figure 3 shows that we obtain a depth map
corresponding to the input RGB image by passing through various DNN blocks. Table 1
describes the details of the proposed architecture of the MVA network, whose kernel size is
set to 3× 3, and stride is 1.
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Figure 3. Deep neural network architecture for monocular-image based depth estimation.

Table 1. Detailed architecture of our proposed multi-view deep learning-based depth map estimation
from a single image.

Module Block Type Output Dimension

Input Image - H × W × 3

Encoder

Block 1 120 × 160 × 64
Block 2 60 × 80 × 128
Block 3 30 × 40 × 256
Block 4 15 × 20 × 640
Block 5 15 × 20 × 1664

Decoder

MVA Block 15 × 20 × 1664
Block 1 30 × 40 × 832

Residual Block 1 30 × 40 × 832
MVA Block 1 30 × 40 × 832

Block 2 60 × 80 × 416
Residual Block 2 60 × 80 × 416

MVA Block 2 60 × 80 × 416
Block 3 120 × 160 × 208

Residual Block 3 120 × 160 × 208
MVA Block 3 120 × 160 × 208

Block 4 240 × 320 × 104
Residual Block 4 240 × 320 × 104

MVA Block 4 240 × 320 × 104
Conv 3 × 3 240 × 320 × 1

To effectively train and optimize the proposed network, we define the loss function
(Loss) to minimize differences between ground-truth and predicted depth maps by includ-
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ing pixel-wise, depth image gradient, and structural similarity index measure (SSIM) loss
functions, i.e.,

Loss(y, ŷ) = λLossd(y, ŷ) + Lossg(y, ŷ) + LossSSIM(y, ŷ), (1)

where we set λ = 0.1 in Loss empirically.
Pixel-wise loss Lossd can be obtained by averaging the difference between ground-

truth and predicted depth map,

Lossd(y, ŷ) =
1
n

n

∑
p
|yp − ŷp|. (2)

We calculate ground-truth and predicted depth gradients and then define the depth
gradient loss Lossg as the difference between the ground-truth and predicted gradient. To
obtain gx, we calculate a difference between the next pixel location (x+ 1, y) and the current
location (x, y) of the ground-truth and predicted depth image, respectively. Then, gx is
calculated on the difference between the x-axis ground-truth gradient and the predicted
depth gradient. gy is also calculated in the same way with respect to the y-axis gradient,
which is calculated from the difference between (x, y + 1) and (x, y):

Lossg(y, ŷ) =
1
n

n

∑
p
|gx(yp, ŷp)|+ |gy(yp, ŷp)|. (3)

Finally, we use the SSIM loss [13] LossSSIM, which seeks to learn to produce a visually
pleasing depth map image, by measuring the structural similarity of the depth map images,
compares the local texture of the ground truth and output images, and adjusts the small
spatial misalignment. LossSSIM is shown as follows:

LossSSIM(y, ŷ) =
1− SSIM(y, ŷ)

2
. (4)

The final loss function Loss combines Lossd, Lossg, and LossSSIM to effectively opti-
mize the cost over the entire training RGB-D images dataset.

The proposed DNN depth map estimation by embedding MVA blocks extracts and
enhances meaningful features in each layer to prevent blurring and staircase effects around
discontinuous depth areas with significantly improved performance. The system can
accurately estimate depth maps even with partial occlusions, illumination changes, and
background clutter. We employ hierarchical integral imaging pickup from the RGB input
image and corresponding depth map.

2.2. Hierarchical Integral RGB-D Imaging System

As shown in Figure 4, we place the micro-lens array hierarchically for a given large-
scale image or a panorama image. The hierarchical integral RGB-D imaging system includes
two stages, assuming multiple computational shift-lens array and sub-integral imaging
pickup systems for each virtual shift lens. We shift the virtual lens array within the given
main lens for large-scale input images to look at various input image parts.
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Figure 4. Proposed hierarchical integral imaging pickup system comprising multiple shift-lens arrays
and sub-integral imaging pickup for each shift lens.

2.2.1. Multiple Shift-Lens Array Manipulation Process

The proposed approach applies a computational integral imaging pickup system to
large-scale or panoramic images, generating large sub-aperture and elemental image arrays
to effectively capture sub-areas from the given input image. We first divide the main lens
sectioning the large-scale input image into several sub main lenses that look at various
input image parts, with each shift-lens array providing input to the integral imaging pickup
system. Thus, we generate the large-scale elemental image array from multiple shift-lens
arrays. The divided virtual lenses can be expressed as

M→ M1, M2, M3, . . . , Mn (5)

and
E→ E1, E2, E3, . . . , En, (6)

where M is the large virtual lens with corresponding large micro-lens array E, and each
part of the whole image I corresponding a En is expressed as Ipart

n .

I → Ipart
1 , Ipart

2 , Ipart
3 , . . . , Ipart

n (7)

We define the resulting elemental image arrays by adding each generated Ai as shown
below:

IEIA =
n

∑
i=1

Ai(Ipart
i , Ei) (8)

where IEIA is the integrated large-scale elemental image array. We implement virtual and
multiple shift-lens arrays to be slightly overlapping in order to avoid missing rays emitted
from the images.

2.2.2. Sub-Integral Imaging Pickup Process

Each input image part is then presented to the integral imaging pickup system by the
divided micro-lens arrays. Previous methods used physical micro-lens array(s), whereas
we propose virtual micro-lens arrays to calculate pixel mapping from image to elemental
image pixel coordinates. We extend Li’s method [7], using deep learning-based depth
estimation from a single RGB image, rather than a depth camera, to obtain depth maps
corresponding to input RGB images. The central depth value d in a valid depth range of
the integral imaging system and pixel size for input image PI are calculated as d = f ·g

f+g

and PI =
d
g · PD, respectively, where f is the micro-lens array focal length, g is the distance
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between display and micro-lens array, and PD is the monitor’s pixel pitch. Thus, the valid
depth range can be expressed as

∆d =
2 · d
PL
· PI , (9)

where PL is the micro-lens pitch and ∆d represents the depth range expressible in the
integral imaging system. From Equation (9), the converted depth map can be expressed as

L(i,j) =
d · (max(Z) + min(Z))

Z(i,j) × 2
, (10)

where Z is a depth map, and Z(i,j) is the depth at pixel (i, j).
Figure 5 shows a ray emitted from a pixel passing through the micro-lens center to its

location in each elemental image. Elemental image pixel coordinates (u, v) are defined as

u = PL · iL − (i · PI − PL · iL) ·
g

L(i,j)
(11)

and
v = PL · jL − (j · PI − PL · jL) ·

g
L(i,j)

. (12)

Each micro-lens array generates elemental image arrays using this method [7], without
requiring a physical micro-lens array.

Pixel	B

Pixel	A

Micro	Lens
Array

Elemental
Image	Array

Figure 5. Pixel mappings from image to elemental image array coordinates.

2.3. Postprocessing to Eliminate Failed Pickup Areas

Computational hierarchical integral imaging systems effectively reduce traditional
optical pickup problems. However, FPA still affects elemental images’ and sub-aperture
images’ visualization, i.e., empty areas between neighboring object points from the micro-
lens array. Figure 6 represents FPA as black lines and/or regions. We apply inpainting to
replace FPA with neighboring pixels for human visual perception using the Navier–Stokes
equation from fluid dynamics to calculate partial differential equations to extract edges
from known to FPA regions. This preserves continuous isophotes while matching gradient
vectors at inpainting region boundaries [14], effectively providing color information for
FPA regions while reducing the minimum variance across the area. Figure 6 shows an
example FPA and inpainted result. The pseudo-code of the large-FOV integral imaging
is represented in Algorithm 1. Section 3 details experiments to investigate the proposed
integral imaging method’s efficiency.
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Algorithm 1 Proposed system

Input: I : Inputted RGB image
Φ : Monocular depth estimation network
M : Virtual main lens
E : Virtual micro-lens array
A: Sub integral imaging pickup process function
S: Convert function from elemental image array to sub-aperture image array

Output: ISA, DSA, Large FOV sub-aperture image array about image I and depth D
1: IEIA ← ∅; DEIA ← ∅
2: D ← Φ(I) . D is a predicted depth
3: I → {Ipart

1 , Ipart
2 , . . . , Ipart

n } . I is divided into set of n Ipart
n

4: D → {Dpart
1 , Dpart

2 , . . . , Dpart
n } . D is divided into set of n Dpart

n
5: M→ {M1, M2, . . . , Mn} . M is divided into set of n Mn
6: E → {E1, E2, . . . , En} . E is divided into set of n En
5: for i← 0 to n do
6: if Ipart

i ∈ I and Dpart
i ∈ D then

7: IEIA
i ← Ai(Ipart

i , Ei)
8: IEIA ← IEIA ∪ IEIA

i
9: DEIA

i ← Ai(Dpart
i , Ei)

10: DEIA ∪ DEIA
i

11: end for
12: ISA ← S(IEIA)
13: DSA ← S(DEIA)
14: return ISA, DSA

Inpainting
algorithm

Figure 6. Elemental images with failed pickup area and resultant images from inpainting.

3. Experiments

This section presents quantitative and qualitative experimental results to verify the
robustness of the proposed RGB-D integral imaging system.

3.1. Implementation Details

The proposed system was implemented in Python PyCuda on a NVIDIA GeForce
GTX 1070 GPU using the TensorFlow2 framework to provide a real-time response. For
monocular depth estimation using MVA blocks to emphasize the important features as well
as reduce the redundant features from the input RGB image, we used DenseNet-169 [15],
pre-trained on ImageNet [16], as the encoder for our monocular depth estimation network
to extract dense features. Batch size was set to 4 and the network was trained for 20 epochs
using the ADAM optimizer with learning rate = 0.0001. Our network was trained with the
50 K NYU-V2 RGBD images dataset.

For fair performance evaluation in the large-FOV integral imaging pickup system,
we set virtual micro-lens array focal length = 10 mm; gap between micro-lens array and
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display = 11 mm; LCD monitor pixel pitch = 0.1245 mm; micro-lens size = 1.8675 mm;
input RGB image using real lens has 2000× 700 resolution; and number of lenses in each
virtual micro-lens array = 62,500 (250× 250). Thus, each elemental image array from the
multiple shift-lens array generates 3750× 3750 resolution. The proposed system integrates
each elemental image array, resulting in a 15, 750× 5700 final elemental image array.

3.2. Qualitative and Qualitative Analysis

We first verified our proposed MVA-based monocular depth estimation network by
quantitatively comparing various depth estimation algorithms using error matrices, in-
cluding average relative error (REL), root mean squared error (RMS), and average (log10)
error. Table 2 shows that the proposed network produces remarkable depth maps. The
proposed depth map prediction network embedding MVA blocks effectively emphasize
the depth feature as well as remove redundant features to estimate the depth map from
the single image. In particular, the proposed depth map estimation network provides
clear differences around object boundaries. Feature enhancement in the DNN considerably
improves the depth map accuracy, as shown in Table 2. Since the depth map is closely re-
lated to the distortion of the integral imaging system, the proposed MVA-based depth map
can contribute to improving the accuracy of the conventional physical and computational
integral imaging system.

Table 2. Depth map estimation using various error measurement metrics for the NYU V2 dataset.
The top two methods are highlighted in red and blue, respectively.

Method δ1 δ2 δ3 REL RMSE log10
Higher Is Better Lower Is Better

Eigen et al. [17] 0.769 0.950 0.988 0.158 0.641 −

Liu et al. [18] 0.614 0.883 0.971 0.230 0.824 0.095

Laina et al. [19] 0.811 0.953 0.988 0.127 0.573 0.055

Cao et al. [20] 0.646 0.892 0.968 0.232 0.819 0.091

Li et al. [21] 0.788 0.958 0.991 0.143 0.635 0.063

Xu et al. [22] 0.811 0.954 0.987 0.121 0.586 0.052

Lee et al. [23] 0.815 0.963 0.991 0.139 0.572 −

DORN [24] 0.828 0.965 0.992 0.115 0.509 0.051

Chen et al. [25] 0.826 0.964 0.990 0.138 0.496 −

DenseDepth [26] 0.846 0.974 0.994 0.123 0.465 0.053

Proposed method 0.853 0.970 0.992 0.125 0.458 0.053

Figure 7 shows the qualitative comparison of the monocular depth estimation predic-
tion results using the DIML/CVL RGB-D dataset (https://dimlrgbd.github.io/downloads/
technical_report.pdf, accessed on 3 August 2021) [27–29], which includes indoor and out-
door RGB-D images. It shows input RGB images (1344 × 756) (first row of Figure 7),
corresponding ground-truth depth maps (second row of Figure 7), and predicted depths
from the proposed network, respectively. Predicted depth maps preserved object bound-
aries, and depth information was reconstructed well compared with ground-truth depth
maps. For a fair and easy comparison between our approach and previous approaches,
the intensity values of the depth map were extracted from each depth map image along
the same positioned yellow scanline in Figure 7. Within the depth layer, all methodologies
maintained the depth information satisfactorily, but there were difference in separating
the depth layers clearly. In particular, the depth map change of the scanline of the depth
map, such as Eigen et al. [17] and Laina et al. [19], still showed oversmoothing between
depth layers. On the other hand, our proposed depth map retains the prominent edges and

https://dimlrgbd.github.io/downloads/technical_report.pdf
https://dimlrgbd.github.io/downloads/technical_report.pdf
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shading without unwanted noisy information because the MVA blocks and loss functions
optimized the network to generate well-matched depth maps.
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Figure 7. Example images of monocular depth estimation using deep neural network. For a fair and easy comparison, depth intensity
values were extracted from each image along the same positioned scanline.

Previous integral imaging pickup systems on the CPU are difficult to apply widely
since they require considerable processing time to generate each elemental image array
of the large-FOV image. Therefore, we implemented parallel processing through the
GPU to provide the real-time RGB-D integral imaging visualization of the large-FOV
images. One pixel passes through all micro-lenses; hence, the system processes this
simultaneously, enormously reducing the processing time. Figure 8 compares CPU and
GPU implementations for various micro-lens configurations. Processing time increases
gradually as the number of micro-lenses increases (Figure 8a) and processing time also
increases as the micro-lens size increases (Figure 8b). The results shown in Figure 8
highlight the trade-off between the number of micro-lenses and processing time, and
between the micro-lens size and processing time. A larger micro-lens size means that we
can observe more image parts, but the overall resolution is reduced. We can effectively
control the processing time even though we rapidly increase the number of micro-lenses or
extend the resolution of each micro-lens by implementing the proposed RGB-D integral
imaging system on the GPU.
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(a) (b)

Figure 8. Comparison between CPU and GPU implementation for various micro-lens configurations.
(a) Comparison between CPU and GPU implementation with respect to the number of lenses in
micro-lens arrays. (b) Comparison between CPU implementation and GPU implementation with
respect to lens size in the micro-lens arrays.

Figure 9 presents an example of the resulting RGB-D elemental image array of the
proposed method and its sub-aperture RGB-D image array to effectively visualize the
proposed approach. Each shift-lens array generates an elemental image array that is slightly
overlapped in order to avoid missing rays emitted from the images. These elemental
image arrays are subsequently integrated by the proposed implementation, producing
a 15,750 × 5700 final elemental image array resolution, as shown in Figure 9a. Thus,
we can generate large-FOV elemental image arrays using virtual micro-lens arrays and
high computing power, and FPAs in the elemental images are successfully removed by
inpainting. Each elemental image generates properly; hence, the observed image is not
reversed, as shown in Figure 9a. Pixels at the same position in each elemental image array
were rearranged in the sub-aperture image array location to generate sub-aperture image
arrays.

As the number of sub-aperture images is dependent on the size of the micro-lens, the
resolution of the sub-aperture image is determined by the number of micro-lenses in the
lens array. Figure 9b shows the number of sub-aperture images = 225 with 1050× 380
pixel resolution, and Figure 9b also confirms that the proposed generates high-quality
sub-aperture images. Thus, the proposed approach can overcome physical micro-lens array
or depth camera limitations using advanced computing hardware, i.e., parallel processing
on GPUs, and DNN learning. The quantitative and qualitative evaluation results prove
that our proposed RGB-D integral imaging system can be used in real time, due in part to
compelling applications in virtual and augmented reality from the given RGB input image.
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(a)

(b)
Figure 9. Large-field-of-view RGB-D elemental and sub-aperture image arrays example image.
(a) RGB-D elemental image array with large field of view from the proposed method. (b) Sub-
aperture RGB-D image array with large field of view from the proposed method.

4. Conclusions

This paper proposes an end-to-end monocular image-based large-FOV RGB-D integral
image system in real time. The hierarchical integral imaging system was designed for a
large FOV and included multiple shift-lens arrays and sub-integral image pickup processes.
In contrast with previous physical micro-lens-based integral imaging systems, we used
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a computational monocular image-based integral system to minimize distortions due to
physical lens array mismatches, without requiring supplementary devices.

Experimental results verified that the proposed computational integral imaging sys-
tem performed favorably for large-FOV images, including panoramic images, and could
be operated in real time using GPU parallel processing. The proposed large-FOV integral
imaging system can be applied to various areas of computer vision and computer graph-
ics, such as synthetic aperture imaging, segmentation and matting, object detection and
classification, stitching and deblurring of images, and handling reflective and transparent
objects. In particular, the proposed large-FOV integral imaging system combined with
deep learning may not only improve the accuracy of the existing methodologies but also
expand the scope of applications.
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