
sensors

Article

Software Fault Localization through Aggregation-Based Neural
Ranking for Static and Dynamic Features Selection

Abdulaziz Alhumam

����������
�������

Citation: Alhumam, A. Software

Fault Localization through

Aggregation-Based Neural Ranking

for Static and Dynamic Features

Selection. Sensors 2021, 21, 7401.

https://doi.org/10.3390/s21217401

Academic Editor:

Naveen Chilamkurti

Received: 11 October 2021

Accepted: 3 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, College of Computer Sciences and Information Technology, King Faisal
University, Al-Ahsa 31982, Saudi Arabia; aahumam@kfu.edu.sa

Abstract: The automatic localization of software faults plays a critical role in assisting software
professionals in fixing problems quickly. Despite various existing models for fault tolerance based on
static features, localization is still challenging. By considering the dynamic features, the capabilities of
the fault recognition models will be significantly enhanced. The current study proposes a model that
effectively ranks static and dynamic parameters through Aggregation-Based Neural Ranking (ABNR).
The proposed model includes rank lists produced by self-attention layers using rank aggregation
mechanisms to merge them into one aggregated rank list. The rank list would yield the suspicious
code statements in descending order of the rank. The performance of ABNR is evaluated against
the open-source dataset for fault prediction. ABNR model has exhibited noticeable performance
in fault localization. The proposed model is evaluated with other existing models like Ochiai,
Fault localization technique based on complex network theory, Tarantula, Jaccard, and software-
network centrality measure concerning metrics like assertions evaluated, Wilcoxon signed-rank test,
and Top-N.

Keywords: fault localization; neural ranking; parameter selection

1. Introduction

It is hard for developers to find and correct software flaws while the program is
being developed and after its release. The complete process of bug identification is time-
consuming, and the automated software does the job perfectly through fault localization.
Using fault localization models reduces the debugging expenses and allows the developers
to devote more to possible vulnerable components of the software. Traditionally, fault
localization, which focuses on locating defects in software manually, has been a difficult,
time-consuming, and costly job because of the complexity of large-scale software sys-
tems [1]. The developer’s knowledge, expertise, and judgment are required to locate and
classify the snippet which is most likely to contain bugs. As a result of the constraints
mentioned above, interest has been revived in creating automated models for localization
of faults in software while at the same time minimizing human involvement.

The automated models are classified as static and dynamic models for fault localiza-
tion [2]. The static model does consider various static features of the software, such as the
log reports of the bugs, bug history reports, code modification logs, and performs the fault
matching with the existing issues [3,4]. Moreover, the static models mainly recognize the
errors in the code like using the dangling pointers, syntax errors, security-related access
privileged errors in snippets, and the code-tempting issues [5]. The dynamic models relay
the dynamic characteristics for the bug identification by introspecting the code’s response
in the run-time environment. The use of test cases would assess the vulnerability severity
and rank for each such code snippet in the software. However, in either of the models, the
bug localization in developing robust software is quite far from a satisfactory outcome.

Fault localization is a time-consuming and laborious task for dealing with massive
software projects for two primary reasons. The formal reason is that there are typically

Sensors 2021, 21, 7401. https://doi.org/10.3390/s21217401 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7778-2838
https://doi.org/10.3390/s21217401
https://doi.org/10.3390/s21217401
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217401
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217401?type=check_update&version=2

Sensors 2021, 21, 7401 2 of 21

many pending faults to be still found and fixed. The well-known Eclipse bug repository
has reported around 200 issues each day approaching release dates, whereas the Debian
project has reported around 150 issues in a single day [6]. Another pivotal reason is the
time taken for fault isolation. Gaeul Jeong [7] has observed that almost all problems take
100 to 200 days to fix in the PostgreSQL project. To repair just half of the issues takes nearly
300 days. Most issues in the Tomcat project take 40–200 days to fix. It is assumed that 5%
of all problems may take almost two years to fix in the worst-case scenario.

The features are exceptionally important in the fault localization process, either static
or dynamic features. When any of those features are considered alone, few challenges
will make the process of fault identification challenging. When the static features are con-
sidered alone, the assessment model may fail to recognize the dynamic software features.
Furthermore, the significant features and essential functional characteristics will be missing
when dynamic features alone are considered. The deep neural network models efficiently
consider both features with an exceptional learning capability [8]. Various studies on fault
localization incorporate something into the software to track the model’s functionality
and outcome [9,10]. The different fault localization techniques include programming
constraints, program log reports, breakpoints, profiling. Moreover, all the fault localiza-
tion tools are designed by incorporating all these features for the effective debugging of
the software.

Program constraints are assertions introduced to a program that must be true to
function correctly throughout its execution. These constraints are generally specified in
the program as a conditional statement, which causes the program to stop execution if
any constraint is not satisfied [11]. Program log [12] inserts are often included with the
code on a hit-or-miss basis to check variables and other program information updating
processes that utilize stored log files or printed run-time information to identify failure
when they see strange program behavior. Using the breakpoints [13] is the other approach
used in fault localization. It will halt the program whenever it approaches a pre-set spot,
enabling the programmer to check current conditions. The programmer may alter the
code and resume the program’s execution to monitor the response of the code with a
possible bug. The run-time profiling [14] of the program performance indicators such
as execution speed and memory consumption is known as profiling. It is often used to
validate the code for the issues like memory leaks, unexpected execution patterns, and
program performance evaluations.

The contributions through the current studies are accomplished over multiple phases,
including identification of the features used for recognizing the possible vulnerable state-
ments in the software program. The statements are provided with an initial vulnerability
rank concerning the global rank of the statements in the program. The ranks are automati-
cally assigned to each statement in the program by tokenizing the statement. The ranks are
further optimized through an aggregation-based neural ranking model that will assist the
programmer’s debugging and fault localization much easily and conveniently.

The entire paper is organized on the following grounds. Section 1 presents the
introduction to the study on fault localization, Section 2 presents the brief literature about
the existing models, and Section 3 presents the background of the proposed model, which
covers the feature selection model. Section 4 offers the proposed model, and Section 5
presents the proposed model’s statistical analysis concerning the other existing models.
Section 6 provides the conclusion and the future perspective of the current study on
bug localization.

2. Literature Review

There are various fault localization approaches available that are widely used in real-
time fault diagnosis models. Statistic debugging models are one of the most predominantly
used fault localization techniques. The bugs are identified through fault prediction snippets
incorporated in the software [15] as presented in Liblit05. The model here works with the
probability ρ in determining the fault in the software. The f ault(ρ) denotes the correct

Sensors 2021, 21, 7401 3 of 21

fault prediction, and the context(ρ) denotes the code of ρ implying the fault. All the cases
whose score is f ault(ρ)− context(ρ) ≤ 0 are ignored. The leftover criteria are evaluated by
respective significance ratings, indicating the association between predicates and software
faults. Higher-scoring predicates must be evaluated immediately [1].

The other conventional mode of bug tracking, namely the slice-based technique [16],
is performed by normalizing the software code into multiple components named the
segments. Each such segment is verified for the bug by evaluating the response of the
snippet. One primary use of static slicing is to assist developers in finding flaws in their
systems by reducing the searching space. Because a failure could be traced to something
like a variable’s value being wrong, debugging can only focus on searching on the slice
containing the vulnerability rather than the complete software. Using static slicing does
have the drawback of including all operational snippets that may potentially influence the
parameter’s value in the snippet. As a consequence, it may produce an incorrect prediction.
Moreover, dynamic slicing can determine the snippet that impacts a specific value seen at
a particular location rather than potentially influencing such a value.

Probabilistic and empirical causation theories drive spectrum-based fault localization
models [17]. If the software fails, this log data may be employed to determine the vulnerable
segment of the program. It shows which snippets of the software program under test have
been examined during an operation. Program state-driven bug localization is the other
most predominantly used technique that keeps track of the values and the outcomes of the
snippets in the software, and periodically the values are examined for the fault localization.
The faults are recognized by matching the states of the development version of program
snippets with a reference version. It also changes certain parameter values to check which
triggers incorrect software execution.

The techniques like MULTRIC [18], TraPT [19], FLUCCS [20], and PRINCE [21] have
demonstrated that Learning-to-Rank methods can assist in the identification of fault state-
ments by using a variety of fault-diagnostic characteristics of varying dimensions. Limited
in its ability to automatically choose strong preexisting features and find new advanced
features for fault localization, it may not fully use the training data information gathered.
The observation over the model DeepFL, which ranks suspicious logics in the program us-
ing Multi-Layer Perceptron [22]. As a result, researchers have lately begun highlighting the
best of several conventional fault localization methods using machine learning to achieve
more efficiency. Moreover, sophisticated deep learning techniques are used to explore
powerful features for fault localization and accurately rank suspicious program snippets.

3. Background

The instances in the project’s implementation phase where unexpected behavior
happens are failures, errors, and faults. A fault in the computer program is defined as
any inappropriate move, procedure, or data specification, sometimes termed the bug. The
developer may unintentionally land the bug into the program while writing. An error is a
discrepancy between a calculated value and the actual value in a certain context. Failure is
defined as a system failing to execute its task following the expectations of the developer.
So, when the software fails to operate as expected, there must be a possible bug in the code,
and if such bugs or faults are ignored, the complete software may fail.

The proposed model relies on extracting the features associated with software evalua-
tion and assists in analyzing the working procedure of the software snippet. Thereby the
features are ranked based on the probabilistic measure for the failure of the snippet. Later,
the ranks are used to analyze the software’s design principle and work procedure closely.
Both static and dynamic features are considered for performing the fault localization and
the other comprehensive feature set. The use of various classes, packages, and objects are
common throughout the programming languages. Objects are created at run-time, whereas
other elements are static. Their association among them is mostly dynamic [23]. A few
such relations are presented in Table 1.

Sensors 2021, 21, 7401 4 of 21

Table 1. Table representing the categories of various parameters.

Parameter Static Parameter Dynamic Parameter

Access(method, attribute) X
Call(method, method) X

Consist(class, attribute) X
Consist(class, method) X

Consist(class, sub-class) X
Consist(package, class) X
Instance(object, class) X
Knows(object, object) X

Refers (method, method) X
Refers(method, Attribute) X

Sub-class(class, class) X
Stack Trace X

Dynamic Program Splitting X

Static methods create implementation-based requirements, whereas dynamic ones
generate their specifications by watching the program run. Execution-trace analyses include
dynamic strategies. The ranking model’s construct is presented in Figure 1, where static
and dynamic features are considered.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22

time, whereas other elements are static. Their association among them is mostly dynamic
[23]. A few such relations are presented in Table 1.

Table 1. Table representing the categories of various parameters.

Parameter Static Parameter Dynamic Parameter
Access(method, attribute) ✓

Call(method, method) ✓
Consist(class, attribute) ✓
Consist(class, method) ✓

Consist(class, sub-class) ✓
Consist(package, class) ✓
Instance(object, class) ✓
Knows(object, object) ✓

Refers (method, method) ✓
Refers(method, Attribute) ✓

Sub-class(class, class) ✓
Stack Trace ✓

Dynamic Program Splitting ✓

Static methods create implementation-based requirements, whereas dynamic ones
generate their specifications by watching the program run. Execution-trace analyses in-
clude dynamic strategies. The ranking model’s construct is presented in Figure 1, where
static and dynamic features are considered.

Figure 1. Represents the static and dynamic features in statement rank generation.

3.1. Static Feature Extraction
The static feature set involves the set of parameters in the software program that have

a potential vulnerability that may lead to the bug in the code snippet or software failure.
The feature set is all about the metadata about the program, which elucidates the complete
structure of the program like the integer usage, conditional statements, the indentation of
the expressions and various labels, and the annotations that are used across the code. Ta-
ble 2 presents the complete set of static features considered in the bug localization process.

Table 2. Table representing the static features associated with the software.

Feature Description of the Feature
#n_Lines Total number of lines of code in the complete software program
#s_Lines Total number of lines of code corresponding to snippet

#indt Determines the level of indentation
#n_comments Number of comments in the complete program

Figure 1. Represents the static and dynamic features in statement rank generation.

3.1. Static Feature Extraction

The static feature set involves the set of parameters in the software program that
have a potential vulnerability that may lead to the bug in the code snippet or software
failure. The feature set is all about the metadata about the program, which elucidates
the complete structure of the program like the integer usage, conditional statements,
the indentation of the expressions and various labels, and the annotations that are used
across the code. Table 2 presents the complete set of static features considered in the bug
localization process.

Table 2. Table representing the static features associated with the software.

Feature Description of the Feature

#n_Lines Total number of lines of code in the complete software program
#s_Lines Total number of lines of code corresponding to snippet

#indt Determines the level of indentation
#n_comments Number of comments in the complete program

Sensors 2021, 21, 7401 5 of 21

Table 2. Cont.

Feature Description of the Feature

#s_comments Number of comments in the corresponding code snippet
#n_anno Number of annotations in the complete program
#s_anno Number of annotations in the corresponding code snippet
#n_label Number of labels in the complete program
#s_label Number of labels in the corresponding code snippet

#n_g_var Number of Global variables in the complete program
#n_l_var Number of Local variables in the complete program
#s_g_var Number of Global variables in the corresponding code snippet
#s_l_var Number of Local variables in the corresponding snippet
#n_opr Number of operators in the complete program
#s_opr Number of operators in the corresponding code snippet

#n_kyw Number of keywords in the complete program
#s_kyw Number of keywords in the corresponding code snippet
#n_null Number of null values in the complete program
#s_null Number of null values in the corresponding code snippet
#n_tok Number of tokens in the complete program
#s_tok Number of tokens in the corresponding code snippet

3.2. Dynamic Feature Extraction

The dynamic features of bug identification include the execution procedures and
the outcomes associated with them. There are various bug localization mechanisms like
Spectrum-Based Fault Localization [24], Predicate-based Fault Localization [25], and Pro-
gram snippet analysis. The dynamic features are recognized by executing the test cases
over the program, analyzing the program response to the test cases, and analyzing the
stack data to trace the program’s behavior. The dynamic features and the vulnerable code
snippets and statements are identified through either of the models, and all such statements
are ranked through an Aggregation-Based Neural ranking mechanism.

3.2.1. Spectrum-Based Fault Localization

In Spectrum-Based Fault Localization model, the possible fault and potential vulner-
ability ranking are assigned to each trace of program components like expressions, code
statements, conditional branching statements, declarations, and assignment statements
collected for each test case using a mathematical formula specific to the method. The
suspiciousness rank indicates the likelihood that the statement or a snippet in the software
program is defective. Using a spectrum-based fault localization strategy, every snippet’s
dependency information is analyzed while running test cases. The correlation and depen-
dency information are combined with a predetermined vulnerability analysis scheme to
approximate suspicious ranks for each such program element.

The ranking is based on the number of times the test cases successfully pass and
failover the number of times being executed [26]. Let us assume a program P which
is considered for the assessment in the current study with a set of elements which are
identified as {p1, p2, . . . , pn} such that ∑n

p=1 p ∈ P. The formula for rank assessment is
presented in Equation (1):

statrank(SBFL) =
f ailtc(stat)√

tot f ail tc(f ailtc(stat) + passtc(stat))
(1)

From Equation (1),
statrank—Represents the statement rank
f ailtc(stat)—Represents the fail test cases associated with the statement;
passtc(stat)—Represents the passed test cases associated with the statement;
tot f ail tc—Represents the total failed test cases throughout the program.

Sensors 2021, 21, 7401 6 of 21

This equation demonstrates this same fundamental concept of spectrum-based fault
localization approaches: the greater the number of times failed test cases execute a state-
ment, the greater the suspicious score of that statement; the greater the number of times a
statement is executed bypassed test cases, the relatively small the suspicious score of that
element; and thus illustrates the correlation among test cases and program components.
The evaluated ranking model will assist in prioritizing the statement with the code snippet
and assist in appropriate fault localization through the trace.

3.2.2. Predicate-Based Fault Localization

The predicate-based fault localization-based fault localization approach assesses the
statements ranks in the program with a set of predetermined predicates. The program
is then implemented for execution, and the values of predicates gathered throughout
executions are being used to rank the statements. By combing several executions, the
predicate-based approach pinpoints the key predicates associated with the preliminaries of
the software failure. Equation (2) determines the predicate-based ranking for the statement
within the program, and the rank was determined based on the execution of the test cases.

statrank(PBFL) =
2

1
α(stat) +

1
β(stat)

(2)

where α and β are increase and sensitivity and are determined in the Equations (3) and (4):

α =
f ailtc(stat)

passtc(stat) + f ailtc(stat)
− f ail′tc(stat)

pass′tc(stat) + f ail′tc(stat)
(3)

β =
log(f ailtc(stat))

log(tot f ail tc)
(4)

From Equations (3) and (4),
f ail′tc(stat)—Represents the fail test cases associated with the statement, where stat

has covered;
pass′tc(stat)—Represents the passed test cases associated with the statement, where

stat has covered;
The rank is determined through the harmonic mean of two factors, i.e., increase

identified by α(stat), and sensitivity identified by β(stat), where α(stat) and β(stat) are
the levels of predicate stat and differentiate the feature distributions of predicate stat for
unsuccessful executions across all implementations that are cover over stat.

3.2.3. Program Snippet Analysis

The program snippet analysis is performed over the behavioral aspect of the program
on executing a test case for analyzing the response in the run-time and stack trace. If the
target parameter is inaccurate, it may affect some other parameters in the software. In the
same way, statements with parameters or the literals in the same snippet have the potential
to be fault-inducing expressions as well. Each statement’s vulnerability rank is directly
proportional to how often it normalizes incorrect statements. Snippet analysis may be used
if there is just one failed test case. The statement that fails is used as the starting point, and
then the rest of the statements are stripped off from it.

Throughout implementation, if a statement is erroneous, the program will raise an
exception. The collection of active stack sessions throughout a problematic program’s
execution is also one of the most helpful debugging strategies [27,28]. The code snippet
and associated test cases used in the validation are being presented in the Table 3 for better
comprehensibility of the current study.

Sensors 2021, 21, 7401 7 of 21

Table 3. Table representing the code snippet with the outcome of test cases.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

Table 3. Table representing the code snippet with the outcome of test cases.

TC-1 TC-2 TC-3 TC-4 TC-5
✓ ✓ ✓ ✓ ✓
✓ ✘ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓
✓ ✓ ✘ ✘ ✓
! ! ! ! !
✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✘
✓ ✓ ✓ ✘ ✘
✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

The tick mark represents the pass of the test case associated with the corresponding
line of the code snippet, and the cross symbol represents the test case’s failure. Based on
the failed test cases, the corresponding statement is given the vulnerability ranking.

3.3. Feature Set Scaling and Initial Ranking
A feature scaling approach is used to standardize the overall range of features set in

input data. The feature set in the input program includes varying values throughout the
learning phase while minimizing the loss function. Scaling is performed over iterations to
make the localization algorithm reach the global or local best fast and precisely. In the
current study, the min-max normalization is performed in scaling the feature values in
the range 0–1 [29]. The normalizing approach known as Min-Max brings numerous ad-
vantages over traditional scaling techniques. Min-Max scaling is capable of handling the
non-Gaussian feature distribution. Min-Max normalization is made to solve the loss of
precision in a method that optimizes the gradient while moving toward the global solu-
tion. It produces target values ranging from 0 to 1 by taking the column’s min and max
values, as illustrated in Equation (5): 𝑓 = 𝑓 − 𝑓𝑓 − 𝑓 (5)

From Equation (5), the variable𝑓 denotes the new normalized values in the range
0–1, 𝑓 denotes the smallest values associated with the corresponding feature and the
variable 𝑓 denotes the largest value associated with the particular feature. The variable 𝑓 denotes the corresponding data sample. Now for fine-tuning the ranks of each of the
features that are identified, the ranking is performed in concern to the global best, result-
antly the vulnerability rank of the current feature is following the other features across
the complete program, and it does the job of localizing the bugs based on the impact of
the bug on the software [30,31]. 𝑠𝑡𝑎𝑡 = 𝑠𝑡𝑎𝑡 + 𝐺_𝐵𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 − 𝐿_𝐵𝑒𝑠𝑡_𝑠𝑡𝑎𝑡) (6)

From Equation (6), the variable 𝑠𝑡𝑎𝑡 denotes the vulnerability rank of the state-
ment at the corresponding iteration and the variable and 𝑠𝑡𝑎𝑡 denote the rank as-
sociated with the corresponding statement in the previous iteration. The variable 𝐺_𝐵𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 denotes the global best vulnerability ranking across the complete pro-
gram and similarly the variable 𝐿_𝐵𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 denotes the local best vulnerability
rank within the code snippet associated with the software program. The ranks on updat-
ing concerning the global best rank, the more vulnerable statements through the program
are prioritized to resolve first before the less significant statements.

TC-1 TC-2 TC-3 TC-4 TC-5

X X X X X
X 8 X X X
X X X X X
X X 8 8 X
! ! ! ! !
X X X X X
X X X X 8

X X X 8 8

X X X X X
X X X X X

The tick mark represents the pass of the test case associated with the corresponding
line of the code snippet, and the cross symbol represents the test case’s failure. Based on
the failed test cases, the corresponding statement is given the vulnerability ranking.

3.3. Feature Set Scaling and Initial Ranking

A feature scaling approach is used to standardize the overall range of features set in
input data. The feature set in the input program includes varying values throughout the
learning phase while minimizing the loss function. Scaling is performed over iterations
to make the localization algorithm reach the global or local best fast and precisely. In
the current study, the min-max normalization is performed in scaling the feature values
in the range 0–1 [29]. The normalizing approach known as Min-Max brings numerous
advantages over traditional scaling techniques. Min-Max scaling is capable of handling
the non-Gaussian feature distribution. Min-Max normalization is made to solve the loss of
precision in a method that optimizes the gradient while moving toward the global solution.
It produces target values ranging from 0 to 1 by taking the column’s min and max values,
as illustrated in Equation (5):

fnew =
f − fmin

fmax − fmin
(5)

From Equation (5), the variable fnew denotes the new normalized values in the range
0–1, fmin denotes the smallest values associated with the corresponding feature and the
variable fmax denotes the largest value associated with the particular feature. The variable
f denotes the corresponding data sample. Now for fine-tuning the ranks of each of
the features that are identified, the ranking is performed in concern to the global best,
resultantly the vulnerability rank of the current feature is following the other features
across the complete program, and it does the job of localizing the bugs based on the impact
of the bug on the software [30,31].

statRank = statRank−1 + G_Best_statRank − L_Best_statRank−1) (6)

From Equation (6), the variable statRank denotes the vulnerability rank of the statement
at the corresponding iteration and the variable and statRank−1 denote the rank associated
with the corresponding statement in the previous iteration. The variable G_Best_statRank
denotes the global best vulnerability ranking across the complete program and similarly
the variable L_Best_statRank−1 denotes the local best vulnerability rank within the code
snippet associated with the software program. The ranks on updating concerning the
global best rank, the more vulnerable statements through the program are prioritized to
resolve first before the less significant statements.

4. Proposed Model

The proposed ABNR model works are mechanized to identify the features based on the
significance using the self-attention layer through the weighted approach, and aggregation
is performed in the neural ranking process. The statements are then ranked based on the

Sensors 2021, 21, 7401 8 of 21

severity of the vulnerability using the softmax layer of the neural ranking model [32]. The
block diagram of the proposed model is presented in Figure 2 [33]. The code snippets that
are the part of the software program are fed as the input for the neural ranking model.
The neural ranking model identifies the features from the data and assigns the weights
to the features based on the importance of those feature in the fault determination. The
features are then correlated with the features that are already trained to the model using
the feature map and the probabilities are assessed. Then based on the probabilities the
ranks are provided to the statements.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 22

The proposed ABNR model works are mechanized to identify the features based on
the significance using the self-attention layer through the weighted approach, and aggre-
gation is performed in the neural ranking process. The statements are then ranked based
on the severity of the vulnerability using the softmax layer of the neural ranking model
[32]. The block diagram of the proposed model is presented in Figure 2 [33]. The code
snippets that are the part of the software program are fed as the input for the neural rank-
ing model. The neural ranking model identifies the features from the data and assigns the
weights to the features based on the importance of those feature in the fault determination.
The features are then correlated with the features that are already trained to the model
using the feature map and the probabilities are assessed. Then based on the probabilities
the ranks are provided to the statements.

Figure 2. Represents the block diagram of the proposed fault localization model.

4.1. Layered Architecture of the Aggregation-Based Neural Ranking
The layered model of the ABNR neural ranking model consists of multiple layers that

would determine the rank of the statement associated with the vulnerability. The model
architecture includes the self-attention layer, neural ranking layer through aggregation,
and the SoftMax layer approximating the suitable rank for the statement. The model is
trained with the data with similar statements with relevant vulnerabilities.

Neural Ranking techniques have subsequently been presented for determining the
relevance of a susceptible statement to a code snippet by examining the vulnerability
statements, patterns of statement fragments matching in the training data, or a combina-
tion of the two. By seeing a huge variety of vulnerable and normal code samples during
training, these models often learn to discriminate between the code feature distributions
associated with a pertinent and a less pertinent vulnerable statement-code snippet com-
bination. Compilations of statements in each category provide a partial order for the state-
ments in that list. Assigning a numeric score for every such statement usually induces the
kind of vulnerability ranking. The neural ranking technique aims to rank program state-
ments in an unseen lists manner comparable to how scores were determined from the
training samples.

Self-Attention Layer
The self-attention layer is mechanized to integrate several feature sources and allot

suitable weights to each source of information for fault localization. The neural ranking
model assigns the erroneous statement the maximum rank. Attributed to the reason that

Figure 2. Represents the block diagram of the proposed fault localization model.

4.1. Layered Architecture of the Aggregation-Based Neural Ranking

The layered model of the ABNR neural ranking model consists of multiple layers that
would determine the rank of the statement associated with the vulnerability. The model
architecture includes the self-attention layer, neural ranking layer through aggregation,
and the SoftMax layer approximating the suitable rank for the statement. The model is
trained with the data with similar statements with relevant vulnerabilities.

Neural Ranking techniques have subsequently been presented for determining the
relevance of a susceptible statement to a code snippet by examining the vulnerability
statements, patterns of statement fragments matching in the training data, or a combination
of the two. By seeing a huge variety of vulnerable and normal code samples during training,
these models often learn to discriminate between the code feature distributions associated
with a pertinent and a less pertinent vulnerable statement-code snippet combination.
Compilations of statements in each category provide a partial order for the statements in
that list. Assigning a numeric score for every such statement usually induces the kind of
vulnerability ranking. The neural ranking technique aims to rank program statements in an
unseen lists manner comparable to how scores were determined from the training samples.

Self-Attention Layer

The self-attention layer is mechanized to integrate several feature sources and allot
suitable weights to each source of information for fault localization. The neural ranking
model assigns the erroneous statement the maximum rank. Attributed to the reason that
various features have varying degrees of significance, the self-attention layer is utilized to
integrate and improve important data from static and dynamic features. The normalization
layer separates all three kinds of features, semantic, statistical, and dynamic. The self-
attention layer combines all three vectors and assigns the vector to the f (x), g(x), and
h(x) components [33]. Each layer would subsequently distinguish inputted features and

Sensors 2021, 21, 7401 9 of 21

produce a feature map. Self-attention connects data from various places within input
pattern to compute the scaled dot product attention, as shown in Equation (7):

attention(f (x), g(x), h(x)) = so f tmax

[
(f (x)× g(x))T

√dg(x)

]
× h(x) (7)

f (x) = R fi× fd (8)

g(x) = Rgi×gd (9)

h(x) = Rhi×hd (10)

From the above Equations (7)–(10), the components f (x), g(x), h(x) are the com-
ponents associated with statements, test cases, and values, respectively. The variables
fi, gi, hi denote the ith element of each of that feature, and the variables fd, gd, hd denote
the dimension associated with each of those features. The variable d denotes the spatial
dimension with finite set of features. The value √dg(x) divides the dot product of the
snippets with the possible vulnerable statements, and softmax is applied to obtain the
associated weights of each such feature. Earlier studies hypothesize that when d increases,
the amplitude of the dot product increases, forcing the softmax into areas with very tiny
gradients. To compensate for this impact, multiply the dot products by 1√dg(x)

that avoid

softmax converging toward less significant features. Typically, every statement’s rank is
calculated as a weighted sum of associated values, for each weight of the value being
determined by an objective statement for the statement using a homologous test case [34].
The layered architecture of the proposed model is presented in Figure 3.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

various features have varying degrees of significance, the self-attention layer is utilized to
integrate and improve important data from static and dynamic features. The normaliza-
tion layer separates all three kinds of features, semantic, statistical, and dynamic. The self-
attention layer combines all three vectors and assigns the vector to the 𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) components [33]. Each layer would subsequently distinguish inputted features and
produce a feature map. Self-attention connects data from various places within input pat-
tern to compute the scaled dot product attention, as shown in Equation (7): 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑓(𝑥) × 𝑔(𝑥))√𝑑 () × ℎ(𝑥) (7)𝑓(𝑥) = ℝ × (8)𝑔(𝑥) = ℝ × (9)ℎ(𝑥) = ℝ × (10)

From the above Equations (7)–(10), the components 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) are the compo-
nents associated with statements, test cases, and values, respectively. The variables 𝑓 , 𝑔 , ℎ denote the 𝑖 element of each of that feature, and the variables 𝑓 , 𝑔 , ℎ denote
the dimension associated with each of those features. The variable 𝑑 denotes the spatial
dimension with finite set of features. The value √𝑑 () divides the dot product of the snip-
pets with the possible vulnerable statements, and softmax is applied to obtain the associ-
ated weights of each such feature. Earlier studies hypothesize that when 𝑑 increases, the
amplitude of the dot product increases, forcing the softmax into areas with very tiny gra-
dients. To compensate for this impact, multiply the dot products by √ () that avoid soft-

max converging toward less significant features. Typically, every statement’s rank is cal-
culated as a weighted sum of associated values, for each weight of the value being deter-
mined by an objective statement for the statement using a homologous test case [34]. The
layered architecture of the proposed model is presented in Figure 3.

Figure 3. Represents the layered architecture of the fault localization model.

4.2. Weights Assessment Procedure
Weighing characteristics to enhance class labeling accuracy is possible when various

factors affect the class label differently. The normalized mutual information (NMI) [35]

Figure 3. Represents the layered architecture of the fault localization model.

4.2. Weights Assessment Procedure

Weighing characteristics to enhance class labeling accuracy is possible when various
factors affect the class label differently. The normalized mutual information (NMI) [35]
between each feature and the class label as the feature’s weight since mutual information
measures the independence of two variables. To better understand the NMI-based weight
assignment over the dataset D with T instances, which comprises two parameters p and

Sensors 2021, 21, 7401 10 of 21

q with m, n instances, respectively, over the class label c [36]. The weights for both the
features are determined through the following Equations (11) and (12):

ω(p) =
α(p, c)

mean(β(p), β(c))
(11)

ω(q) =
α(q, c)

mean(β(q), β(c))
(12)

From Equations (11) and (12), the variable α denotes the mutual information. Further-
more, the variable β denotes the entropy. The mutual information is determined through
the Equations (13) and (14):

α(p, c) =
m−1

∑
i=0

k−1

∑
j=0

∣∣pi ∩ cj
∣∣

T
log

(
T
∣∣pi ∩ cj

∣∣
|pi|
∣∣cj
∣∣
)

(13)

α(q, c) =
m−1

∑
i=0

k−1

∑
j=0

∣∣qi ∩ cj
∣∣

T
log

(
T
∣∣qi ∩ cj

∣∣
|qi|
∣∣cj
∣∣
)

(14)

Entropy, as it pertains to machine learning, is a measure of the unpredictability and
randomness of the analyzed information. The bigger the entropy, the more difficult it is to
make any inferences out from the information. The entropy is being assessed through the
Equations (15)–(17).

β(p) = −
m−1

∑
i=0

ρ

(
|pi|
T

)
log
(
|pi|
T

)
(15)

β(p) = −
m−1

∑
i=0

ρ

(
|pi|
T

)
log
(
|pi|
T

)
(16)

β(c) = −
m−1

∑
i=0

ρ

(
|ci|
T

)
log
(
|ci|
T

)
(17)

4.3. Aggregation Based Neural

The aggregation-based neural ranking model for the bug localization is robust in
assigning the ranks to the statements by considering the other statements within the code
snippet. The principle logic in the model is that if any of the statements are erroneous, the
consecutive statements after that are influenced by the erroneous statement. Resultantly
the scores of the statements are updated following the previous nodes along with their
vulnerability score. However, the scores of the statements are updated on normalizing each
statement and correcting them where so ever required. The mathematical model for the
same is presented in the current subsection of the study.

To better understand the process flow of the fault localization model, consider the
following diagram, which has four statements in the snippet labeled A, B, C, and D, in
which the erroneous origin statement is depicted by A. Statement D represents the data-
receiving destination. It is believed that the intermediate statements are located between
the statements and the nodes intended to be reached by the data. The fault rank is used to
determine the vulnerability associated with each corresponding statement. This procedure
is described in detail in Equations (18)–(23).

R(SA) = {(Intω(A)× ρ(A)) + ∆(ωA,B + ωA,C + ωA,D)} (18)

R(SB) = {ρ(B)− ∆(ωA,B + ωB,C + ωB,D)} (19)

R(SC) = {ρ(C)− ∆(ωA,C −ωB,C + ωC,D)} (20)

R(SD) = {ρ(D)− ∆(ωA,D −ωB,D −ωC,D)} (21)

Sensors 2021, 21, 7401 11 of 21

From Equations (18)–(21), various variables are being used to demonstrate the ranking
procedure by aggregating the weights associated with each statement.

R(SA)—Rank associated with statement A;
R(SB)—Rank associated with statement B;
R(SC)—Rank associated with statement C;
R(SD)—Rank associated with statement D;
Intω(A)—Initial weights associated with node A;
ρ(A)—Vulnerability probability of statement A;
ρ(B)—Vulnerability probability of statement B;
ρ(C)—Vulnerability probability of statement C;
ρ(D)—Vulnerability probability of statement D;
∆—The overall difference among the weights associated with statements;
ωi,j—Weigh the difference among the statements ‘i’ and ‘j’.
The aggregation-based ranking approach is reasonably fair in approximating the

vulnerability score is concerning the other statements within the same code snippet. The
initial probability is approximated through the softmax scores associated with the statement.
The working procedure of the aggregation model is demonstrated in Figure 4.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22

𝑅(𝑆) = 𝜌(𝐵) − ∆(𝜔 , + 𝜔 , + 𝜔 ,) (19)𝑅(𝑆) = 𝜌(𝐶) − ∆ 𝜔 , − 𝜔 , + 𝜔 , (20)𝑅(𝑆) = 𝜌(𝐷) − ∆ 𝜔 , − 𝜔 , − 𝜔 , (21)

From Equations (18)–(21), various variables are being used to demonstrate the rank-
ing procedure by aggregating the weights associated with each statement. 𝑅(𝑆)—Rank associated with statement A; 𝑅(𝑆)—Rank associated with statement B; 𝑅(𝑆)—Rank associated with statement C; 𝑅(𝑆)—Rank associated with statement D; 𝐼𝑛𝑡 (𝐴)—Initial weights associated with node A; 𝜌(𝐴)—Vulnerability probability of statement A; 𝜌(𝐵)—Vulnerability probability of statement B; 𝜌(𝐶)—Vulnerability probability of statement C; 𝜌(𝐷)—Vulnerability probability of statement D; ∆—The overall difference among the weights associated with statements; 𝜔 , —Weigh the difference among the statements 'i' and 'j'.

The aggregation-based ranking approach is reasonably fair in approximating the vul-
nerability score is concerning the other statements within the same code snippet. The ini-
tial probability is approximated through the softmax scores associated with the statement.
The working procedure of the aggregation model is demonstrated in Figure 4.

Figure 4. Represents the aggregative score model for fault localization.

The sample test case for evaluating the division of two numbers is presented through
the Algorithm 1. The outcome of the test case would be a pass or fail based on the provided
data. The test case would be evaluated against the data, and many such test cases are
associated with each such code snippet for evaluating the vulnerability score of the state-
ment.

Figure 4. Represents the aggregative score model for fault localization.

The sample test case for evaluating the division of two numbers is presented through
the Algorithm 1. The outcome of the test case would be a pass or fail based on the provided
data. The test case would be evaluated against the data, and many such test cases are associ-
ated with each such code snippet for evaluating the vulnerability score of the statement.

Algorithm 1 (Algorithm of sample test cases)

Sensors 2021, 21, x FOR PEER REVIEW 12 of 22

Algorithm 1 (Algorithm of sample test cases)
Input: Two input variables for performing the division and auxiliary variables
Output: The return values like the quotient and reminder.
 The Boolean values on executing the test case.
Step: Evaluate_Division_two_Numbers
 x:=7.0;

y:=4.0;
Run(Div:=q);
 Assert.equal(b, reminder);
 Assert.equal(valid,true);
Else
 Assert.equal(valid,false);

End Step
Begin sample_test_case (Passing)
 Let Š ∈ S denotes the set of passes test cases in S
 Š ⟵ Sample(Š)
Begin sample_test_case (failing)
 Let Š ∈ S denotes the set of passes test cases in S
 Š ⟵ Sample(Š)
Return ((Š) ∪ Š)

4.4. Dataset Acquisition and Experimental Setup
Siemens test case topic applications [37] and four Unix utility programmed like gzip,

sed, flex, and grep are considered to assess the proposed fault localization model [38]. The
data are the part of Typically, and many researchers have used these theme programs for
fault localization. Siemens test case programs are used for one fault, whereas Unix utility
applications include actual and injected flaws obtained from [39]. Each topic program in
the Siemens validation set contains around 1000 test inputs and comprises seven distinct
test programs: tcas, tot info, schedule2, print tokens, print tokens2, replace, and tot info2.
File compression and decompression are handled by the gzip program in the Unix real-
life utility program. Name files may benefit from the program’s ability to shrink their size,
which is why it is often used. The gzip program’s input consists of 13 different parameters
and a list of files to compress. With 6573 lines of code and 211 test inputs, the software can
do a lot. The sed software is used to make small modifications to a stream of input. It is
mostly used for parsing text input and making user-specified modifications to that data.
There are 360 test inputs and 12,062 lines of code in the program.

A lexical analyzer is what the flex program does. The input files were created of rules,
which are collections of regular expressions and C code. There are 13,892 lines of code in
all, and 525 test inputs are provided. Patterns and files are the two input parameters for
the grep program. Every file that includes a match to one of the patterns has lines printed
by the software. Lines of code: There are 12,653, and 470 inputs provided [40]. Real and
injected errors will now be included in Unix utility applications. The details of the subject
programs considered in the proposed model evaluation are presented in Table 4 [41,42].
The normal and vulnerable program statements are the samples that are used in the both
the training and the validation phase of the proposed model. Training data contains 60%
of the original data samples of the code. The overall samples are indeed made up of a 60%
training dataset and a 40% validation dataset chosen at random from normal and defec-
tive samples. The remaining 40% of the original dataset is the testing dataset assumed as
the unseen portions used to assess the ABNR fault localization performance.

Sensors 2021, 21, 7401 12 of 21

4.4. Dataset Acquisition and Experimental Setup

Siemens test case topic applications [37] and four Unix utility programmed like gzip,
sed, flex, and grep are considered to assess the proposed fault localization model [38]. The
data are the part of Typically, and many researchers have used these theme programs for
fault localization. Siemens test case programs are used for one fault, whereas Unix utility
applications include actual and injected flaws obtained from [39]. Each topic program in
the Siemens validation set contains around 1000 test inputs and comprises seven distinct
test programs: tcas, tot info, schedule2, print tokens, print tokens2, replace, and tot info2.
File compression and decompression are handled by the gzip program in the Unix real-life
utility program. Name files may benefit from the program’s ability to shrink their size,
which is why it is often used. The gzip program’s input consists of 13 different parameters
and a list of files to compress. With 6573 lines of code and 211 test inputs, the software can
do a lot. The sed software is used to make small modifications to a stream of input. It is
mostly used for parsing text input and making user-specified modifications to that data.
There are 360 test inputs and 12,062 lines of code in the program.

A lexical analyzer is what the flex program does. The input files were created of rules,
which are collections of regular expressions and C code. There are 13,892 lines of code in
all, and 525 test inputs are provided. Patterns and files are the two input parameters for
the grep program. Every file that includes a match to one of the patterns has lines printed
by the software. Lines of code: There are 12,653, and 470 inputs provided [40]. Real and
injected errors will now be included in Unix utility applications. The details of the subject
programs considered in the proposed model evaluation are presented in Table 4 [41,42].
The normal and vulnerable program statements are the samples that are used in the both
the training and the validation phase of the proposed model. Training data contains 60%
of the original data samples of the code. The overall samples are indeed made up of a 60%
training dataset and a 40% validation dataset chosen at random from normal and defective
samples. The remaining 40% of the original dataset is the testing dataset assumed as the
unseen portions used to assess the ABNR fault localization performance.

Table 4. Table representing the subject programs for evaluation.

Program Number of
Vulnerable Snippets

Number of Lines in
the Code Role Test

Cases

print_token 7 565 Lexical analyzer 4130
replace 32 412 Sequence replacement 2650

schedule 10 307 Priority scheduler 2710
tcas 41 173 Altitude separation 1608
Sed 7 12,062 Text manipulator 360

tot_info 23 406 Information Measure 1052
Gzip 5 6573 Data compression 211
Flex 22 13,892 Lexical analyzer 525
Grep 7 12,653 Sequence searcher 470

The performance of the proposed ABNR model is evaluated by executing multiple test
cases over the code snippets. The test cases assess the validity of the code snippet under
variable factors including the divergent inputs and operational conditions. The evaluations
are carried locally in the standalone computer by deploying the necessary software. The
details of the experimental environment where the experimentation is carried is presented
in Table 5.

Sensors 2021, 21, 7401 13 of 21

Table 5. Information about the implementation environment.

Environment Details Specification

Operating System Microsoft Windows 10
Processor Intel Xeon E5-2687W

Architecture 64-bit
Memory allotted 720MB

GPU NVIDIA Quadro P1000
Cuda-Parallel Processing cores 640

Language Python
Libraries used Pandas, Numpy, Scikit

5. Results and Discussion

To assess a defect localization approach’s efficiency, it is critical to use appropriate
measurements. The aggregate number of assertions is evaluated, Wilcoxon signed-rank
test and Top-N are all used in the current study. If it is to be determined, an appropriate
measure should be employed to assess the relevance and usefulness of a defect localization
method. The score is a criterion that is defined as the proportion of code snippet that does
not need to be inspected to identify a flaw in the program. The exam score is defined as the
percentage of code that has to be inspected until the first statement in which the problem
is located is reached during the examination process. The exam score (ES) is often used
in many research to assess the efficacy of a fault localization method [43,44]. A method α
with a lower exam score than that of another approach β will be regarded as being more
successful in comparison to technique B since technique α requires fewer code statements
to be inspected to identify any flaws than technique β. The ES values are mathematically
evaluated using the Equation (22), concerning the vulnerability score of the statement
recognized by Vs_Stat.

ES =
Vs_Stat

Num_o f _lines_o f _code
(22)

The cumulative number of statements that must be evaluated concerning subject
programs to identify errors is taken into account [45]. So, for any given programs with
n faulty versions, A(k) and B(k) are the percentages of statements that must be reviewed
for two fault localization techniques, A and B, to detect all defects inside the kth Faulty
version of the program. Approach B is more effective than technique A when it requires
a programmer to analyze fewer statements to find all flaws in the erroneous versions, as
shown in Equation (23); procedure B seems to be efficient over procedure A.

n

∑
k=1

B(k) <
n

∑
k=1

A(k) (23)

In addition, the Wilcoxon signed-rank test [46] is used to provide a rigorous empirical
assessment of methodologies in terms of their efficacy. Top-N represents the proportion
of errors within Top N (N = 1, 5, 10) places that a fault localization method ranks for any
problematic code snippet. As a result, the measure becomes stronger as the magnitude of
N in Top-N decreases [47]. The performance of the proposed model is compared against
the similar fault localization models Jaccard [48], Ochiai [48,49], Tarantula [48,50], software-
network centrality measure (SNCM) [42], fault localization technique based on complex
network theory (FLCN-S) [40]. The total amount of statements evaluated in Siemens’
validation set and Unix utility applications to find errors are presented in Table 6.

Sensors 2021, 21, 7401 14 of 21

Table 6. Denote the number of statements analyzed for fault detection from Siemen’s validation set.

print_token replace schedule schedule 2 Tot_info Tcas

Jaccard 602 457 569 580 456 380
Ochiai 518 435 533 538 345 307

Tarantula 570 492 525 571 425 363
SNCM 658 567 612 651 600 660

FLCN-S 475 398 488 504 275 292
ABNR 431 322 407 468 198 253

The proposed ABNR model outperforms compared to the other existing models for
fault localization. The performance is determined based on the number of statements being
evaluated to determine the faulty code snippet. The model capable of recognizing the
vulnerability with fewer statements is assumed to be efficient with lesser computational
efforts and faster response. From Table 6, it can be observed that the proposed model is
comparatively better than the other model considered. The graphs are generated from
tabular data in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22

Figure 5. Graphs representing the number lines of code evaluated for fault localization for each
category in Siemen’s validation set.

The performance of the proposed ABNR model is also evaluated against the Unix
utility application programs. The model has recognized the faulty statements in the code
snippet by evaluating the fewer lines of code, which needs comparatively lesser compu-
tational efforts and is much faster than its counterparts. The details about the number of
lines of code evaluated for Unix applications are presented in Table 7, and the correspond-
ing graphs are presented in Figure 6.

Table 7. Denotes the number of statements analyzed for fault detection in Unix utility applications.

 gzip sed flex grep
Ochiai 3342 4269 1497 3959

FLCN-S 2357 3651 1298 1848
ABNR 2109 3189 997 1241

Figure 5. Graphs representing the number lines of code evaluated for fault localization for each
category in Siemen’s validation set.

The performance of the proposed ABNR model is also evaluated against the Unix
utility application programs. The model has recognized the faulty statements in the
code snippet by evaluating the fewer lines of code, which needs comparatively lesser

Sensors 2021, 21, 7401 15 of 21

computational efforts and is much faster than its counterparts. The details about the
number of lines of code evaluated for Unix applications are presented in Table 7, and the
corresponding graphs are presented in Figure 6.

Table 7. Denotes the number of statements analyzed for fault detection in Unix utility applications.

gzip sed flex grep

Ochiai 3342 4269 1497 3959
FLCN-S 2357 3651 1298 1848
ABNR 2109 3189 997 1241Sensors 2021, 21, x FOR PEER REVIEW 16 of 22

Figure 6. Graphs representing the number lines of code evaluated for fault localization for each
category in the Unix utility program.

It can be observed from the values presented in Tables 6 and 7, that the proposed
aggregation-based neural ranking model performs as desired by assigning the ideal ranks
to the vulnerable statements that would assist in fault localization by verifying the fewer
statements. The proposed model is further evaluated through the Wilcoxon signed-rank
test concerning the confidence value of similarity among two independent samples of
code to compare overall sample average rankings of two samples using paired differential
tests. The ABNR has been evaluated like the other models such as Jaccard, Ochiai, Taran-
tula. The comparative analysis of the confidence measures is presented in Table 8, and
Figure 7 represents the graphs generated from the evaluated confidence values. The pro-
posed ABNR model has exhibited better confidence in evaluating the fault statements in
the code snippet.

Table 8. Denote the confidence level of fault detection from Siemen’s validation set.

 print_token replace schedule schedule 2 Tot_info Tcas
Jaccard 99.17 98.32 98.83 98.33 99.33 98.77
Ochiai 95.47 97.22 97.88 97.88 98.58 92.5

Tarantula 98.66 98.45 97.63 98.36 99.24 98.43
ABNR 99.43 99.12 99.65 99.21 99.57 99.23

Figure 6. Graphs representing the number lines of code evaluated for fault localization for each
category in the Unix utility program.

It can be observed from the values presented in Tables 6 and 7, that the proposed
aggregation-based neural ranking model performs as desired by assigning the ideal ranks
to the vulnerable statements that would assist in fault localization by verifying the fewer
statements. The proposed model is further evaluated through the Wilcoxon signed-rank
test concerning the confidence value of similarity among two independent samples of code
to compare overall sample average rankings of two samples using paired differential tests.
The ABNR has been evaluated like the other models such as Jaccard, Ochiai, Tarantula.
The comparative analysis of the confidence measures is presented in Table 8, and Figure 7
represents the graphs generated from the evaluated confidence values. The proposed
ABNR model has exhibited better confidence in evaluating the fault statements in the
code snippet.

Sensors 2021, 21, 7401 16 of 21

Table 8. Denote the confidence level of fault detection from Siemen’s validation set.

print_token replace schedule schedule 2 Tot_info Tcas

Jaccard 99.17 98.32 98.83 98.33 99.33 98.77
Ochiai 95.47 97.22 97.88 97.88 98.58 92.5

Tarantula 98.66 98.45 97.63 98.36 99.24 98.43
ABNR 99.43 99.12 99.65 99.21 99.57 99.23Sensors 2021, 21, x FOR PEER REVIEW 17 of 22

Figure 7. Graphs representing the confidence level of fault localized for each category in Siemen’s
validation set.

The Wilcoxon signed-rank test is performed over the Unix application programs to
assess the confidence of similarity among two independent code samples. The assessed
values for the same are presented in Table 9, and the generated graphs are presented in
Figure 8.

Table 9. Denote the confidence level of fault detection from Unix utility applications.

 gzip sed flex Grep
Ochiai 99.89 99.84 99.49 99.95

FLCN-S 99.92 99.89 99.56 99.97
ABNR 99.95 99.91 99.86 99.97

Figure 7. Graphs representing the confidence level of fault localized for each category in Siemen’s
validation set.

The Wilcoxon signed-rank test is performed over the Unix application programs to
assess the confidence of similarity among two independent code samples. The assessed

Sensors 2021, 21, 7401 17 of 21

values for the same are presented in Table 9, and the generated graphs are presented
in Figure 8.

Table 9. Denote the confidence level of fault detection from Unix utility applications.

gzip sed flex Grep

Ochiai 99.89 99.84 99.49 99.95
FLCN-S 99.92 99.89 99.56 99.97
ABNR 99.95 99.91 99.86 99.97Sensors 2021, 21, x FOR PEER REVIEW 18 of 22

Figure 8. Graphs representing the confidence level of fault localized for each category in Unix utility
applications.

The efficiency of the Fault localization approaches is evaluated based on their ability
to locate actual flaws. They also perform significantly better at incorporating the right re-
sponse over top N statements of their outcome. Usually, N would be 5 or 10. The study
has found that concentrating on factors other than location would lead to substantial ad-
vancements in fault localization. The assessed values concerning Top-N statements are
presented in Table 10.

Table 10. Denote the Top-N assessment for faults localized in Unix utility applications.

 Top-N gzip sed flex

Ochiai
5 29.15 32.82 29.11

10 44.27 40.67 39.12

FLCN-S
5 35.62 41.01 48.01

10 51.01 49.00 58.44

ABNR
5 41.21 48.27 54.11

10 57.89 54.20 66.02

It can be observed from the above table that the performance of the ABNR is better
compared to that of the counterparts as the proposed model is capable of localizing the
vulnerable statements more appropriately compared to the other approaches. The evalu-
ations on the proposed model have made it clear that the model is more precise with lesser
computational efforts in fault localization.

5.1. Practical Implication
The proposed fault localization model through the aggregation-based neural ranking

method is incorporated in the code editor names code debugger to evaluate the faults in
the code snippet. The fault localization model would update the ranks for each corre-
sponding statement in the code snippet on evaluating the code. The color box represents
the severity of the error or bug corresponding to the code. The orange color denotes the
possible fault or the vulnerability associated with the code statement, and the red color
represents the faulty statement. The green color represents the error-free statements, and

Figure 8. Graphs representing the confidence level of fault localized for each category in Unix
utility applications.

The efficiency of the Fault localization approaches is evaluated based on their ability
to locate actual flaws. They also perform significantly better at incorporating the right
response over top N statements of their outcome. Usually, N would be 5 or 10. The study
has found that concentrating on factors other than location would lead to substantial
advancements in fault localization. The assessed values concerning Top-N statements are
presented in Table 10.

Table 10. Denote the Top-N assessment for faults localized in Unix utility applications.

Top-N gzip sed flex

Ochiai
5 29.15 32.82 29.11
10 44.27 40.67 39.12

FLCN-S
5 35.62 41.01 48.01
10 51.01 49.00 58.44

ABNR
5 41.21 48.27 54.11
10 57.89 54.20 66.02

It can be observed from the above table that the performance of the ABNR is better
compared to that of the counterparts as the proposed model is capable of localizing
the vulnerable statements more appropriately compared to the other approaches. The

Sensors 2021, 21, 7401 18 of 21

evaluations on the proposed model have made it clear that the model is more precise with
lesser computational efforts in fault localization.

5.1. Practical Implication

The proposed fault localization model through the aggregation-based neural ranking
method is incorporated in the code editor names code debugger to evaluate the faults in the
code snippet. The fault localization model would update the ranks for each corresponding
statement in the code snippet on evaluating the code. The color box represents the severity
of the error or bug corresponding to the code. The orange color denotes the possible fault
or the vulnerability associated with the code statement, and the red color represents the
faulty statement. The green color represents the error-free statements, and the variable
“snp” denotes the snippet of the corresponding program. Figure 9 denotes the front end of
the practical implication model.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 22

the variable “snp” denotes the snippet of the corresponding program. Figure 9 denotes
the front end of the practical implication model.

Figure 9. Image of the code editor with fault localization model.

The dashboard embedded in the dashboard would be immediate assistance for the
developer to assess the statement’s vulnerability. The summary module is associated with
the editor that would conclude the metadata associated with the code snippet executed.
The developer can obtain the summarized information about the code snippet at a single
point. Figure 10 that is presented below denotes the summarized information about the
code snippet.

Figure 10. Image summarized report about the code snippet.

The proposed technology for fault localization integrated into the editor would assist
the developer in faster fault localization. Upon successfully coding a function in the pro-
gram or the code snippet of an application, the generated summarized report would assist
the developer in ease of debugging the program.

5.2. Threats to Validity
The proposed ABNR model is confined to a single error approximation and assigns

the ranks to the statements; all the statements that come after the vulnerable statements
are influenced by the erroneous statements. But the ABNR is limited for assessing the

Figure 9. Image of the code editor with fault localization model.

The dashboard embedded in the dashboard would be immediate assistance for the
developer to assess the statement’s vulnerability. The summary module is associated with
the editor that would conclude the metadata associated with the code snippet executed.
The developer can obtain the summarized information about the code snippet at a single
point. Figure 10 that is presented below denotes the summarized information about the
code snippet.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 22

the variable “snp” denotes the snippet of the corresponding program. Figure 9 denotes
the front end of the practical implication model.

Figure 9. Image of the code editor with fault localization model.

The dashboard embedded in the dashboard would be immediate assistance for the
developer to assess the statement’s vulnerability. The summary module is associated with
the editor that would conclude the metadata associated with the code snippet executed.
The developer can obtain the summarized information about the code snippet at a single
point. Figure 10 that is presented below denotes the summarized information about the
code snippet.

Figure 10. Image summarized report about the code snippet.

The proposed technology for fault localization integrated into the editor would assist
the developer in faster fault localization. Upon successfully coding a function in the pro-
gram or the code snippet of an application, the generated summarized report would assist
the developer in ease of debugging the program.

5.2. Threats to Validity
The proposed ABNR model is confined to a single error approximation and assigns

the ranks to the statements; all the statements that come after the vulnerable statements
are influenced by the erroneous statements. But the ABNR is limited for assessing the

Figure 10. Image summarized report about the code snippet.

Sensors 2021, 21, 7401 19 of 21

The proposed technology for fault localization integrated into the editor would assist
the developer in faster fault localization. Upon successfully coding a function in the
program or the code snippet of an application, the generated summarized report would
assist the developer in ease of debugging the program.

5.2. Threats to Validity

The proposed ABNR model is confined to a single error approximation and assigns
the ranks to the statements; all the statements that come after the vulnerable statements are
influenced by the erroneous statements. But the ABNR is limited for assessing the ranks
from the single statement error that can be further improvised by multi-error prediction
mechanism. The multi-error prediction model would assist in precise rank of the statements
for better localization probability.

6. Conclusions

The current study proposes a novel and efficient bug localization approach through an
aggregation-based neural ranking technique. The proposed model considers the vulnerable
statement, and ranking is provided to all the consecutive statements based on the faulty
statement, which will assist the developers in quickly and precisely pointing out the
vulnerability. The proposed approach on evaluating the benchmark subject programs like
the Siemens validation set and Unix Utility applications shows reasonable performance
than the counterparts. The model is evaluated across the divergent metric like the assertions
evaluated, Wilcoxon signed-rank test, and Top-N. The results have proven that the ABNR
model can localize the faults by evaluating fewer statements with better confidence. The
weights optimization would yield better performance, and incorporating the auxiliary
memory components for maintaining the state information would enhance the performance
of the fault localization model. The practical implication model shown in the results and
discussion section is expected to be the common feature for the majority of the code editors
in the future generation. Yet, there is good scope for research in assessing the overall rank
of the code snippet based on the faulty statements, which would determine the overall
quality of the software.

Funding: The author has not received any specific funding for this study. This pursuit is a part of his
scholarly endeavors.

Data Availability Statement: The data for evaluation of the model is being acquired from an open-
source repository, namely Software-artifact Infrastructure Repository (SIR), that consist of the subject
programs like print token, schedule, schedule 2, replace, tcas, tot_info that are part of Siemen’s
validation set and programs like gzip, sed, flex, and grep that are the part of the Unix utility suite.
The programs are associated with the test cases that would assist in tracing the vulnerable statements.

Acknowledgments: The author would like to acknowledge the College of Computer Sciences and
Information Technology, King Faisal University, Saudi Arabia, for providing the infrastructure to
carry out the research.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Wong, W.E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. A Survey on Software Fault Localization. IEEE Trans. Softw. Eng. 2016, 42,

707–740. [CrossRef]
2. Xiao, X.; Pan, Y.; Zhang, B.; Hu, G.; Li, Q.; Lu, R. ALBFL: A novel neural ranking model for software fault localization via

combining static and dynamic features. Inf. Softw. Technol. 2021, 139, 106653. [CrossRef]
3. Zhang, W.; Li, Z.; Wang, Q.; Li, J. FineLocator: A novel approach to method-level fine-grained bug localization by query expansion.

Inf. Softw. Technol. 2019, 110, 121–135. [CrossRef]
4. Zou, D.; Liang, J.; Xiong, Y.; Ernst, M.D.; Zhang, L. An Empirical Study of Fault Localization Families and Their Combinations.

IEEE Trans. Softw. Eng. 2021, 47, 332–347. [CrossRef]
5. Ferenc, R.; Bán, D.; Grósz, T.; Gyimóthy, T. Deep learning in static, metric-based bug prediction. Array 2020, 6, 100021. [CrossRef]
6. Zhang, W.; Wang, S.; Wang, Q. BAHA: A Novel Approach to Automatic Bug Report Assignment with Topic Modeling and

Heterogeneous Network Analysis. Chinese J. Electron. 2016, 25, 1011–1018. [CrossRef]

http://doi.org/10.1109/TSE.2016.2521368
http://doi.org/10.1016/j.infsof.2021.106653
http://doi.org/10.1016/j.infsof.2019.03.001
http://doi.org/10.1109/TSE.2019.2892102
http://doi.org/10.1016/j.array.2020.100021
http://doi.org/10.1049/cje.2016.08.012

Sensors 2021, 21, 7401 20 of 21

7. Jeong, G.; Kim, S.; Zimmermann, T. Improving bug triage with bug tossing graphs. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering
(ESEC/FSE ‘09). Association for Computing Machinery, New York, NY, USA, 24–28 August 2009; pp. 111–120. [CrossRef]

8. Ericwong, W.; Qu, Y. Bp Neural Network-Based Effective Fault Localization. Int. J. Softw. Eng. Knowl. Eng. 2011, 19,
573–597. [CrossRef]

9. Ghosh, D.; Singh, J. Spectrum-based multi-fault localization using Chaotic Genetic Algorithm. Inf. Softw. Technol. 2021, 133,
106512. [CrossRef]

10. Maru, A.; Dutta, A.; Kumar, K.V.; Mohapatra, D.P. Software fault localization using BP neural network based on function and
branch coverage. Evol. Intell. 2021, 14, 87–104. [CrossRef]

11. Rothenberg, B.C.; Grumberg, O. Must Fault Localization for Program Repair. In Computer Aided Verification. CAV 2020. Lecture
Notes in Computer Science; Lahiri, S., Wang, C., Eds.; Springer: Cham, Switzerland, 2020; Volume 12225. [CrossRef]

12. Lin, C.-T.; Chen, W.-Y.; Intasara, J. A Framework for Improving Fault Localization Effectiveness Based on Fuzzy Expert System.
IEEE Access 2021, 9, 82577–82596. [CrossRef]

13. Choi, K.-Y.; Lee, J.-W. Fault Localization by Comparing Memory Updates between Unit and Integration Testing of Automotive
Software in an Hardware-in-the-Loop Environment. Appl. Sci. 2018, 8, 2260. [CrossRef]

14. Zhou, C.; Kumar, R.; Jiang, S. Analysis of run-time data-log for software fault localization. In Proceedings of the 2011 American
Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 5127–5132. [CrossRef]

15. Liblit, B.; Naik, M.; Zheng, A.X.; Aiken, A.; Jordan, M.I. Scalable statistical bug isolation. In Proceedings of the 2005 ACM
SIGPLAN Conference On Programming Language Design and Implementation (PLDI ‘05). Association for Computing Machinery,
New York, NY, USA, 12–15 June 2005; pp. 15–26. [CrossRef]

16. Xu, B.; Qian, J.; Zhang, X.; Wu, Z.; Chen, L. A brief survey of program slicing. SIGSOFT Softw. Eng. Notes 2005, 30, 1–36. [CrossRef]
17. Troya, J.; Segura, S.; Parejo, J.A.; Ruiz-Cortés, A. Spectrum-Based Fault Localization in Model Transformations. ACM Trans. Softw.

Eng. Methodol. 2018, 27, 1–50. [CrossRef]
18. Xuan, J.; Monperrus, M. Learning to Combine Multiple Ranking Metrics for Fault Localization. In Proceedings of the IEEE

International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 28 September–3 October 2014; pp.
191–200. [CrossRef]

19. Li, X.; Zhang, L. Transforming programs and tests in tandem for fault localization. In Proceedings of the ACM on Programming
Languages, New York, NY, USA, 12 October 2017; Volume 1, pp. 1–30. [CrossRef]

20. Sohn, J.; Yoo, S. FLUCCS: Using code and change metrics to improve fault localization. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, 10–14 July 2017; pp. 273–283. [CrossRef]

21. Kim, Y.; Mun, S.; Yoo, S.; Kim, M. Precise Learn-to-Rank Fault Localization Using Dynamic and Static Features of Target Programs.
ACM Trans. Softw. Eng. Methodol. 2019, 28, 1–34. [CrossRef]

22. Li, X.; Li, W.; Zhang, Y.; Zhang, L. DeepFL: Integrating multiple fault diagnosis dimensions for deep fault localization. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, Beijing, China, 15–19 July
2019; pp. 169–180. [CrossRef]

23. Löwe, W.; Ludwig, A.; Schwind, A. Understanding software-static and dynamic aspects. In Proceedings of the 17th International
Conference on Advanced Science and Technology, Mielno, Poland, 17–19 October 2001; pp. 17–18.

24. Sasaki, Y.; Higo, Y.; Matsumoto, S.; Kusumoto, S. SBFL-Suitability: A Software Characteristic for Fault Localization. In Proceedings
of the 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Adelaide, Australia, 27 September–3
October 2020; pp. 702–706. [CrossRef]

25. Jiang, J.; Wang, R.; Xiong, Y.; Chen, X.; Zhang, L. Combining Spectrum-Based Fault Localization and Statistical Debugging: An
Empirical Study. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), San Diego, CA, USA, 10–15 November 2019; pp. 502–514. [CrossRef]

26. Abreu, R.; Zoeteweij, P.; Golsteijn, R.; van Gemund, A.J.C. A practical evaluation of spectrum-based fault localization. J. Syst.
Softw. 2009, 82, 1780–1792. [CrossRef]

27. Wong, C.; Xiong, Y.; Zhang, H.; Hao, D.; Zhang, L.; Mei, H. Boosting Bug-Report-Oriented Fault Localization with Segmentation
and Stack-Trace Analysis. In Proceedings of the 2014 IEEE International Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, 28 September–2 October 2014; pp. 181–190. [CrossRef]

28. Jiang, S.; Li, W.; Li, H.; Zhang, Y.; Zhang, H.; Liu, Y. Fault Localization for Null Pointer Exception Based on Stack Trace and
Program Slicing. In Proceedings of the 2012 12th International Conference on Quality Software, Washington, DC, USA, 27–29
August 2012; pp. 9–12. [CrossRef]

29. Alzahrani, A.O.; Alenazi, M.J.F. Designing a Network Intrusion Detection System Based on Machine Learning for Software
Defined Networks. Future Internet 2021, 13, 111. [CrossRef]

30. Naga Srinivasu, P.; Balas, V.E. Self-Learning Network-based segmentation for real-time brain M.R. images through HARIS. Peer J.
Comput. Sci. 2021, 7, e654. [CrossRef] [PubMed]

31. Srinivasu, P.N.; Rao, T.S.; Balas, V.E. A systematic approach for identification of tumor regions in the human brain through
HARIS algorithm. In Deep Learning Techniques for Biomedical and Health Informatics; Academic Press: Cambridge, MA, USA,
2020. [CrossRef]

http://doi.org/10.1145/1595696.1595715
http://doi.org/10.1142/S021819400900426X
http://doi.org/10.1016/j.infsof.2021.106512
http://doi.org/10.1007/s12065-019-00318-2
http://doi.org/10.1007/978-3-030-53291-8_33
http://doi.org/10.1109/ACCESS.2021.3086878
http://doi.org/10.3390/app8112260
http://doi.org/10.1109/ACC.2011.5989966
http://doi.org/10.1145/1065010.1065014
http://doi.org/10.1145/1050849.1050865
http://doi.org/10.1145/3241744
http://doi.org/10.1109/ICSME.2014.41
http://doi.org/10.1145/3133916
http://doi.org/10.1145/3092703.3092717
http://doi.org/10.1145/3345628
http://doi.org/10.1145/3293882.3330574
http://doi.org/10.1109/ICSME46990.2020.00076
http://doi.org/10.1109/ASE.2019.00054
http://doi.org/10.1016/j.jss.2009.06.035
http://doi.org/10.1109/ICSME.2014.40
http://doi.org/10.1109/QSIC.2012.36
http://doi.org/10.3390/fi13050111
http://doi.org/10.7717/peerj-cs.654
http://www.ncbi.nlm.nih.gov/pubmed/34435099
http://doi.org/10.1016/B978-0-12-819061-6.00004-5

Sensors 2021, 21, 7401 21 of 21

32. Deepalakshmi, P.; Lavanya, K.; Srinivasu, P.N. Plant Leaf Disease Detection Using CNN Algorithm. Int. J. Inf. Syst. Modeling Des.
(IJISMD) 2021, 12, 1–21. [CrossRef]

33. Chen, Z.; Tong, L.; Qian, B.; Yu, J.; Xiao, C. Self-Attention-Based Conditional Variational Auto-Encoder Generative Adversarial
Networks for Hyperspectral Classification. Remote Sens. 2021, 13, 3316. [CrossRef]

34. Li, L.; Lu, Z.; Watzel, T.; Kürzinger, L.; Rigoll, G. Light-Weight Self-Attention Augmented Generative Adversarial Networks for
Speech Enhancement. Electronics 2021, 10, 1586. [CrossRef]

35. Vinh, L.T.; Lee, S.; Park, Y.T.; d’Auriol, B.J. A novel feature selection method based on normalized mutual information. Appl.
Intell. 2012, 37, 100–120. [CrossRef]

36. Bagui, S.; Wang, T.; Bagui, S. A Novel Weighting Attribute Method for Binary Classification. Adv. Comput. 2021, 11, 1–9.
[CrossRef]

37. Hutchins, M.; Foster, H.; Goradia, T.; Ostrand, T. Experiments on the effectiveness of dataflow—And control-flow-based test
adequacy criteria. In Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, 16–21 May 1994;
pp. 191–200. [CrossRef]

38. Jiang, B.; Zhang, Z.; Chan, W.; Tse, T.H.; Chen, T. How Well Does Test Case Prioritization Integrate with Statistical Fault
Localization? Inf. Softw. Technol. 2012, 54, 739–758. [CrossRef]

39. Software-Artifact Infrastructure Repository. Available online: https://sir.csc.ncsu.edu/php/previewfiles.php (accessed on 29
October 2021).

40. Zakari, A.; Lee, S.; Hashem, I. A single fault localization technique based on failed test input. Array 2019, 3–4, 100008. [CrossRef]
41. Lanzaro, A.; Natella, R.; Winter, S.; Cotroneo, D.; Suri, N. An Empirical Study of Injected versus Actual Interface Errors. In

Proceedings of the 2014 International Symposium on Software Testing and Analysis (ISSTA 2014), Bay Area, CA, USA, 21–25 July
2014. [CrossRef]

42. Zakari, S.A.; Lee, P.; Chong, C.Y. Simultaneous Localization of Software Faults Based on Complex Network Theory. IEEE Access
2018, 6, 23990–24002. [CrossRef]

43. Singh, P.K.; Garg, S.; Kaur, M.; Bajwa, M.S.; Kumar, Y. Fault localization in software testing using soft computing approaches. In
Proceedings of the 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 21–23
September 2017; pp. 627–631. [CrossRef]

44. Zhu, L.; Yin, B.; Cai, K. Software Fault Localization Based on Centrality Measures. In Proceedings of the 2011 IEEE 35th Annual
Computer Software and Applications Conference Workshops, Munich, Germany, 18–22 July 2011; pp. 37–42. [CrossRef]

45. Wang, T.; Wang, K.; Su, X. Fault localization by analyzing failure propagation with samples in cloud computing environment. J.
Cloud Comp. 2020, 9, 17. [CrossRef]

46. Tong, H.; Wang, S.; Li, G. Credibility Based Imbalance Boosting Method for Software Defect Proneness Prediction. Appl. Sci. 2020,
10, 8059. [CrossRef]

47. Christakis, M.; Heizmann, M.; Mansur, M.N.; Schilling, C.; Wüstholz, V. Semantic Fault Localization and Suspiciousness Ranking.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, Prague, Czech Republic, 6–11 April 2019; Vojnar, T.,
Zhang, L., Eds.; Springer: Cham, Switzerland, 2019; Volume 11427. [CrossRef]

48. Hewett, R. Program Spectra Analysis with Theory of Evidence. Adv. Softw. Eng. 2012, 2012, 642983. [CrossRef]
49. Oberai, A.; Yuan, J.-S. Efficient Fault Localization and Failure Analysis Techniques for Improving IC Yield. Electronics 2018, 7,

28. [CrossRef]
50. Wong, W.E.; Debroy, V.; Li, Y.; Gao, R. Software Fault Localization Using DStar (D*). In Proceedings of the 2012 IEEE Sixth

International Conference on Software Security and Reliability, Washington, DC, USA, 20–22 June 2012; pp. 21–30. [CrossRef]

http://doi.org/10.4018/IJISMD.2021010101
http://doi.org/10.3390/rs13163316
http://doi.org/10.3390/electronics10131586
http://doi.org/10.1007/s10489-011-0315-y
http://doi.org/10.5923/j.ac.20211101.01
http://doi.org/10.1109/ICSE.1994.296778
http://doi.org/10.1016/j.infsof.2012.01.006
https://sir.csc.ncsu.edu/php/previewfiles.php
http://doi.org/10.1016/j.array.2019.100008
http://doi.org/10.1145/2610384.2610418
http://doi.org/10.1109/ACCESS.2018.2829541
http://doi.org/10.1109/ISPCC.2017.8269753
http://doi.org/10.1109/COMPSACW.2011.17
http://doi.org/10.1186/s13677-020-00164-z
http://doi.org/10.3390/app10228059
http://doi.org/10.1007/978-3-030-17462-0_13
http://doi.org/10.1155/2012/642983
http://doi.org/10.3390/electronics7030028
http://doi.org/10.1109/SERE.2012.12

	Introduction
	Literature Review
	Background
	Static Feature Extraction
	Dynamic Feature Extraction
	Spectrum-Based Fault Localization
	Predicate-Based Fault Localization
	Program Snippet Analysis

	Feature Set Scaling and Initial Ranking

	Proposed Model
	Layered Architecture of the Aggregation-Based Neural Ranking
	Weights Assessment Procedure
	Aggregation Based Neural
	Dataset Acquisition and Experimental Setup

	Results and Discussion
	Practical Implication
	Threats to Validity

	Conclusions
	References

