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Abstract: Different from traditional redundant manipulators, the redundant manipulators used in
the surgical environment require the end effector (EE) to have high pose (position and orientation)
accuracy to ensure the smooth progress of the operation. When analyzing the inverse kinematics
(IK) of traditional redundant manipulators, gradient-projection method (GPM) and weighted least-
norm (WLN) method are commonly used methods to avoid joint position limits. However, for
the traditional GPM and WLN method, when joints are close to their limits, they stop moving,
which greatly reduces the accuracy of the IK solution. When robotic manipulators enter a singular
region, although traditional damped least-squares (DLS) algorithms are used to handle singularities
effectively, motion errors of the EE will be introduced. Furthermore, selecting singular region through
trial and error may cause some joint velocities exceed their corresponding limits. More importantly,
traditional DLS algorithms cannot guide robotic manipulators away from singular regions. Inspired
by the merits of GPM, WLN, and DLS methods, an improved weighted gradient projection method
(IWGPM) is proposed to solve the IK problem of redundant manipulators used in the surgical
environment with avoiding joint position limits and singularities. The weighted matrix of the WLN
method and the damping factor of the DLS algorithm have been improved, and a joint limit repulsive
potential field function and singular repulsive potential field function belong to the null space are
introduced to completely keep joints away from the damping interval and redundant manipulators
away from the unsafe region. To verify the validity of the proposed IWGPM, simulations on a
7 degree of freedom (DOF) redundant manipulator used in laparoscopic surgery indicate that the
proposed method can not only achieve higher accuracy IK solution but also avoid joint position
limits and singularities effectively by comparing them with the results of the traditional GPM and
WLN method, respectively. Furthermore, based on the proposed IWGPM, simulation tests in two
cases show that joint position limits have a great impact on the orientation accuracy, and singular
potential energy function has a great impact on the position accuracy.

Keywords: inverse kinematics; redundant surgical manipulator; joint position limits; kinematic
singularity; improved weighted gradient projection method

1. Introduction

Compared with six degree of freedom (DOF) robotic manipulators, 7-DOF robotic
manipulators not only ensure motion accuracy of the end-effector (EE), but also optimize
other objectives due to the existence of a redundant DOF, such as avoiding obstacles and
adapting to human action [1–6]. Therefore, redundant manipulators have been widely
used in the medical and aerospace fields, etc.

However, 7-DOF manipulators not only improve the flexibility, but also increase
the difficulty of solving the inverse kinematics (IK) solution [7]. Indeed, achieving the
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6-DOF pose (position and orientation) given by the EE is equivalent to six equations
and seven unknowns, and there are innumerable solutions in theory. However, only
one set of the IK solution is needed in robot kinematics control. So far, many scholars
have studied the IK solution of redundant manipulators. These methods include geo-
metric method [8], gradient-projection method (GPM) [3,9], weighted least-norm (WLN)
method [10], extended Jacobian matrix method [11], and analytical method [12], etc. Some
artificial intelligence algorithms are also used in the IK solution of redundant manipulators,
such as genetic algorithm [13], particle swarm optimization algorithm [14], neural network
algorithm [15].

Geometric algorithms are not universal and their modeling and solving process
is complex. The extended Jacobian matrix method can only obtain an approximate IK
solution, which is not suitable for robotic manipulators with high accuracy. Analytical
algorithm is only applicable to robotic manipulators with specific configurations, or robotic
manipulators with some simplified processing [16,17]. It takes a long time for intelligent
algorithms to solve IK, which is not conducive to real-time control.

The GPM and WLN methods are popular algorithms for solving IK of redundant
manipulators, and have the effect of avoiding joint position limits. A weighted GPM [18]
and a clamping WLN method [19] were proposed for IK of a 7-DOF manipulator. Due
to the introduction of damping factors in the singular region, the position errors of the
EE are as high as 96.3 mm and 25 mm, respectively, which are not suitable for robotic
manipulators with high accuracy requirements. Hu [20] presented a gradient projection of
a weighted Jacobian matrix method for IK of a planar 3-DOF manipulator. However, this
method did not solve the problem of motion accuracy reduction caused by joint positions
near their limits. Kelemen [21] introduced an IK algorithm to avoid joint position limits,
singularities and obstacles. However, the position error of the EE is as high as 18 mm,
and the orientation error is not analyzed. This is not conducive to the further operation
of the EE. Jun [22] proposed an improved clamping WLN method for IK of a redundant
manipulator. However, the constant value of the repulsive potential field would lead to the
disadvantage of too large or too small repulsive force, which affected the motion accuracy
of the EE.

When robotic manipulators move to a Jacobian singular configuration, the Jacobian
inverse matrix becomes numerically unrealizable, which is not conducive to the motion
control. In [23–25], a damped least-squares (DLS) algorithm was used to handle singulari-
ties. Although the introduction of damping factors can solve the shortcomings of singular
configurations, the damping factors will lead to the decline of the motion accuracy of
the EE.

The existing GPM and WLN methods do not completely keep redundant manipulators
away from joint position limits and singular configurations, which can reduce the motion
accuracy of the EE. Different from traditional redundant manipulator, the redundant
manipulators used in the surgical environment require the EE to have high pose accuracy
to ensure the smooth progress of the operation. Therefore, based on the advantages of GPM
and WLN method, combined with the traditional DLS algorithm, an improved weighted
GPM (IWGPM) which introduces a joint limit repulsive potential field function and singular
repulsive potential field function as subtasks is proposed. A clamping weighted matrix
can make joints stop at their limits, and the introduced joint limit repulsive potential field
function generates virtual forces at the damping interval to make joints return to the flexible
interval. In the unsafe region, virtual forces generated by the singular repulsive potential
field function can make redundant manipulators move away from unsafe region and solve
the singular problem thoroughly.

The remainder of this paper is organized as follows: The kinematics of redundant
manipulators and the traditional GPM, WLN method, and DLS algorithm are briefly
reviewed in Section 2. The IWGPM is proposed to solve the IK problem of redundant
surgical manipulators with avoiding joint position limits and singularities in Section 3.
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In Section 4, to verify and evaluate the effectiveness of the proposed method, simulation
results and discussion are performed. Finally, the conclusions are presented in Section 5.

2. Kinematics Formulations

The forward kinematics is a nonlinear function that describes the relation between the
pose of the EE x ∈ Rm and joint position q ∈ Rn as follows:

x = f (q) (1)

The first-order derivation of the function:

.
x = J

.
q (2)

describes the velocities from the joint to the EE, where
.
x ∈ Rm represents the velocity

vector of the EE,
.
q ∈ Rn is the velocity vector of joints, and J ∈ Rm×n is a Jacobian matrix.

To obtain a unique solution
.
q, the Jacobian inverse J−1 or pseudo inverse J+ for

non-redundant or redundant manipulators, respectively, is used, as follows [26]:

.
q = J−1 .

x (3)

for non-redundant manipulators (m = n) and:

.
q = J+

.
x = JT

(
JJT
)−1 .

x (4)

for redundant manipulators (m < n).
It is not difficult to conclude that Equations (3) and (4) hold when J−1 and J+ exists,

and Equation (4) provides a least-norm solution. When robotic manipulators approach a
singular configuration, J−1 or J+ of the manipulators becomes numerically ill conditioned.
Furthermore, the vicinity of singular configurations may also cause joint velocities to
exceed the corresponding limits. To overcome this drawback, a DLS algorithm [23,25] is a
widely used approach that sacrifices accuracy of the IK solution to generate an improved
Jacobian matrix in the singular region. The DLS algorithm is expressed as:

JT .
x =

(
JT J + λ2 Im

) .
q (5)

where Im ∈ Rn is an identity matrix, and λ is a damping factor.
For redundant manipulators, the self-motion can be realized with some subtasks, with

not affecting the main task, which can be expressed by GPM [3]:

.
q = J+

.
x +

(
In − J+ J

)
z (6)

where In − J+ J is the projection operator onto the null space of the matrix J, and z is a
gradient vector of performance criterion as a subtask. The (In − J+ J)z is the homogeneous
solution for self-motion.

Avoidance for joint position limits as a subtask were presented as:

H(q) =
1
n

n

∑
i=1

(
2qi − qimax − qimin

qimax − qimin

)2
(7)

where qimin and qimax are the lower and upper limits of the i-th joint position, and qi is the
i-th joint position.

As a result, replace z with ∇H(q), Equation (6) can be derived further as follows:

.
q = J+

.
x + k

(
In − J+ J

)
∇H(q) (8)
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where k is a positive scalar coefficient to make the gradient rate of H(q) to be minimized,
and ∇H(q) is the gradient vector of H(q), which is described as:

∇H(q) =
[

∂H(q)
∂q1

∂H(q)
∂q2

· · · ∂H(q)
∂qn

]
(9)

The WLN method [10] is also used to avoid joint position limits through weighted
factors, and the transformations are introduced as follows:

Jw = JW−
1
2 (10)

.
qw = W

1
2

.
q (11)

.
q = W

1
2 J+w

.
x = W−1 JT

(
JW−1 JT

)−1 .
x (12)

where Jw and
.
qw are a weighted Jacobian matrix and a weighted joint velocity, respectively.

The W ∈ Rn×n is a diagonal and positive weighted matrix, and the i-th diagonal element is
expressed as:

wi(qi) =

 1 +
∣∣∣ ∂H∗(q)

∂qi

∣∣∣ ∆
∣∣∣ ∂H∗(q)

∂qi

∣∣∣ ≥ 0

1 ∆
∣∣∣ ∂H∗(q)

∂qi

∣∣∣ < 0
(13)

where ∆
∣∣∣ ∂H∗(q)

∂qi

∣∣∣ is the change rate of ∂H∗(q)
∂qi

, and H∗(q) is defined as follows:

H∗(q) =
n

∑
i=1

(qimax − qimin)
2

4(qimax − qi)(qi − qimin)
(14)

where qimin and qimax are the lower and upper limits of the i-th joint position, and qi is the
i-th joint position.

Figure 1 shows the distributions of wi(q) with qi. When qi is close to qimin and qimax,∣∣∣ ∂H∗(q)
∂qi

∣∣∣→ ∞ , this is wi(q)→ ∞ . From Equation (12), qi tends to zero, the corresponding
joint stops at its limit position, but it is not far away from its limit.
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Both GPM and WLN method can deal with singular problems, therefore, combining
Equations (5) and (8) can be redefined by:

.
q = J+G

.
x + k

(
In − J+G J

)
∇H∗(q) (15)
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J+G = JT
(

JJT + λ2 Im

)−1
(16)

Equation (12) can be rewritten as:

.
q = W

1
2 J+w

.
x = W−1 JT(JW−1 JT + λ2 Im)

−1 .
x (17)

3. Improved Weighted Gradient Projection Method

The WLN method is much more efficient than the GPM one in avoiding joint position
limits [20]. Due to the weighted matrix W, some joints stop at their limits, but this does
not keep them away from their limits. Furthermore, on solving singular problems, DLS
algorithms can prevent the problem of joint velocities exceeding the corresponding limits,
but motion errors will be introduced. More importantly, DLS algorithms cannot guide
redundant manipulators away from singular region. These conditions occur suddenly
during the operation, which is very unfavorable to patients. Therefore, based on GPM, a
joint limit repulsive potential field function and a singular repulsive potential field function
are introduced in the null space to solve the shortages of GPM, WLN, and DLS methods.

3.1. Clamping Weighted Matrix and Joint Limit Repulsive Potential Field Function

From Figure 1, it is easy to find that the starting and ending positions of W are difficult
to determine, which sometimes affects the validity of the weighted matrix. Therefore,
a buffer is added before the joint position limits, and the whole joint motion interval
is divided into damping interval and flexible interval, as shown in Figure 2. That is a
progressive clamping weighted matrix designed as follows:

Wc= diag(wc(qi)) (18)

wc(qi) =


f ( qitmin−qi

qitmin−qimin
) qimin ≤ qi ≤ qitmin

1 qitmin < qi < qitmax

f ( qi−qitmax
qimax−qitmax

) qitmax ≤ qi ≤ qimax

(19)

where f (·) is a smooth function varying from 0 to 1. The qitmin and qitmax are the lower and
upper damping thresholds before qimin and qimax, respectively:

f (x) =
(
−2x3+3x2

)2
(20)

qitmin = qimin + ξ(qimax − qimin) (21)

qitmax = qimax − ξ(qimax − qimin) (22)

where ξ is a positive constant scalar to determine the width of damping interval.
Then, Equation (17) can be rewritten as:

.
q = Wc JT(JWc JT + λ2 Im)

−1 .
x (23)

When qi run in the flexible interval, wc(qi) = 1. While qi runs in the damping interval,
the weighting matrix wc(qi) prevents qi from approaching its limit. When wc(qi)→ 0 , the
corresponding joints stop moving forever, which will affect motion control and reduce
pose accuracy of the EE.
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A joint limit repulsive potential field function (In −Wc)Ri(q) is introduced to solve
the drawback of Equation (23), and In −Wc is also a smooth weighted matrix, when qi runs
in the flexible interval, the joint limit repulsive potential field function is invalid. On the
contrary, when qi starts to enter the damping interval, the joint limit repulsive potential
field function Ri(q) = diag(r(qi)) comes into play to force the corresponding joints back
the flexible interval as far as possible. The r(qi) is defined as:

r(qi) =


qi−qitmin

qitmin−qimin
rmax qimin ≤ qi ≤ qitmin

0 qitmin < qi < qitmax
qi−qitmax

qimax−qitmax
rmax qitmax ≤ qi ≤ qimax

(24)

where rmax is the maximum potential field force, the closer the limit is, the bigger the
potential field force. When qi goes towards qimin, r(qi) is negative, and r(qi) is positive
when qi goes towards qimax.

Considering the joint limit repulsive potential field function and combining with GPM,
Equation (23) becomes:

.
q = Wc JT(JWc JT + λ2 Im

)−1 .
x

−
(

In −Wc JT(JWc JT + λ2 Im
)−1 J

)
(In −Wc)Ri(q)

(25)

where the second part on the right-hand side is a homogeneous solution, which does not
affect the main task.

3.2. A Novel DLS Method and Singular Repulsive Potential Field Function

In the traditional DLS algorithm, the damping factor function [27] is:

λ2
traditional =

 λ2
max

(
1−

(
σ
σb

)2
)

0 ≤ σ ≤ σb

0 σ > σb

(26)

The ε ∈ [0 , σb] is the singular region, and the selection of σb through trial and error
may result in joint velocities exceeding the corresponding limits, so a novel damping
function which includes a micro-buffer region ε ∈ (σb, σb

]
is presented to avoid the
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joint maximum velocities being exceeded owing to the small selection of σb. The novel
damping function is defined as:

λ2
noval =


λ2

max

(
1− 0.874·

(
σ
σb

)2
)

0 ≤ σ ≤ σb

λ2
max

(
0.5 + 0.5 cos

(
πσ
σb

))
σb < σ ≤ σb

0 σ > σb

(27)

σb = γσb (28)

where γ is a positive constant scalar to determine the width of micro-buffer region. In this
paper, the single region and micro-buffer region are called unsafe region.

The distributions of λ2 and damped inverse σ
σ2+λ2 with singular value is depicted in

Figure 3a,b, respectively. Through Figure 3b, it can be seen that in the case of no damping,
infinite damping inverse will occur at a singular configuration which will result in very
high joint velocities. Figure 3a,b show that the fixed damping value has the same effect in
the unsafe region, which is unfair to the micro-buffer region, while the traditional damping
function has an effect only in the singular region. However, except for the singular region,
the new damping function still has a micro-damping factor in the micro-buffer to prevent
the disadvantage that the joint speed exceeds the limit due to the small selection of σb.
Furthermore, the damping continuity in the singular and micro-buffer regions ensures the
continuity of joint velocities.
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λmax = 0.86, σb = 0.038, γ = 1.3.

When solving singular problems, traditional DLS algorithms generate motion errors
due to the introduction of damping factor in unsafe region, and it cannot guide robotic
manipulators away from unsafe region. It is suitable for the manipulator with low accuracy
requirements. However, this paper studies a surgical manipulator, which has very high
requirements for pose. Therefore, a singular repulsive potential field function F(q) [28] is
introduced to address the two deficiencies:

F(q) = K ·
[

J · ∇d(q)
‖|J · ∇d(q)|‖

]
· f (d(σ)|σb, σb) (29)

f (d(σ)|σb, σb) =


1 d(σ) < σb
1

1+eδ·(d(σ)− σb+σb
2 )

σb ≤ d(σ) ≤ σb

0 d(σ) > σb

(30)
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where K is a diagonal matrix that contains the maximum torque or force that we allow to
be applied to the operator in each spatial dimension. The matrix ∇d(q) is used to direct
the wrench away from unsafe region. The f (d(σ)|σb, σb) is given as [29], and d(σ) is the
distance to σmin = 0, the δ = 12/(σb − σb) is recommended. It can be observed from
Figure 4 that the change of f (d(σ)) in [ 0, σb ] is smooth and continuous.
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3.3. Resolution IWGPM

Considering 3.1 and 3.2, and combining with GPM, a novel method called IWGPM is
defined as:

.
q = Wc JT(JWc JT + λ2

noval Im
)−1 .

x(q)
−
(

In −Wc JT(JWc JT + λ2
noval Im

)−1 J
)
(In −Wc)Ri(q)

−
(

In −Wc JT(JWc JT + λ2
noval Im

)−1 J
)

F(q)

(31)

We define J+c = Wc JT(JWc JT + λ2
noval Im

)−1, the Equation (30) is represented as:

.
q = J+c

.
x(q)−

(
In − J+c J)(In −Wc

)
Ri(q)−

(
In − J+c J

)
F(q) (32)

In Equation (31), when Wc = In, Equation (25) becomes Equation (23). On the
contrary, when qi is in the damping interval, wc(qi) decreases gradually from 1 to 0, and
the corresponding joint velocity also gradually decreases to 0. Meanwhile, r(qi) increases
gradually from 0 to make qi return to flexible interval. In the safe region, all elements in
F(q) are zero, indicating that the singular repulsive potential field function does not work.
When redundant manipulators are gradually entering the micro-buffer region from the
safe region, some elements that cause singularities in F(q) increase gradually from 0 to
Fmax. In the singular region, the function F(q) is always Fmax. The function F(q) has pushed
redundant manipulators away from the unsafe region. From Equation (32), it is found that
(In − J+c J)(In −Wc)Ri(q) and (In − J+c J)F(q) pick from the null space of Jc do not generate
any motion at the EE.

4. Simulation Results and Discussion

In this section, simulations in the paper are implemented with the aid of the MATLAB
R2015a tool, and a computer equipped with an Intel Core™ i5-2450M CPU @ 2.50 GHz and
2 GB RAM as the control platform.
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A path starts from an initial pose of the EE, xinitial, to a desired pose, xdesired. The
path is divided into M smaller line segments for numerical integration. At any integration
step, the joint rates required to move the EE are calculated. Joint velocities are integrated
sequentially until the EE reaches the desired pose. Equations (8), (23), (25) and (32) can
be realized by an iterative algorithm and further applied to IK solution of redundant
manipulators. The iterative algorithm steps are as follows:

Step (1): Assume an initial pose expressed as Euler angles of the EE, xinitial ∈ R6×1.
Step (2): Plan a trajectory from xinitial to xM+1 = xdesired ∈ R6×1 with M intervals, and

assume the running time of the motion, T.
Step (3): Calculate a planned velocity at the interval k that moves the EE toward

xdesired as
.
x(k) =β

(xdesired − x(k))M
(M+1−k)T

(33)

where β > 1 is a deceleration factor.
Step (4): Compute general equation

.
q
(
k) =J+

(
q
(
k))

.
x(k) . Equations (8), (23), (25) and

(32) can be substituted the general equation.
Step (5): Calculate q(k+1) through the following equation:

q(k+1) =q(k)+
.
q(k)

T
M

(34)

Step (6): Through Equation (1), the new pose of the EE is obtained.

x(k+1) = f (q(k+1)) (35)

Step (7): Letting q(k) =q(k+1)
Step (8): If xdesired − x(k) ≤ ρ, where ρ is the accuracy of the actual pose and desired

pose of the EE specified by the user.
Return;
Else;
Repeat steps 3 to 6 for k = 1 · · ·M.
End.
To make the actual pose of the EE as close to the desired pose as possible, the closed-

loop algorithm is used in the IK solution process [30]. Therefore, Equations (8), (23) and
(32) can be represented as:

GPM:
.
q(k) = J+

(
k)(

.
x(k) + ΛEe)+k

(
In − J+(k)J(k))∇H(q(k)) (36)

WLN:
.
q(k) = Wc(k)JT

(
k)(J(k)Wc(k)JT(k) + λ2 Im

)−1( .
x(k) + ΛEe

)
(37)

IWGPM:
.
q(k) = J+c

(
k)(

.
x(k) + ΛEe

)
− (In − J+c (k)J(k))(In −Wc(k))Ri(q(k))

−(In − J+c (k)J(k))F(q(k))
(38)

where Λ is positive feedback gain, The Ee ∈ R6×1 is tracking error between the desired
pose and the actual pose of the EE, which is defined as follows:

Ee = [ Ex, Ey, Ez, Eφ, Eθ , Eψ ]
T (39)

where Ex = pxdesired− pxactual, Ey = pydesired− pyactual, Ez = pzdesired− pzactual, Eφ = φdesired−
φactual, Eθ = θdesired − θactual, Eψ = ψdesired − ψactual. The (pxdesired, pydesired, pzdesired) and
(pxactual, pyactual, pzactual) are desired position and actual position, respectively. The (φdesired,
θdesired, ψdesired) and (φactual, θactual, ψactual) are desired orientation and actual orientation
expressed as Euler angles of the EE, respectively.
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4.1. Case Study 1

Simulations are provided to demonstrate the validity and practicability of the pro-
posed IWGPM method for IK solutions of the redundant manipulators. The self-developed
7-DOF surgical manipulator with a diameter of 10 mm is taken as the research object. Its
structure diagram and coordinate system are shown in Figure 5a,b.
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The DH parameters of manipulator with joint position limit range are shown in Table 1.
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Table 1. Modified DH parameters and joint position limits of the 7-DOF manipulator.

i αi−1 (rad) ai−1 (mm) di (mm) qi (rad) [qimin,qimax]

1 0 0 d1 0 [−100,100] (mm)
2 π/2 20 0 q2 [0,π ] (rad)
3 0 68 0 q3 [−π/2,π/2 ] (rad)
4 π/2 32 0 q4 [0,π ] (rad)
5 π/2 0 86 q5 [−π,π ] (rad)
6 π/2 0 0 q6 [0,π ] (rad)
7 π/2 20 0 q7 [−π/2,π/2 ] (rad)

To illustrate the effect of the joint limit repulsive potential field function and singular
repulsive potential field function, a straight-line path is selected as the trajectory. Moreover,
the manipulator will enter a singular region, and some joints will be near their limit
positions. The initial joint position qinitial= [44, π

3 , π6 , π
10 ,−1.4349,π4 , π3

]T and final joint

position qdesired= [50, π
5 , π3 , π6 , π4 , π3 , π6

]T of the manipulator is set (Note: The final joint
position is used to calculate the desired pose of EE, which is to clarify that the joint position
is different from that obtained by the proposed IWGPM.), respectively, which determines
the initial pose and desired pose expressed as Euler angles of the EE:

pinitial = [39.9883, 117.4741, 175.0739]T(mm)

oinitial = [0.7865,1.4431,− 0.8411]T(rad)

and the desired pose is:

pdesired = [71.4062, 106.7273, 191.9349]T(mm)

odesired = [−0.9057,1.2209,− 0.0824]T(rad)

For comparison, simulations with traditional GPM and WLN method are also pre-
sented. To reflect the coincidence degree of IK solution x and xdesired, the pose accuracy is
defined as follows:

E = xdesired − xfinal =
[

E∗x , E∗y , E∗z , E∗φ, E∗θ , E∗ψ
]T

(40)

where the E∗x , E∗y , and E∗z are the position errors in the x, y, and z directions between the
final position and the desired position, respectively. The E∗φ, E∗θ , and E∗ψ is orientation
error in φ, θ, and ψ directions between the final orientation and the desired orientation,
respectively. The average deviation Ep between the final position and the desired position,
and the average deviation Eo between the final orientation and the desired orientation are
defined as follows:

Ep =
|E∗x |+

∣∣∣E∗y ∣∣∣+ |E∗z |
3

(41)

Eo =

∣∣∣E∗φ∣∣∣+ ∣∣E∗θ ∣∣+ ∣∣∣E∗ψ∣∣∣
3

(42)

To make simulations more convincing, in IWGPM, GPM, and WLN methods, we set
λmax = 0.86, ε = 0.038, ξ = 0.03, rmax = 8, β = 2,
K =

[
0, 0.08, 0.08, 0.08, 0.08, 0.08, 0

]T, T = 10 s, M = 100, Λ = 0.005.

4.1.1. Simulation Analysis of the Proposed IWGPM

Figure 6 shows the results obtained with the proposed IWGPM, in which
the IK solution is: qIWGPM= [43.955,1.7786,− 0.8667,0.5413,0.2849,1.2034,0.9499]T.
The corresponding pose of the EE is pIWGPM = [71.3652, 106.7190, 191.6448]T(mm)
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and oIWGPM = [−0.9381,1.2661,− 0.0038]T(rad), which are very close to pdesired =

[71.4062, 106.7273, 191.9349]T(mm) and odesired = [−0.9057,1.2209,− 0.0824]T(rad). The
average position deviation Ep is 0.113mm and the average orientation deviation Eo is
0.0387 rad. The pose accuracy of the EE is very high and meets the needs of surgery.
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During the operation of the EE of the manipulator from the initial pose to the desired
pose, Figure 6a shows the change curve of joint position. It is indicated that all joints
operate within their position limits, and the position change curve of each joint shows
continuity and small fluctuation. Figure 6b,c describe the deviation between the actual pose
and the desired pose of the EE. In the initial stage, the actual pose is far from the desired
pose. With the operation of time, it is more and more close to the desired pose. Figure 6d
shows that q7 is in the damping interval when t = 1 s and t = 1.8 s. Figure 6e indicates that
the limit repulsive potential energy function of q7 produces virtual forces r(q7) = 4.7111
and r(q7) = 7.9569 at the same time point, which makes q7 enter the flexible interval. The
joint q3 is also in the damping interval when t = 8.7 s. Figure 6e also indicates that the limit
repulsive potential energy function of q3 produces virtual forces r(q3) = −6.066 at the same
time point, which makes q3 enter the flexible interval. Figure 6f shows that the manipulator
runs in the unsafe region from t = 0.3 s to t = 8.6 s, and the damping factor is generated
during this time period to ensure that joint velocities operate within their limit, as shown
in Figure 6g,i. Meanwhile, the singular potential energy repulsion function generates a
virtual force F(q2) =F(q3) = F(q4) = F(q5) = F(q6) =0.08 to make the manipulator enter
the safe region at t = 8.7 s, as shown in Figure 6h.

4.1.2. Simulation Analysis of the GPM and WLN Algorithm

Figures 7 and 8 show the results of the traditional GPM and WLN method. In the two
methods, q7 exceeded its limit at t = 2.1 s and t = 1.8 s, respectively. It can also be clearly
seen from Figure 8d that q7 is in the damping interval from t = 1s to t = 1.8 s and exceeds
q7max from t = 1.8 s to the end of operation. When a joint exceeds its position limit, the
corresponding joint will stop moving. Furthermore, there is no virtual force to push the
joint away from its limit position, so when q7 exceeds its limit, it remains unchanged, as
shown in Figures 7a and 8a. It is known that the orientation of the manipulator is mainly
controlled by the rear three joints. Therefore, the stop motion of q7 seriously affects the
orientation accuracy of the EE, as shown in Figures 7c and 8c. Figures 7b and 8b describe
the deviation between the actual position and the desired position of the EE. In the initial
stage, the actual position is far from the desired position. With the operation of time, it
is more and more close to the desired position. According to Equations (41) and (42), for
GPM, the average position deviation Ep is 1.0452 mm and the average orientation deviation
Eo is 0.6058 rad. For WLN method, the average position deviation Ep is 1.46 mm and the
average orientation deviation Eo is 0.6144 rad. It also shows that the position accuracy
of the EE is acceptable, but the orientation accuracy is very low. Figures 7d and 8e show
that the manipulator runs in the unsafe region from t = 0.5 s to t = 10 s, and the damping
value is generated during this time period to ensure that joint velocities operate within
their limit, as shown in Figure 7e,f and Figure 8f,g, respectively.
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Figure 8. Simulation results obtained with the WLN method. (a) the change curve of joint position; (b) the change curve of
position deviation; (c) the change curve of orientation deviation; (d) the change curve of wc(qi); (e) the change curve of σmin;
(f) the change curve of λ2; (g) the change curve of joint velocity.
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In addition, Figures 7d and 8e show that the manipulator is always in the unsafe
region because of no singular potential energy function, while Figure 6f shows that the
existence of singular potential energy function urges the manipulator to stay away from
the unsafe region. i.e., the singular potential energy function introduced in this paper is
very effective in solving singular problems.

Table 2 shows that the IK solution obtained by the proposed IWGPM. Compared with
the proposed IWGPM, the position accuracy of the traditional GPM in x, y and z directions
is reduced by 95.5%, 98.4%, and 82.9%, respectively. The orientation accuracy in φ, θ and ψ
directions decreased by 94.3%, 97.7%, and 92.3%, respectively. The position accuracy of the
traditional WLN in x, y and z directions is reduced by 96.0%, 98.8%, and 89.1%, respectively.
The orientation accuracy in φ, θ and ψ directions decreased by 93.7%, 98.0%, and 92.6%,
respectively. It can be seen that the proposed IWGPM can obtain very high pose accuracy,
which fully meets the requirements of surgical accuracy.

Table 2. The deviation of the EE between the actual pose and the desired pose at t = 10 s.

Method Ex (mm) Ey (mm) Ez (mm) Eφ (rad) Eθ (rad) Eψ (rad)

IWGPM 0.041 0.0083 0.2901 0.0324 −0.0052 −0.0786
GPM 0.9143 −0.5202 1.7011 0.5647 −0.2269 −1.0259
WLN 1.0137 −0.7137 2.6513 0.5159 0.259 −1.0682

4.2. Case Study 2

To observe the influence of joint position limits and singular potential energy function
on the motion of the redundant manipulators. In this section, only the pose accuracy of the
EE is considered for the simulation test in the following two cases. In case 1, based on the
proposed IWGPM, joint position limit is removed and singular repulsive potential energy
function is retained, Equation (38) is expressed as:

.
q(k) = J+c (k)

( .
x(k) + ΛEe

)
−
(

In − J+c (k)J(k)
)

F(q(k)) (43)

In case 2, based on the proposed IWGPM, singular repulsive potential energy function
is removed and joint position limit is retained, Equation (38) is presented as:

.
q(k) = J+c (k)

( .
x(k) + ΛEe

)
−
(

In − J+c (k)J(k)
)
(In −Wc(k))Ri(q(k)) (44)

The initial pose, desired pose of the EE and other parameter settings are the same as
those in the previous section. The simulations are shown in Figures 9 and 10. In the first
case, the average position deviation of the EE is 0.6553 mm and the average orientation
deviation is 0.3353 rad. Compared with the proposed IWGPM, the average position
deviation is reduced by 82.8% and the average orientation deviation is reduced by 88.4%.
In the second case, the average position deviation of the EE is 2.5319mm and the average
orientation deviation is 0.2547 rad. Compared with the proposed IWGPM, the average
position deviation is reduced by 95.5% and the average orientation deviation is reduced
by 84.8%. It is not difficult to find that the position and orientation of the EE are affected
differently in the two cases. The first case has a great impact on the orientation accuracy,
and the second case has a great impact on the position accuracy.

In addition, Figure 9a shows that q7 exceeds q7max from t = 1.1 s to t = 10 s. However,
Figure 10d shows that q7 is in the damping interval at t = 1.3 s, 1.6 s, 2.85 s. Meanwhile,
the virtual force generated by the joint position potential energy function urges q7 to enter
the flexible interval, as shown in Figure 10a, which shows that the joint position potential
energy function is very effective. Figure 10e,f show that the manipulator is always in the
unsafe region from t = 0.7 s to t = 10 s. However, Figure 9d,e show that the manipulator
after t = 3 s is in the safe region, which shows that the singular potential energy function is
very effective. From another point of view, this section verifies that the proposed IWGPM
is very effective in solving joint position limits and singularity problems.
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position; (b) the change curve of position deviation; (c) the change curve of orientation deviation; (d) the change curve of
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5. Conclusions

In this paper, the proposed IWGPM for the IK solution of redundant surgical manipu-
lators is proposed to avoid joint position limits and singularities. The IWGPM introdues a
clamping weighted matrix and joint limit repulsive potential field function. The clamping
weighting matrix prevents approaching joint position limits, and the joint limit repulsive
potential field function belong to the null space of weighted matrix only generates virtual
force in the damping interval to make joints return to the flexible interval. Furthermore, a
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singular repulsive potential field function of belong to the null space of weighted matrix
is introduced. When robotic manipulators enter an unsafe region, the singular repulsive
potential field function produces an elastic force to drive manipulators back to the safe
region. The proposed IWGPM is applied to the 7-DOF redundant surgical manipulator
and compared with the traditional GPM and WLN methods. Simulations show that the
proposed IWGPM is effective in avoiding joint position limits and singularities, and the
pose accuracy is higher than achievable with the traditional GPM and WLN methods.

Furthermore, based on the proposed IWGPM, simulation tests in two cases are carried
out. The results show that joint position limits have a great impact on the orientation
accuracy, and singular potential energy function has a great impact on the position accuracy.
Future work will focus on obstacle avoidance and optimal path planning of redundant
surgical manipulators.
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