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Abstract: The high level of security requirements and low capabilities of constrained devices that
are connected to the Internet of Things (IoT) constitute a new challenge in terms of proposing an
authentication solution that deals with the problem of energy constraints. The Host Identity Protocol
Diet EXchange (HIP DEX) is primarily designed to be suitable for constrained devices and designed
to be resistant to Denial of Service (DoS) and man-in-the-middle (MITM) attacks. In this paper, we
propose an efficient saving energy solution to secure end-to-end (E2E) communications based on the
compression of the IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) header for
HIP DEX packets. We implement our solution in an IoT based-WSN over Constrained Application
Protocol (CoAP) in the application layer and Routing Protocol for Low power and lossy networks
(RPL) in the routing layer. We also propose a novel distribution model that minimizes the number of
signaling messages. Both proposed compression and distribution models for HIP DEX combined
with an original implementation of an opportunistic association establishment of the handshake,
constitute an efficient security solution for IoT. We called our solution Lightweight Compressed HIP
DEX in the IoT (LC-DEX).

Keywords: Lightweight Authentication; Wireless Sensor Network; Internet of Things; 6LoWPAN;
CoAP; RPL; mesh-under; energy consumption; opportunistic mode

1. Introduction

Wireless Sensor Networks based-IoT is becoming a part of our daily life and activi-
ties because of the emerging technologies and smart applications that deal with human
necessities. In the future Internet, there will exist more connected devices than there are
humans on our planet. These IoT devices, the subject of our research, are defined by two
main characteristics: (1) Having the possibility of connecting to the Internet; (2) Integrating
technologies such as firmware, sensors, actuators and even executing embedded Operating
Systems like Linux and Contiki. Applications in the IoT are of great variety, but can be
divided into two principal types in relation to the device’s state: mobile device or station-
ary device. Both types of IoT devices have the same major low energy and computation
capabilities. In addition, both can communicate together. The IoT targets at enabling
several new technologies, such as intelligent Wireless Sensor Networks (WSNs), smart
cities, smart homes, mobile-health (m-health) systems and industrial IoT. Thereby, new
types of communications occur [1] such as Man-to-Thing (M2T), Machine to Machine
(M2M), Ubiquitous Sensor Networks (USNs), and so on. These technologies have most
recently been established as Cyber-Physical Systems (CPSs) [2]. WSNs are considered as
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the most based-IoT unit [3] that we qualify as the IoT-backbone. For these reasons, research
is focused on lightening existing protocols that are compliant with IP-based standards,
to be suitable with WSN constraints. Being interested in studying security protocols and
techniques in IoT, we can conclude that the most adaptation IP-based protocols includes
Datagram Transport Layer Security (DTLS) [4], HIP DEX [5], a minimal Internet Key
Exchange (IKEv2) [6] and Extensible Authentication Protocol (EAP) [7]. HIP DEX was
standardized to be suitable with low power and resources constrained devices in IEEE
802.15 networks and used as a keying material in the MAC layer. While the existing
authentication and key generation protocols are adapted to be suitable for constrained
environments, HIP DEX was standardized to deal with the constraints of IoT and is also
strong against Denial of Service attacks by its puzzle mechanism. The most difficult chal-
lenge is to propose an authentication solution that perform both high level of security in
the connection establishment and low-energy consumption by the IoT device. HIP-based
solutions constitute a revolution in this field since they provide multihoming and mobility
of devices by decoupling the double function of IP addresses as geographical locator and
device identifier. Several works focused on proposing IP-based solutions with compression
techniques, minimizing exchanged messages to optimize the communication overhead,
and on computation acceleration or distribution techniques. So, privacy and individual
information related to mobility and health status are more critical when WSNs become
opened to the Internet. In our previous works [8], we demonstrated the efficiency of HIP
DEX in establishing a M2T secure association, and in [9], we proposed an efficient compres-
sion header of HIP DEX protocol over 6LoWPAN in a T2T architecture. Evaluation results
in terms of transmission delays during the handshake minimize considerably the com-
munication overhead between the communicating peers (the initiator and the responder).
Obtained results, in [9], are exploited in this paper to evaluate the energy consumption
during the handshake. This work is an extended version of our recent conference paper [9]
with amelioration of the proposed compression technique. We implemented HIP DEX as a
Linux daemon that could be executed under any sensor node that supports either Linux
and Contiki OS. This implementation was coded with the best support of IPv4, IPv6, and
6LoWPAN protocols and tested on mesh-under network architecture. Obtained results are
performed by real experiments in FIT IoT-LAB, an IoT-dedicated platform in France [10].
As demonstrated in Section 6.3, the overall E2E transmission delay performed by LC-DEX
is only 0.32 s, comparing with previous Elliptic Curve Cryptography (ECC) solutions.
Regarding energy efficiency, LC-DEX costs only 5.55 mJ for the hole handshake process. As
a complementary extension work of our conference paper, we contribute by the following
in this present work.

Compared with the previous HIP-based solutions, the innovations and contributions
of LC-DEX are as follows:

1. An optimization of our previous proposed compression of HIP DEX protocol header [9]
over an adaptable 6LoWPAN compression header;

2. A minimization of the optional signaling packets (NOTIFY and CLOSE_ACK) and a
proposition of a replacement technique in a novel distribution model;

3. An efficient minimization in the overall E2E transmission delays of the HIP DEX
handshake;

4. An important reduction on the computational and communication energy costs of the
handshake;

5. Alleviation of HIP peers from the scalar multiplication of the key generation by the
integration of a trust third party;

6. Proposition of a new lightweight security association establishment scheme for LC-
DEX;

7. Proposition of a HIP DEX opportunistic mode during handshake packets’ exchange
with the introduction of a Domain Name System service;

8. Studies of the security threats and requirements of the proposed solution.
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This paper presents the following sections: We present the problem statement in
Section 2. In Section 3, we present the background of this work regarding the authenti-
cation in IoT networks based on HIP solutions and the improved compression model in
comparison with the obtained results in the conference paper. Section 4 is dedicated to
the proposed minimization in the signaling packets and the novel proposed distribution
scheme. The evaluation and experimental results are presented in Section 6. We give an
overview of the memory requirements of our implementation in Section 7. The security
considerations are explained in Section 8. Section 9 presents the discussion of the results.
Finally, we end this work with the conclusion and future work in Section 10.

2. Problem Exposure and Motivations

The authentication process is more critical in a constrained network environment than
in a traditional network, since there are many types of IoT applications that can damage
the life of a human if the authentication phase fails. In this field, we can give an example
of a health sensor that is implanted on the heart of a patient and that must send sensitive
information to the medical server. We must not forget that IoT also connects the astronomic
application to the appropriate working group. Any error in the authentication may cause
hard spoilage in monitoring applications and/or satellites. Hence, for an efficient E2E
security establishment association on IoT, it is crucial to propose a solution that can secure
communication in (M2T) and in Thing-to-Thing (T2T) architectures. HIP DEX is the most
promising protocol designed especially for the constrained environment. HIP DEX is
characterized by the following encouraging features:

• The separation of the identity and the physical location of the communicating peers is
the strength of the HIP-based solution that facilitates end-users mobility and ensures a
good level of location privacy. HIP separates the end-point identifier and locator roles
of IP addresses. These qualities are highly recommended in many IoT deployments,
as in health care and military applications;

• The number of exchanged messages to establish a key agreement mechanism is only
four messages, which is not the case for the other security protocols;

• HIP is adopted as a lightweight solution for the WSN [8,9,11–13];
• The use of HIP as a Keying material and IPsec for the tunneling for securing the

communication between the two parts. This guarantees the security of communication
in the network layer (coupling IPsec with HIP) and, as a consequence, securing all
types of transport traffic layer (UDP or TCP);

• The protocol is designed to be resistant to Denial of Service (DoS) and man-in-the-
middle attacks [5].

The above-cited features are generic for both types of HIP protocol: HIP BEX (HIP
Base EXchange) and HIP DEX. HIP BEX has too-heavy cryptographic operations that could
not be supported by resource constraint devices such as mobile devices and base stations.
To address constrained devices better, the use of ECC has been proposed to be used with
HIP [11]. HIP introduces a cryptographic namespace of stable host identities (HIs) between
both network and transport layer. Besides enabling multihoming and mobility, the crypto-
graphic HIs ensure a mutual authentication Diffie–Hellman key exchange, in which the
generated symmetric-key usually protects an IPSec association. Consequently, ECC is the
best computational technique for generating key material with few operations in compar-
ison with asymmetric cryptographic algorithms such as RSA (Rivest–Shamir–Adleman)
without losing security level. The relevant differences that exist between HIP BEX and HIP
DEX are the total cancellations of the signature scheme in HIP BEX and the combination of
the DH key generation with an ECC variant (ECDH). Indeed, the HIP DEX protocol [5]
is primarily designed for resolving computation or memory-constrained sensor/actuator
devices. The constrained IP-enabled networks, such as 6LoWPAN networks, constitute the
backbone of research targeting the Internet of Things. In this context, we are studying, by
way of real experiments, the efficiency of HIP DEX in the handshake process in terms of
packets’ transmission delays in a 6LoWPAN-WSN IoT.
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3. Background and Related Works
3.1. Authentication Goals in IoT

Authentication in IoT is similar to that in the current Internet but, particularly, it
concerns the following:

• Devices with low memory and computational capabilities;
• New applications and services are provided between users and devices in IoT;
• Solid nodes and secure communication for users;
• IoT devices can be integrated into all aspects of existing domains;
• Security of communications between nodes in WSN is critical because it is difficult or

even impossible for human intervention after the deployment of sensors;
• Devices are battery-powered in general, and embedded applications must have low

computational costs to save energy;
• Real-time applications in IoT require a high level of security with lightness in execution;
• IoT domains become very wide and distance between the sensor node and/or servers

must not have a consequence on the communication overhead.

In the following section, we focus on detailing the existing HIP-based solution that
is the subject of this paper, then we provide an overview of several works of proposed
authentication solutions in IoT.

3.1.1. HIP-Based Solutions

In this section, we detail the principle techniques provided with authentication so-
lution based on HIP protocol. We also provide an overview and a comparison between
studied previous HIP-based authentication solutions discussed in this section (see Table 1).
HIP [14] protocol is an alternative solution to IKE/IPsec. HIP BEX is based on the cryp-
tographic host identities for mutual authentication, and it establishes dynamic security
associations between HIP peers on the Internet. HIP BEX uses the Diffie–Helman key
exchange. The handshake is composed of four messages. The public key is serving as a
host identifier that each HIP peer should have, and its counterpart private key is known
and used only by its legitimate owner. This pair of keys is useful for identification and
authentication aims. Once HIP security SA is established, the end-parties can start commu-
nicating data, securely, using ESP [15]. HIP BEX handshake involves heavy asymmetric
cryptographic operations using certificates and for this reason, it cannot be supported as it
is by constrained small devices. In [5], the authors propose to use HIP DEX as an alterna-
tive variant of HIP BEX by reducing its computational cost and introducing elliptic curve
cryptography in Diffie-Hellman policy ECDH (Elliptic Curve Diffie-Hellman). Only one
public key is used to compute the session key and to identify the communicating HIP peer.
Some researchers are focused on improving the efficiency of HIP DEX to be compatible
with the most constrained sensor nodes. In [16], the authors propose LHIP (Lightweight
HIP) solution that keeps the same structure of HIP BEX messages and provides a security
mechanism based only on hash functions to provide the integrity of the exchanged mes-
sages. Security features are maintained and communicated over the exchanged messages
but ignored by the pairs. LHIP is weak because it omits primordial security mechanisms
as mutual authentication and key exchange. Even if HIP (both HIP BEX and Diet-HIP)
is based on a few signaling messages to establish a secure association between two peers
on the Internet, these messages are very long and the expensive cost in terms of energy
consumption cannot be ignored and also the fragmentation/reassembly rate resulting
from the communication of similar messages within a 6LoWPAN network. To resolve
this problem, the authors in [17] propose a compressed layer for HIP DEX named Slimfit.
The compression concerns some fields in the HIP header and signaling parameters for the
reduction of the communication cost. The evaluation of the proposed compression demon-
strates a lower packet fragmentation rate and less energy consumption. Nevertheless,
the solution has compatibility problems with the standard HIP in addition to the heavy
computational cost that is relatively important, when it is executed by constrained sensor
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nodes. Besides, the given compression is not standardized according to the 6LoWPAN
compression rules. Relating to compression based solutions, CD-HIP [18] combines both
Compression (C-HIP) and Distribution (D-HIP [19]) techniques. This solution shows its
performance on the handshake and the delegation of the heavy cryptographic computation
to the third party (a collaborator). Sahraoui and Bilami’s solution (CD-HIP) shows its
performance against the previous works. Nevertheless, their solution is based on HIP
BEX that is not designed for constrained devices and even with the use of the third party
because it has an energetic cost (communication and computation) that is significantly high.
In [20], Ben Said et al. focused their work on a collaborative key establishment solution
for IoT devices. Consistently, a constrained sensor node delegates its heavy cryptographic
operation to a neighborhood that is less constrained. In the same work, the authors show
the possibility of integrating the collaborative proposition with TLS handshake and IKE key
generation protocols. Even though establishing a secure End to End connection between
two unknown sensors in heterogeneous networks has a great probability of establishing
insecure communication. CHIP for Collaborative HIP [21] presents a new protocol that is
the combination of some features of HIP BEX and HIP DEX. Accordingly to this solution,
the authors consider that the responder is the most constrained device than the initiator.
That is why they consider delegating the most cryptographic operations of the responder
to the proxies but for the initiator only some operations. CHIP includes several proxies on
the initiator side and another number of proxies on the responder side. Augmenting the
number of third parties increases the security risks and makes it almost impossible to fix
faults in the case of the failure of one of the proxies.

Table 1. Comparison between HIP based authentication solutions. (+) indicates high and (-) indicates low. Com.: Communi-
cation, Cpt.: Computational, F.T.: Fault Toleranc.

HIP Solution Layer Technique Com. Cost Cpt. Cost Translation
in the 6BR

DoS Attack
Resistance F.T.

LHIP [16] HIP Layer Omitting public key
cryptography + - May be

required Very weak - -

E-HIP [22] HIP layer Removing messages
and parameters + ++ May be

required Supported - -

HIP DEX [5]
HIP

layer/Data
link

Assumption of ECC
Diffie-Hellman

method
- ++ May be

required Supported -

D-HIP [19] HIP layer Distribution
messages ++ - - Required Server only - -

Slimfit [17] HIP layer Messages
compression - + May be

required Server only -

HIP DEX +
AMIKEY [23] HIP layer Lightweight key

management ++ + May be
required Server only +

HIP DEX [8] HIP layer/
Data link

HIP DEX
implementation in

WSN
- - - Required Supported +

CHIP [21] HIP layer Compression - - - Required Supported +

HIP DEX [8]
HIP

layer/Data
link

HIP DEX
implementation in

IoT
- - - May be

required Supported +

CD-HIP [18] HIP layer Compressed and
Distributed HIP BEX ++ ++ Required Supported +

Bettoumi et
al. [9] Data Link

Compressed HIP
DEX/6LowPAN

header
- - Required Supported +
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3.1.2. Existing M2M-IoT Mutual Authentication Solutions

We detail, in this section, existing IoT solutions that are not based on HIP protocol.
The authors of [24] propose a new mutual authentication protocol, based on public-key en-
cryption, for IoT. They demonstrate that the emulated solution is efficient on computational
cost and applies to device-to-device communication and device-to-server communication
for Smart City applications. The efficiency of the lightweight public-key encryption scheme
is studied only for communication cost, while evaluating the computation overhead for
resource-constrained IoT devices is a crucial criterion that must be considered for such
solutions. Besides, the authors conducted their evaluation with a 112-bits security level
when comparing with ECC solutions. Nevertheless, for a high level of security with an
ECC authentication solution, the recommended NIST curve is NIST P-256 [25]. The work
in [26] presents an Identity-Based Cross-Domain Authentication Scheme for the Internet
of Things (IRBA ). IRBA is an identity-based cross-domain authentication scheme for
the Internet of Things. Authors replace the traditional certificate of authority with the
Blockchain as a decentralized trust anchor and use the identity-based self-authentication
algorithm to replace the traditional PKI. Their evaluation is done separately for two sce-
narios: intra-domain access and inter-domain access. For authenticating the user, authors
define an algorithm based on identity and without the need of a trusted third party. IRBA
is an IoT authentication solution that is not suitable for communications in an architecture
based only on constrained devices since its implementation involves powerful servers (PC
with Intel-Core i5 6300 HQ CPU (2.30 GHz), 16 GB). Relating to Industrial IoT (IIoT), the
contribution in [27] defines an IoT mutual authentication solution for smart devices in IIoT
applications. The smart device must register on the server, as a first step. The second step
is mutual authentication between the smart device and the router. During these two steps,
five messages must be exchanged between the involved components (the smart device, the
authentication server, and the router). This high number of exchanged messages increases
the communication overhead. In addition, the smart sensor sends a pre-shared key set
to each router on the network, but authors do not define any mechanism to verify the
identity of the smart device by the router such as the implementation of Access Control
Lists. The same problem is posed when the smart device sends its unique ID to the server.
This solution is not resistant against node capture of the router, flooding attack, or data
freshness attack. Besides, the authors do not give an overview of the communication and
computation costs for different values of the setting parameters (only evaluation for a fixed
128 value for all the parameters) and there is not any comparison with related works. Re-
maining in IIoT, the proposed authentication protocol Lightweight Authentication and Key
Distribution (LAKD) for M2M communication [28] minimizes the number of exchanged
messages from five to four, comparing with [29]. LKAD is strong against many network
attacks and performs better costs in terms of communication and computation comparing
with previous works. IIoT is out of the scope of this paper.

3.2. Authentication with HIP DEX Protocol

HIP BEX is designed to be used in authentication between a client and a base station
and is not suitable for IoT and constrained environments. HIP DEX preserves general HIP
architecture and protocol semantics. Precisely, it redefines the cryptographic namespace
based on the network device’s public key fixed as a Host Identity (HI). As a consequence, a
new layer, placed between the network and the transport layer, is implemented based on
the defined namespace. Another fundamental parameter is the Host Identity Tag (HIT)
calculated using HI to represent its stable format. It serves as a fixed device identifier at
this layer on the network stack. It represents a marked characteristic of the HIP protocol
by allowing the mobility of devices without being dependent on IP addresses’ double
role of identification and geographical location. HIP DEX protocol aims to permit secure
communication of two entities based on cryptographic operations to guarantee a secure
communication link between hosts in a constrained environment. The first entity is known
as the initiator and the second one the responder. Then, HIP DEX is deprived of the



Sensors 2021, 21, 7348 7 of 36

calculation of transitory Diffie–Hellman keys and digital signatures. As a substitute, it
defines a light handshake phase based on static DH for mutual key agreement. HIP DEX
defines four types of messages (I1, R1, I2, R2). I1 is the first message that contains the
sender host identity tag (HIT_I) and a receiver host identity tag (HIT_R) considered as an
optional field [5]. The second message, R1, contains a puzzle (a cryptographic challenge)
that must be resolved by the Initiator like in HIP BEX, and the public key PKresp. The
initiator and responder produce DH Key by performing Elliptic Curve Diffie–Hellman
(ECDH) for the session key generation using public key (PK) values. The solution to the
puzzle must be sent in the third message I2 that contains the PKinit and the key parameters
F(DHk, x). The random values x and y are, respectively, the initiator’s and responder’s
private keys used to the final session secret key computation. The reinforcement of the
security in HIP DEX against the falsification of messages is guaranteed in I2 after the
definition of the MAC (Message Authentication Code) value. The fourth message R2 also
contains the responder’s key parameters F(DHk, y). The ECDH generated key is used to
encrypt the secrets (x, y), used after that to calculate the session key. Figure 1 presents the
standard exchanged messages during the handshake in HIP DEX.

Figure 1. Handshake exchanged messages of standard HIP DEX.

3.3. Overview of 6LoWPAN Compression Solutions

Packet compression is a fundamental technique adopted as an adaptation for several
protocols in the context of constrained networks. So, minimizing packet length has a direct
impact in minimizing the energy consumption of a constrained device in processing and
overcoming the big differences in capabilities of IP networks and WSNs integrated into
IoT. Especially, when the problem is related to traffic admission ability and the maximum
possible authorized size of the protocol data unit in both networks. IPv6 requires the
maximum transmission unit (MTU) to be at least 1280 octets. In contrast, IEEE 802.15.4’s
standard packet size is 127 octets. A maximum frame overhead of 25 octets spares 102 octets
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at the media access control layer. An optional but highly recommended security feature
at the link-layer poses an additional overhead. For example, 21 octets are consumed for
AES-CCM-128 leaving only 81 octets for upper layers. In this context, the 6LoWPAN adap-
tation layer specifies the rules of the compression and fragmentation of IPv6 datagrams so
that they could safely fit in Internet-integrated WSNs. The 6LoWPAN standard is defining
header compression and fragmentation of IPv6 datagrams over IPv6-connected WSNs.
The compression process consists of IP Header Compression (IPHC) and Next Header
Compression (NHC). Thus, all operations of compression/decompression and fragmenta-
tion/reassembly of all exchanged IPv6 packets in both directions (incoming/outgoing) are
performed by the 6LoWPAN Border Router (6BR). The compression technique has many
important advantages and interesting features, among which we cite:

• Minimal communication cost: reduced length of compressed packets has as conse-
quence a lower amount of formation will be communicated;

• Lower energy consumption for the communication phase;
• Minimal packet fragmentation rates: the reduced sizes of the exchanged packets help

to reduce the fragmentation frequency;
• Gain in storage space;
• Optimization of the used throughput: the removal of unnecessary bytes of informa-

tion from a packet’s header, data throughput will be eventually improved because
significant bytes in the message will be free to contain the application data.

The IPv6 protocol has a 40 bytes header that is composed of a substantial amount of
compressible fields: IPv6 source and receivers addresses, length, and many others [30].
These fields are the only ones that can be compressed or removed. So, IPv6 nodes are
hierarchically assigned 128 bit IP addresses, through an arbitrary length network prefix.
IEEE 802.15.4 devices may use either IEEE 64 bit extended addresses or, after an association
event, 16-bit addresses that are unique within a PAN. In 802.15.4, the maximum size of
the PSDU (Physical layer Service Data Unit) is 127 bytes. With the 25 bytes of the MAC
sub-layer (without security), this results in 102 bytes at the link level. By adding data
link layer security (AES-CCM-128), only 81 bytes remain available at the IP level. We
should also take into account the overhead due to the headers of IPv6 (40 bytes), any
extension headers, UDP (8 bytes), or TCP (20 bytes). Finally, the user data is low (33 bytes
on UDP and 21 by TCP) and does not allow respecting the IPv6 specifications which
impose a minimum MTU of 1280 bytes. The compressibility must respect the rules of
the 6LoWPAN standard. The reduced, and the uncompressed fields are systematically
preceded by encoding bytes to identify the protocol header and its compressible fields.
The encoding bytes are generally one byte. The encoding format takes advantage of the
fields that are implicitly known to all nodes in the network or can be deduced from the
MAC layer. RFC 49443 defines the compression mechanism for IPv6 headers for LowPAN:
LOWPAN_HC1. It also includes compression of the UDP header to 4 bytes but does not
allow compression of the Checksum, authorized only when upper layer use the tunneling
(as IPsec Encapsulating Security Payload tunnel mode). In addition, it restricts the range
of UDP ports from 61,616 to 61,631 to compress this value to 4 bits. This IPv6 header
compression can only be applied to local link addresses. To overcome this problem, an IETF
draft LOWPAN_HC1g has been published. LOWPAN_HC1g applies to global addresses
for IP multi-hop communications. These two compression mechanisms (LOWPAN_HC1
and LOWPAN_HC1g) are complementary. It is, therefore, necessary to implement both of
them. Today, the 6LoWPAN group proposes to use LOWPAN_ IPHC. It allows to replace
LOWPAN_HC1 and LOWPAN_HC1g. IPHC bytes result from compression of the IPv6
header. They mainly integrate quality of service information, next headers, the number
of hops, and the source/destination addresses compressed. With LOWPAN_ IPHC the
compression rate depends on the type of communication:
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• For communications over a local link, the IPv6 header can be reduced to 2 bytes
(1-byte Dispatch and 1-byte LOWPAN_ IPHC);

• For communications requiring multiple IP hops, the header can be compressed to
7 bytes (1-byte Dispatch, 1-byte LOWPAN_ IPHC, 1-byte Hop Limit, 2-bytes Source
Address, and 2-bytes Destination Address).

6LoWPAN does not concern only the IPv6 header, but also concerns the UDP header.
However, UDP does not dispose of a next header field, that is why it was necessary to
compress the header of the upper-layer protocol. This 6LoWPAN compression variant is
named 6LoWPAN-GHC [31].

3.4. HIP DEX Packet’s Format Analysis and Proposed Compression

In this section, we present the proposed compression in our previous work in [9], then
we explain the possible optimization in compression with the LC-DEX solution, comparing
with [9]. We distinguish three types of packet content: (a) static information that can be
omitted, (b) redundant information that can be compressed and (c) information that is
not compressible or should not be compressed. All HIP packets have a fixed header of
40 bytes. As presented in Figure 2, each packet is composed of a fixed protocol header and
a varying number of parameters. These parameters reach the actual protocol information.
Fixed header and HIP parameters both contain information that is useful in the context
of Internet-based communication, but that is unnecessary during packet transferal in
constrained network environments.

3.4.1. HIP Header Fix Parameters Compressibility

In HIP DEX as such in HIPv2, there are eight basic HIP packets. The mandatory ones
for the handshake process are (I1, R1, I2, R2). Details on these messages were presented in
Section 3.2. The rest of the messages are used for signalization: UPDATE, NOTIFY, CLOSE
and, CLOSE_ACK. The fixed HIP header is similar in design to the IPv6 extension header.
It starts with the required Next Header and Header Length fields and contains an 8-byte
alignment for the HIP DEX packet content. This content is constant for all HIP packets and
can be concluded from lower layers by summing the sizes of the frames (e.g., MAC service
data units) referring to the same HIP packet, with the elimination of the excluded 8 bytes
cited above. Consequently, the header length byte can be compressed. As such, the specific
part of the HIP header begins with information that is necessary for the correct analysis
of a packet, that is, the packet type and the protocol version. As there are eight packet
types in HIP DEX, five bits are sufficient for coding the packet type field rather than seven
bits according to the proposition in [32]. In our solution, we proposed to remove both
NOTIFY and CLOSE_ACK messages. So, the total number of exchanged HIP messages
becomes six, and only three bits are sufficient for coding the packet type field. The HIP
Version field (VER.) is four bits, and there was not defined version for HIP DEX separately
from HIP BEX. So, currently, the existing version is 2 for HIP BEX and consequently the
same for DEX. There are two possibilities: (1) the two communicating sensor nodes use
the same version; (2) different versions are executed in the HIP peers and if it is the case
we may assume that the 6LoWPAN bridge router (6BR) is charged by the adaptation for
the incoming packets from the Internet. In our work, we suppose that the communicating
peers use the same version. The version field maybe, as a consequence, compressed for the
generating packets from the sensor nodes and carried unchanged for those coming from
outside the network. Additionally, the following three bits are reserved (RES.) for future
use and set to zero, that is why they can be eliminated. Thus, the checksum is covering the
source and destination addresses in the IP header, it MUST be recomputed on HIP-aware
NAT devices. So, the 6LoWPAN packets sustaining HIP packets will be fragmented in the
6LoWPAN layer and specifically in the 6BR. So, keeping the original checksum value will
be useless. Consequently, we can remove the checksum field from the HIP header in the
WSN board. R1 and I2 packets contain one bit (A-bit) that is set when the Responder’s or
Initiator’s HIT, is anonymous, respectively, and if it should be stored or not by the peer.
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The management of anonymous nodes must be removed in the context of constrained
networks such as an IoT based-WSNs. A-bit is a part of the controls bit array (16 bits)
that we, accordingly, revoke safely. In the same context, HIT_R as redundant information
can even be completely revoked in both R1 and I2 messages which reach the source host
identifier information. The two fixed bits 0 and 1 in the header are used for compatibility
issues and must be set only in implementations referring to particular specifications and
so, they can be eliminated. Another important target for compression in the header is the
HIT_I field that has the heavy length of the header (128 bits). As we proposed to revoke the
HIT_R [9], we focus at this stage only on the HIT_R. HIT is a precision representation of
the Host Identifier and that is similar in structure to IPv6 addresses. HITs are composed of
three components: (a) an IANA fixed 28-bits prefix used to differentiate HITs from standard
IPv6 addresses; (b) a code identifier to indicate the compression algorithm used to generate
HIT from HI (4 bits); and (c) left-truncation of the HI to 96 bits as a representation of HIT
from HI (compression of HI). According to [19], HIT fields can be reduced to 96 bits, due to
the omission of the HIT prefix (the first 32 bits) and maintaining only the suitable generated
value. We propose to minimize the packet type field from seven bits to five bits, as proposed
by the authors of [32]. As the packet type field cannot exceed the actual standardization of
HIP DEX protocol because there are eight types of HIP packets, where the maximal value
is 19 (the packet type values in I1, R1, I2, and R2 messages are respectively 1, 2, 3, and 4.
With UPDATE, NOTIFY, CLOSE, and CLOSE_ACK, the packet type field takes the values
16, 17, 18, and 19 respectively). The performed amelioration in the proposed compression
in this paper and obtained results are presented in Table 2.

Table 2. HIP DEX header fields before and after proposed compression with LC-DEX.

HIP DEX Header Field Length before Compression
(bits)

Length After Compression
(bits)

Next header 8 0 or 8
Header length 8 0
Packet type 7 3
VER. 4 0
RES. 3 0
Fixed bits 0 and 1 2 0
Checksum 16 0
Controls 16 0
HIT_I 128 96
HIT_R 128 0

Header length 40 bytes Min header = 12 bytes, Max
header = 13 bytes

3.4.2. HIP DEX-6LoWPAN Header’s Compressibility

To apply a 6LoWPAN header compression in a given protocol, it is required to modify
the existing NHC encoding or determine a different NHC for the target protocol with
different ID bits. The first proposition enforces modification in the current standard. We
judge this solution as not a kind one. The possible second solution, used in this paper,
is to propose an extension to the 6LoWPAN standard such as the approach applicable
to distinguish NHC from GHC. Among encoding bits in the IPHC, is the NH bit that,
if set, indicates the next header is compressed using NHC. The NHC is used to encode
the IPv6 extension headers and the encapsulated header protocol. Generally, the NHC
encoding is only one octet and contains variable-length ID bits and the encoding bits for
a specific header. Compression possibilities for different next headers are concerned a
bit motif that is variable fixed immediately after the LOWPAN_IPHC compressed header.
The next header compression format must be defined after determining obligatory by the
perceived frequency of using that format. As HIP DEX header will be associated with
the 6LoWPAN header after compression. We can consider that the HIP header is the
adaptation of the 6LoWPAN extension header. Therefore, we propose a 6LoWPAN Next
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Header Compression for HIP DEX header (LOWPAN_NHC_HDX). The fixed HIP DEX
packets header is presented in Figure 2. The suggested encoding bytes of the compressed
HIP DEX header is defined in Figure 3. The resulting compressed IPv6/HIP DEX packet is
presented in Figure 4.

Figure 2. Fixed HIP DEX packets header [9].

(a) (b)
Figure 3. Proposed Compressed 6LoWPAN HIP DEX Header (in yellow). (a): Performed results in
the conference paper [9]. (b): Results obtained with LC-DEX.

Figure 4. Resulting compressed IPv6/HIP DEX packet.

4. The Proposed Optimization in HIP DEX Communication Energy Consumption

Over a communication in a multi-hop architecture, HIP is transported over Layer
2 only on the first hop, then routing packets are carried by the 6LoWPAN. For the best
optimization and reduction of energy costs of IoT end-devices, we are interested in the
four signaling messages UPDATE, NOTIFY, CLOSE, and CLOSE_ACK. These messages
are exchanged after the success of the establishment of the HIP association. Among these
messages, the NOTIFY is OPTIONAL, but the remaining three HIP packets are mandatory.
The reception of errors (e.g., of notification information) MUST be considered only as
informational, and there is not any modification of the HIP state machine purely based on
the received NOTIFY message. We propose to revoke NOTIFY packet as a consequence to
optimize the energy consumption of the HIP DEX handshake process besides our proposal
of the HIP header compression discussed in Section 3.4. Our proposition of the removal
of NOTIFY packet is the argument, also, by security consideration. Hence, the responder
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uses optional transmission of NOTIFY messages to inform the initiator by the reception of
an I2 message. However, the responder can not guarantee the authenticity of this packet
as it did not yet set up the Master Key Security Association [16]. So, an attacker can send
spoofed reception acknowledgment for an I2 packet and signal an arbitrary I2 processing
time to the initiator. For example, indicating lower processing time for I2 messages induces
a premature transmission by the responder. Another possible optimization is concerning
the CLOSE and CLOSE_ACK messages. The CLOSE message initiates the termination
procedure, and the CLOSE_ACK is sent to confirm the termination of the process. When
the initiator sends the CLOSE message, it waits for a waiting period until receiving the
CLOSE_ACK message. This waiting time is defined as the period that waits for the device
if no packet is sent or received (UAL: Unused Association Lifetime). UAL is important for
a constrained IoT node because it can not, mainly, be switched to an energy-saving state.
Therefore, we have proposed to remove the confirmation message. The authors of [22], also
proposed to remove CLOSE_ACK messages (in HIP DEX protocol), but their solution is
feasible only if the responder is a powerful network device with high capabilities in terms
of memory and computation (They implemented the responder as a laptop computer).
As a replacement scheme, we propose to terminate, immediately, the connection, by the
initiator, when the CLOSE message is sent to the CTTP (waiting time for the initiator is
null). The CTTP is charged to forward the termination message to the responder. We
treated the case where the CLOSE message is lost during the transmission. In this situation,
the initiator terminates the connection, but it is not the case for the responder that normally
waits for a backup time to terminate the connection or retransmission of the lost message.
The maximum required time for a TCP segment to be spent in the network is called the
MSL (Maximum Segment Lifetime). The standard HIP DEX state machine is presented in
Figure 5.

Since it is not feasible for IoT devices (like is the case in [22]), we assume that the
CTTP (see Section 4.1, for more details), sends a repeatable CLOSE message for the respon-
der, immediately after receiving the CLOSE message from the initiator. We consider the
following parameters:

• MSL_lp: The MSL time required to the last packet sent by the sender’s HIP to attend
the receiver’s HIP successfully;

• MSL_cttp = MSL
2 : The time spent by the CLOSE packet sent by the initiator to attend

the CTTP. We consider that it is the same interval time spent by the CTTP to send the
CLOSE packet to the responder;

• UAL_r: The UAL waiting time of the responder for the reception of a message, such
that UAL_r < UAL. If UAL_r = UAL, the responder may tear down the HIP
association;

• P_close: The time interval that the CTTP does not exceed to send repeated CLOSE
messages to the responder.

The CTTP iterates in sending the CLOSE messages to the responder during a maxi-
mum period P_close as P_close < MSL_cttp + UAL_r. In the HIP standard, the responder
waits for (MSL)×2+UAL period (in minutes) before tearing down the active association
even if no CLOSE packet was received. At the worst case, in LC-DEX, the responder is
waiting for MSL_lp + (MSL_cttp) + P_close and at the best case, the responder waits only
for MSL_lp + (MSL_cttp)×2. Within this solution, the responder terminates, certainly,
the connection with a minimized waiting period. We can assume that we minimize until
zero the probability of losing the CLOSE message. If a CLOSE message reaches the re-
sponder when the connection is already terminated (because CTTP still iterates sending
CLOSE packets), it has no effect. Figure 6 describes the proposed HIP DEX connection
termination. The minimization of the number of HIP DEX messages (from eight messages
to six) reduces the computation resources for their processing by the device and also, some
bandwidth of the communication channel. Furthermore, the benefits of the proposed
association termination solution are that it is suitable for constrained devices in IoT with
lower capabilities and is applicable in both HIP DEX and HIP BEX.
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Figure 5. HIP state machine diagram [5].



Sensors 2021, 21, 7348 14 of 36

Figure 6. Proposed HIP association termination.

4.1. HIP DEX Distribution Scheme

Multi-hop routing and processing in constrained networks such as WSN can lead to
transmission latency delay not tolerated, even with higher levels. In the following, we pro-
pose a distribution model so that we can minimize the communication and computational
overheads. The HIP DEX computational key agreement is known for its lightness compar-
ing with the original protocol version (HIP BEX) and it is the reason that HIP DEX was
designed. The proposed distribution model introduces a Collaborative Trusted Third Party
(CTTP) charged to alleviate the HIP-peers by executing the heavy cryptographic primitives
of the HIP DEX handshake in WSNs. To achieve that, the HIP DEX peers delegate the
most consuming CPU tasks to the HIP third party. The CTTP, in our scheme, is selected
among the internal IoT domain’s 6BR, except the edge router. The CTTP is, also, charged
with the compression and decompression of HIP DEX packets’ to minimize the compu-
tation overheads of HIP-peers. The following hypotheses are supposed to implement
our solution:

• Constrained nodes can achieve symmetric encryption;
• CTTP can perform asymmetric encryption because it is the most energy-consuming

operation in the HIP DEX process;
• Each node must have a direct connection to the selected CTTP nodes during the

initialization phase;

The distribution model is defined by two principles phases: The initialization phase
and the establishment phase. Concerning the second phase, we propose a new technique
that alleviate considerably the energy consumption of the HIP peers during association
establishment. Sections 4.1.1 and 4.1.2 detail these two steps.
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4.1.1. Initialization Phase

Only the IoT HIP domain network is concerned with the steps of this phase. The
outsider Internet hosts are not conscious of that. This phase initiates all the security
parameters for all the communicating entities. In general, there are two methods to
distribute the generated public key: manual and automated.

• Manual method: This solution requires a distribution of the public key to the end
devices by uploading it to their memory manually. So, there are no messages exchange
to distribute the key. The pair-keys must be changed periodically and charged again
to all end devices to resist key recovery. The manual distribution key is beneficial from
a security point of view because attackers can not divine the public key. However, it is
not practical for IoT networks qualified by their wide geographical areas;

• Automated method: Despite the energy efficiency of the manual key distribution
method (omitting the key transmission), it is not practical for many IoT applications
where the administrator must charge the key in devices memories at least once
a month.

We are adopting the automated method in our solution, which is more efficient
than the manual method in the context of IoT and does not require any administrator
intervention. This method considers the key to be exchanged in the HIP messages during
initial communication. Alternatively, it is stored in the device memory and is valid even
after the HIP association is terminated.

4.1.2. New HIP DEX Secure Lightweight Association Establishment Phase

On the issue of the Secure Lightweight Association (SLA) establishment phase, the
peers establish the HIP association for exchanging data over a secure communication
channel. The HIP DEX SA may be concluded in two steps. Firstly, the initiator and the
responder agree together publicly on an Elliptic Curve. Then, both the Initiator and the
Responder choose random values x and y, respectively, and also publicly choose a point
P from the curve. These two exchanges do not need any secure channel between the
initiator and the responder. The most expensive computational part of all elliptic curve
cryptosystems is the scalar multiplication in the form of k × P, where k is an integer and
P is a point, from the curve, called the generator. For this reason, we propose to delegate
all scalar multiplication operations to the collaborator node (6BR in our solution). By
definition, the node initiating a HIP DEX is the Initiator, and the peer is the Responder.
This distinction is negligent once the handshake is taken place and the communication is
operational. We propose, in this paper, a modification of the standard’s HIP DEX SA to
alleviate the overhead of scalar multiplication in the HIP peers during the computation
of the Host Identities (HI). To our knowledge, we are the first to propose such a solution
in HIP DEX and with a minimal number of collaborative third parties (only one). The
modification of the proposed SA is shown in Figure 7. The new proposed authentication
process is as follows:

1. The process starts with sending a trigger packet, I1, by the initiator to the responder;
2. After receiving I1 and a successful mutual authentication with the CTTP, the responder

sends the R1 packet containing the puzzle and (y, P) parameters to the CTTP;
3. The CTTP performs the scalar multiplication operation PKresp = y × P where the

resulting PKresp is the responder’s public key (HI). Then, the CTTP forwards R1
packet to the responder;

4. The initiator sends the puzzle solution, the random value x, and MAC in the I2 packet
to the CTTP;
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5. The CTTP computes PKinit = x × P that represents the initiator’s public key (HI)
such that the CTTP stores the generator point P received in step 2. The CTTP, also,
computes the secret’s initiator as S = PKresp × x. Then, CTTP forwards the received
I2 packet, including the computed S, to the responder;

6. On receiving I2, the responder checks the puzzle solution and does not need to
calculate the secret key because it has already been obtained from the CTTP. In HIP
DEX the secret key calculated by the initiator and the responder are the same;

7. The fourth message R2, also, has the MAC value, the key wrap parameters F(S,y) and
it finalizes the handshake.

In this paper, we propose a modification of the SA phase so that we minimize the
number of exchanged messages between the collaborator and the HIP-peers that deal with
the minimization of the communication costs. Besides, we detail in this work the mutual
authentication process between the collaborator (CTTP) and the HIP-peers (originally only
with the responder node).

Mutual Authentication Responder/CTTP

To perform an efficient and light mutual authentication between the CTTP and the
responder, we propose to implement a One Time Password (OTP) authentication process
regarding the lower capabilities of both the HIP-peers. Likewise, the solution given by
authors in [33] regarding the Micro–Macro IoT Authentication Paradigm, we propose an
authentication scheme based-OTP between two sensor nodes as the followings:

1. The adopted communication mechanism is the Direct Sensor Access (DSA) between
the CTTP and the HIP-peer (Responder);

2. The first step is about the reception of the hashed password, that will be used as
an ID by all the sensor devices in the HIP IoT domain. Indeed, the base station is
responsible for the generation of the OTP IDs that are updated after a certain period
and calculated by a dedicated algorithm. These OTP IDs are stored in a local database
in the target base station;

3. The second step is about the verification if it is the first time to communicate with the
CTTP. If it is the case, the mutual authentication using the OTP ID received, previously,
from the base station is used to identify each other. Otherwise, there is no need to
perform mutual authentication, and R1 is sent to the CTTP.

To verify the knowledge of the CTTP as identified previously, we propose to memorize
the IP address of the CTTP by the HIP-peers after the first successful mutual authentication.
A new mutual authentication is performed when one of the following cases arises: (1) When
the IoT devices receive the new OTP-ID; (2) If the network connection between the HIP-
peers and the CTTP is discarded.

The proposed SLA scheme has another advantage. Besides the energy efficiency, the
security threats are restricted because we consider that the HIP-peers and the collaborator
nodes are in the same IoT domain.
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Figure 7. Proposed HIP DEX Secure Lightweight Association Establishment Phase.

5. Introduction of a Domain Name System in a HIP DEX Opportunistic Mode

In HIP DEX, if the initiator does not know the HIT_R, it can initiate the HIP handshake
with the I1 packet where all bits of HIT_R are set to zero. This connection mode is
called opportunistic. In Section 3.4, we detailed the arguments to revoke HIT_R and to
minimize HIT_I size. We can optimize the communication overhead of HIP DEX packets
by alleviating their size in omitting both HIT_I and HIT_R with the introduction of a
Domain Name System (DNS) in an HIP DEX opportunistic mode. The proposed scenario
implements the CTTP as an HIP DNS server and steps for generating and distributing HIT
from HI are described in the following:

1. After computing the PKresp, the responder’s HI (HI_R): the public key (see Figure 7,
Section 4.1.2), the CTTP computes the HIT_R from HI_R using FOLD function to get
the 96 bits-compressed format of HI_R and then stores a binding of HI_R and HIT_R
corresponding to the responder in its local memory;

2. The CTTP sends the calculated HIT_R to the initiator;
3. After computing the PKinit as the initiator’s HI (HI_I) using FOLD function to get

the 96 bits-compressed format of HI_I and then stores a binding of HI_I and HIT_I
corresponding to the initiator in its local memory;

4. The CTTP sends the calculated HIT_I to the responder.

Introducing a DNS server to distribute HITs for HIP peers has the major advantage of
the minimization in the computation cost due to the delegation of the HITs’ computation to
the CTTP. This solution encourages the establishment of a secure association in HIP DEX in
an opportunistic mode with minimal energy consumption. This solution can be generalized
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to generate the HIT_SUITE_LIST that represents a group of initiator’s and responder’s
IDs. The HIT_SUITE_LIST is defined in HIP DEX to allow the initiator to identify the IDs
supported by the responder and the same benefit for the responder. With our proposed
solution, both the initiator and the responder receive the HIT of each other from a third
party and be sure that it is a legitimate HIP peer. Security threats and mechanisms to secure
the third party as it has a main task in the handshake are discussed in Section 8.

6. Evaluation and Experimental Results

The fundamentals of cryptographic techniques used in IoT should respect the con-
straints of sensor nodes and the evaluation criteria are mainly the complexity of code,
packets’ sizes, processing time, and energy consumption. In the rest of this paper, we
demonstrate that we respect all of these criteria. Our network setup and our evaluations
were conducted on FIT IoT-LAB [10] that provides a large-scale infrastructure facility and
experimental platform suitable for testing small wireless sensor devices and heterogeneous
communicating objects. The FIT IoT-LAB is a real experimental testbed that allows users to
implement a real experimental scenario since it embeds many Access Points in the build-
ing. It provides full control of network nodes and direct access to the gateways to which
nodes are connected, allowing researchers to monitor several network-related metrics. FIT
IoT-LAB features over 2000 wireless sensor nodes spread across six different sites in France.
For our experimentation, we chose nodes from the site of Grenoble. The IoT-LAB hardware
infrastructure consists of a set of IoT-LAB nodes. A global networking backbone provides
power and connectivity to all IoT-LAB nodes and guarantees the out-of-band signaling
network needed for power and command purposes and monitoring feedback. Various
hardware platforms are available on FIT IoT-LAB: WSN430 Node, M3 Node, A8 Node,
B-L072Z-LRWAN1 LoRa kit, and so forth. We have executed our experimentations on
A8 Nodes because they allow running a high-level OS like Linux and Contiki. Another
central reason for this hardware choice is that our code implementation of the HIP DEX
protocol is written in C++ and executed with the Makefile method for Linux operating
system. It is our implementation described in our previous work in [9] where we added
necessary libraries for the compression (explanation is below in this section). We have
modified the code so that it enables handshakes in 6LoWPAN architectures. A8 node’s
components are described in Table 3. Protocols used at the different network layers are
detailed in Table 4. We evaluated the handshake delays explained in the following sections,
in a WSN based-IPv4-IoT, and a WSN based-6LoWPAN-IoT architecture. In the second one,
we configured three A8-M3 nodes: the first node as Initiator, the second node as Responder,
and the third one as 6LoWPAN bridge router (CTTP). Both the initiator and the responder
are configured as CoAP servers.

Table 3. A8 device specification.

Component Description

CPU ARM Cortex-A8 with M3 co-microcontroller
Speed 72 Mhz
RAM 256 MB
Transceiver IEEE 802.15.4
Radio Bandwidth 250 kbps

6.1. Network Model

Figure 8 shows the adopted architecture for the evaluation of the efficiency of trans-
mission delays of HIP DEX handshake before and after the proposed compression.
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Table 4. Used protocols on the network layers.

Layer Protocol

Application CoAP
Transport TCP
Network 6LowPAN-RPL
Link IEEE 802.15.4

Figure 8. Adopted 6LoWPAN-based IoT architeture.

6.2. Minimization of HIP DEX Handshake Packets’ Sizes

In this section, we present the performance of the HIP DEX packet header compression
discussed in Section 3.4. In Table 5, we present the handshake packets’ sizes before and
after the compression. We deduce that our novel proposed compression scheme in LC-
DEX achieves reduction gains of all HIP DEX packets sizes’ about 2 times comparing
with results obtained in our previous work in the conference paper [9]. For this aim, we
give a comparison of the amelioration in packets’ sizes performed by our work in [9] in
comparison with standard HIP DEX and obtained results of LC-DEX comparing with
standard HIP DEX.

Table 5. HIP DEX handshake packets’ sizes in bytes before and after proposed compression.

Packet
Packet’s Size
before Com-

pression

Packet’s Size
after Com-

pression [9]

Packet’s Size
after Com-
pression
LC-DEX

Percentage
Gain [9]

Percentage
Gain with
LC-DEX

I1 137 122 110 11% 20%
R1 228 213 201 7% 12%
I2 284 269 257 5% 9.5%
R2 193 178 166 8% 14%

Overall
packets sizes 842 782 734 7% 13%

These reductions have a direct consequence in minimizing the computational and
communication overhead of the overall HIP DEX handshake. Our solution gives better
results than other existing solutions (see Table 6). We compare our results with HIP-
based solutions and other solutions based on Extensible Authentication Protocol (EAP)
and Authentication and Key Agreement (AKA) protocols in the context of IoT. LC-DEX
performs an excellent reduction in total exchanged bytes during the handshake that amount
to 90% comparing with PANA/EAP-TLS. Comparing with D-HIP, LC-DEX need the half of
exchanged bytes during the handshake. An 80% of reduction is performed in comparison
with D-HIP.
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Table 6. Comparison of handshake packets’ sizes with other solutions.

Handshake Messages Exchanged Bytes
Percentage Gain of LC-DEX
Comparing with Previous

Works

E-HIP [22] 4 1536 52%
HIP BEX [34] 4 968 24%

PANA/EAP-TLS [35] 13 7061 90%
HIP-AKA [34] 8 936 22%

D-HIP [19] 4 3580 79%
HIP DEX +

AMIKEY [23] 6 744 1.3%

Bettoumi et al. [9] 4 782 6%
LC-DEX 4 734 -

6.3. End-to-End Transmission Delay Reduction

In this section, we present the experimental results of the handshake regarding the
improvement of the total E2E transmission delay after the compression of HIP DEX packets.
For doing so, we evaluated all delays involved in the transmission delays of the pack-
ets’ handshake regarding the transmission delay of the handshake process between the
Initiator and the Responder, the propagation, the processing, and the queuing delays. A
granular comparison with previous works that evaluate the same delays composing E2E
transmission delays are presented in the following sections.

6.3.1. End-to-End Transmission Delay

Reduction of transmission delays of our experiments is done under a real mesh WSN-
based IoT network. We conducted different evaluations in our previous work [9] regarding
the transmission delay of HIP DEX handshake. Experiments were done in a WSN based-
IPv4-IoT architecture (a) and a WSN based-6LoWPAN-IoT architecture (b). The following
formula is used to calculate the transmission delay:

Tr =
L
R

,

where:

• Tr is the transmission delay in seconds;
• L is packet length in bits;
• R is the transmission rate in bits/s. In our experiment, we implement a Constant Bit

Rate (CBR) model equal to 250 kb/s.

We observed that the overall transmission delays of handshake packets in (a) are
about 0.026 s (see Figure 9). In (b), we evaluated the transmission delay in a kindly
real IoT network where we implemented the 6LoWPAN, CoAP, and RPL protocols. The
transmission delays are calculated in two situations: standard HIP DEX handshake packets
and compressed HIP DEX handshake packets. The overall transmission delay during
the handshake is about 0.029 s of standard HIP DEX handshake and 0.027 s of HIP DEX
handshake after compression (see Figure 9).
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Figure 9. Transmission delays results before and after the proposed HIP DEX header’s compression
comparing with transmission delays in an IPv4 Mesh_under architecture [9].

We performed a transmission delay ratio gain of 7%. At the same conditions and
experiments performed in [9] to evaluate the transmission delays of HIP DEX handshake in
the WSN based-6LoWPAN-IoT, we measured the transmission delay after the improvement
of the HIP DEX packets’ sizes presented in Section 3.4. Obtained results are presented in
Figure 10. The total transmission delay of the exchanged packets during the handshake in
LC-DEX is about 0.023 s. We can observe that LC-DEX performs a percentage gain of about
8% comparing with results obtained previously in our conference paper (see Table 7).

Figure 10. Transmission delays results before and after the proposed HIP DEX header’s compression
in LC-DEX solution.

Table 7. Comparison of handshake’s transmission delays with [9] after the proposed compression.

Contribution Transmission Time (s)

Bettoumi et al. [9] 0.025
LC-DEX 0.023

Percentage gain 8%

We also evaluated our results (LC-DEX) in comparison with our previous work in [9]
and with the recent work, P-HIP [36], which studied the transmission delay during the
handshake. LC-DEX improved an excellent percentage gain of about 97.82% in comparison
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with P-HIP and about 6% in comparison with our work presented in the conference
paper [9], (see Table 8).

Table 8. Comparison of handshake’s transmission delay (ms) with P-HIP and Bettoumi et al. [9].

Packet P-HIP Bettoumi et al. [9] LC-DEX

I1 133 3.9 3.5
R1 340 6.8 6.4
I2 418 8.6 8.2
R2 185 5.6 5.3

Overall transmission delay 1076 24.9 23.4

6.3.2. Propagation Delay

For calculating the propagation delay of HIP DEX handshake packets, we use the
following formula:

Pr =
D
Ts

,

where:

• Pr is the propagation delay in m/s;
• D is the distance between the Initiator and the Responder. In the experiment, we chose

nodes with 1 meter of distance;
• Ts is the propagation speed, which is calculated as speed of light× velocity f actor. The

speed of light is 2.998 × 108 m/s and the velocity factor = 1 because the propagation
medium is the air.

The Pr is equal to 0.003 µs for one packet. Consequently, Pr(handshake) = 0.012 µs. It
is a negligent value that has no impact on the total handshake transmission delay.

6.3.3. Processing Overhead

The processing delay (Pps) is defined as the elapsed time by a network device (gener-
ally the router) to process the header of a packet. Because the processing time is dependent
on the header length, compressing the header packet (from 40 bytes to 25 bytes in the
maximum case) has a direct impact in minimizing the overall E2E transmission delay of
the handshake. In our evaluation, we measured the Pps belonging to the HIP DEX hand-
shake in two different architectures: the first architecture (a1) is a WSN based-IPv4-IoT
that represents a kind Peer-to-Peer Wireless Sensor Network where the communication
between the Initiator and the Responder is established with no need for an intermediate
router and, the second architecture (a2) is the WSN based-6LoWPAN-IoT. For measuring
the Pps, we get results under Linux installed on A8-M3 nodes using top command on the
Initiator and the Responder. We performed 100 handshakes, and we noted the processing
delays in the Initiator and Responder sides. Note that Pps(I1,I2) is processing delay of both
I1 and I2 combined and the same for Pps(R1,R2). The obtained results in (a1), show that
Pps(I1,I2) is about 0.083 s and, Pps(R1,R2) is about 0.078 s. In (a2) and before compression
of HIP DEX packets, Pps(I1,I2) = 0.094 s and, Pps(R1,R2) = 0.084 s. After compression,
Pps(I1,I2) = 0.078 s for both I1 and I2 packets and Pps(R1,R2) = 0.078 s. We compared the
obtained results in LC-DEX with our previous results in [9].

Table 9 recapitulates the obtained results from [9] in (a1), (a2) before compression and
(a2) after compression. In (a2) after compression and in comparison with (a1), we perform
a processing handshake that amounts to 6% for I1 and I2 packets. In (a2), we deduce that
the gain in a processing delay of the HIP DEX handshake amounts to 44 ms (12.5%) with
the proposed compression, in comparison with the standard HIP DEX. Table 10 presents
a comparison of the HIP DEX processing packets in the initiator and the responder sides
with HIP previous works. Figure 11 presents an overview of the consumed time during the
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processing of initiator’s and responder’s daemon. We can observe that the maximum value
is 0.146 s, and it is the same for processing initiators’ packets and responders’ packets.

Table 9. Processing delays of handshake’s packets before and after proposed compression.

Architecture I1 + I2 Processing Delays (s) R1 + R2 Processing Delays (s)

WSN based-IPv4-IoT [9] 0.166 0.156
WSN based-6LoWPAN-IoT
(Standard HIP DEX) [9] 0.188 0.168

WSN based-6LoWPAN-IoT
(Compressed-HIP DEX) [9] 0.156 0.156

LC-DEX 0.146 0.146

Figure 11. Processing delays on the initiator and responder sides.

Table 10. Processing delays’ (s) comparison with previous works.

Results
in [34]

Results
in [35] P-HIP [36] Slimfit [17] Bettoumi

et al. [9] LC-DEX

Initiator 0.95 1.799 0.3 1.88 0.156 0.146
Responder 0.79 0.729 - 1.895 0.156 0.146

For the comparison with previous works, we considered the maximum value of the
processing delays (see Figure 11) for both the initiator and the responder. The performed
percentage gain is better, if we consider the average values. Comparing with [34], LC-DEX
performs delay’s gain of 85% and 82% in the Initiator and Responder sides, respectively.
Comparing with [35], we performed 92% and 80% of delay gains in the Initiator and
Responder side, respectively. LC-DEX gives 92% of delays gain for both Initiator and
Responder sides. LC-DEX is faster, more than two times faster than P-HIP. In comparison
with our solution in [9], the LC-DEX delay gains amount to 6.41% for both Initiator and
Responder sides.

6.3.4. Queuing Delay

The Queuing Delay (Tq) depends on the level of network’s congestion. It is the time
that a packet waits in the queue until it gets processed. The average of (Tq) is calculated
as follows:

Tq =
(PN − 1)× L

2 × R
,

where:

• Tq is in seconds;
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• PN is a number of packets to process;
• L is the packet length;
• R is the transmission rate in b/s. As indicated in Section 6.3.1, R = 250 kb/s.

As we have four packets in the handshake, we are considering L as the average
of packets’ lengths. The average handshake packets’ lengths in WSN based-IPv4-IoT
architecture is 166 bytes. Obtained Tq value is 0.007 s. For calculation of the Tq in the WSN
based-6LoWPAN-IoT architecture, we measured Tq after the proposed compression. The
average of the 4 packets’ lengths is equal to 226 bytes before compression and 211 bytes
after the compression. Tq has the same value before and after the compression, about 0.01 s.

6.3.5. Overall E2E IoT Handshake Time Reduction

For calculating the total E2E handshake time of one handshake packet, we use the
following formula:

E2E transmission delay = Tr + Tp + Tq + Tps,

where:

• Tr is the transmission delay;
• Pr is the propagation delay;
• Tq is the queuing delay;
• Tps is the processing delay.

Table 11 summarizes the total transmission delays of the handshake obtained during
the experiments.

Table 11. Overall E2E delays of handshake packets.

Architecture Overall E2E HIP DEX Handshake’s Delay (s)

WSN based-IPv4-IoT 0.57
WSN based-6LoWPAN-IoT
(before compression) 0.39

WSN based-6LoWPAN-IoT
(after compression) 0.34

For a further evaluation of the transmission delay performance during the HIP DEX
handshake in the protocol stack, we compare the obtained results, between an IPv4 IoT over
HTTP domain and a 6LoWPAN over CoAP architecture. We observed, on one side, that the
reduction of the overall HIP DEX handshake E2E delay is improved when it is executed in
a constrained environment where the protocol stack implements protocols standardized
especially for constrained and lossy networks. As we implemented 6LoWPAN, CoAP, and
RPL protocols on our network experiment, we deduce that the E2E HIP DEX handshake
is minimized by about 32.75% in the WSN based-6LoWPAN-IoT architecture (before
compression) and about 41.37% (after compression), in comparison with WSN based-
IPv4-IoT architecture (Results from [9]). On another side, the compression of HIP DEX
handshake packets ameliorates the overall E2E delay of the handshake by 12.82% (Results
from [9]). Table 12 presents a comparison about the overall E2E LC-DEX’s handshake
delays with previous works.

Table 12. Overall E2E delays of handshake packets

HIP Solution Handshake Latency Time (s) Percentage Gain

P-HIP 1.076 70%
Bettoumi et al. [9]
(after compression) 0.34 6%

LC-DEX (after compression) 0.32 -
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6.4. Energy Model

We focus our evaluation on the energy consumption during the HIP DEX handshake
execution. This evaluation is focused on computation and wireless communications over
the whole authentication process. Energy costs regarding cryptographic operations are
calculated based on transmission, reception, and listening. Several works do not consider
the listening period on their evaluations. Nevertheless, we consider the listening delay has
an important incidence on the total energy cost and should not be deduced from the energy
cost calculation. Besides, each experiment test iterates 100 times to calculate the average
energy consumption and computing latency. The measurements of energy consumption
are accomplished by the knowledge of the transmission and listening parameters current
in milliAmpere (mA) and time in millisecond (ms) [37]. For calculating the listening
duration that takes one packet to be sent from one HIP peer to another, we assume that the
collaborator 6BR is one-hop neighboring the HIP-peers. We deduce that the listening time
is considered as the latency time of a packet to be transmitted from one node to another,
adding the elapsed delay to get the response. This important delay has an impact on
the energy communication cost and, hence, on the overall handshake energy cost. This
measurement are given on Section 6.4.1. At the end of this section, a comparison with
previous HIP-based solutions is made regarding the computational and communication
computational costs. To calculate the energy consumption in mJ, we use the following
formula equation:

Energy (mJ) = Time × Current × Voltage, (1)

where:

• Time is the execution time (ms) for individual cryptographic operation (time elapsed
in CPU operations);

• Current is obtained based on experimental results;
• Voltage is the nominal voltage = 4.8 V.

In FIT IoT-LAB, we can add a monitoring profile in the sensor nodes to obtain the real
energy consumption (voltage, current, and power) in real-time execution. As a result, we
have obtained that the A8 node consumes only 4.8 V (theoretically, it is between 3 V and
6 V [38]). The CPU has a power less than 300 mW [39] and, as known that for calculating
the power, we use this formula:

Power = Voltage × Current.

The IoT-LAB A8-M3 as indicated by its name is equipped by the IoT-LAB M3 object.
As a consequence, it uses the same features (sensors, actuators, radio chip) as the integrated
M3 sensor. So, the current draw for CPU is about 62.5 mA as a maximal value in the ball
level for A8-M3 nodes. The embedded M3 co-microcontroller consumes 42 mA (16 mA at
full power, 14 mA for radio transmission, and 12 mA for radio reception). Therefore, the
A8-M3 CPU consumes about 20.5 mA as a maximum value. So, the current consumption
will be less than this value. In our set of experiments, we randomly chose sensor nodes
and implement a Constant Bit Rate (CBR) model equal to 250 kb/s.

6.4.1. Evaluation of the Multi-Hop Energy Communication Cost of the Proposed HIP DEX
Compression Model

We start our evaluation by calculating the energy gain of the proposed HIP DEX 6LoW-
PAN compression header. Our experiments are executed under multi-hop architecture
(1 hop, 4 hops, and 8 hops). Note that the distance between the HIP-peers and the 6BR
(CTTP) is 1 meter. The energy communication cost of one HIP packet, we calculated using
the following formula:

HipEnergyComm (mJ) = [(BUSY_ TX × 14 mA) + (RX_ ON × 12 mA)]× 4.8 V, (2)
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where BUSY_ TX is the transmission time and the RX_ ON is the listening period [40]
and is about 0.000208 s. For calculating the transmission time (BUSY_ TX), we use the
following formula:

BUSY_ TX(s) = PacketSize (bytes)× 8
250 × 1000

. (3)

To study in detail the efficiency of our work in terms of energy consumption during the
communication of the HIP DEX packets, we conducted the necessary experiments to mea-
sure the efficiency of our scheme proposed previously in [9] and the same experiments are
conducted with the new compression scheme proposed in this paper. We, firstly, evaluate
only the energy consumption when exchanging the handshake packets (4 packets). Then,
we execute a full HIP DEX process within the eight corresponding packets (handshake
packets + signaling packets = 6 packets). Finally, we evaluate our proposal of optimization
discussed in Section 4 (only six exchanged packets: four handshake packets + two signaling
packets). Figures 12–14 show the obtained results before and after the proposed HIP DEX
header was combined with 6LoWPAN compression.

(a) (b)
Figure 12. Energy communication costs of HIP DEX handshake (4 packets). (a): Calculation done
according to results obtained in [9]. (b): Results obtained with LC-DEX.

We can observe, from Figure 10, that the percentage gain in the energy communication
cost of the four handshake packets on one Hop communication architecture is about
6.95%, 6.2% on four Hops and 5.4% after the proposed HIP DEX header compression on
eight Hops.

(a) (b)
Figure 13. Energy communication costs of HIP DEX handshake packets + signalling packets before
optimization (8 packets). (a): Calculation done according to results obtained in [9].(b): Results
obtained with LC-DEX.
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(a) (b)
Figure 14. Energy communication costs of HIP DEX handshake packets including the signaling
packets (6 packets). (a): Calculation done according to results obtained in [9]. (b): Results obtained
with LC-DEX.

Regarding the energy communication cost of the handshake including the eight
packets from [9] and during the multi-hop transmission architecture, we remark that
the compression of HIP DEX header gives an improvement of about 8% on one Hop
communication architecture, 3% on four Hops, and about 6% on eight Hops (see Figure 13).
As presented in Figure 14, the percentage gain in energy communication cost of the
handshake process within six exchanged packets and with the adoption of our solution
in [9], after the proposed HIP DEX packets’ number minimization explained in Section 4, is
about 8.5% on 1 Hop architecture, 18.2% on four Hop architecture and, 6.3% on eight Hop
architecture.

6.4.2. Efficient Reduction on the Energy Communication Costs in Comparison of Our
Previous Work

In Table 13, we present the HIP DEX handshake communication results of LC-DEX in
comparison to our previous work in [9].

Table 13. Handshake Energy Communication Costs. Orange: results calculated from Bettoumi
et al. [9] and green: LC-DEX’s solution.

Handshake
Packets 1 Hop (mJ) 4 Hop (mJ) 8 Hop (mJ)

4 packets 1.729 1.62 1.959 1.85 2.267 1.26
6 packets 2.11 1.95 2.456 2.3 2.916 2.76
8 packets 2.998 2.79 3.459 3.25 4.074 3.86

6.4.3. Evaluation of the Computational Cost of the Proposed HIP DEX Compression Model

The computational cost is calculated using the following equation where Tcpu is the
task execution time in CPU, the current is equal to 20.5 mA and the voltage core is 1.2 V [38]:

HipEnergyCompt = Tcpu × 20.5 mA × 1.2 V. (4)

We can assume that solutions that do not adopt any compression technique as in
Ben-Saied et al.’s and D-HIP’s solutions present the most expensive energy consumption
in comparison with those that implement compression. Besides, we prove that HIP DEX is
a more efficient authentication protocol than HIP BEX in terms of computational cost due
to the use of Elliptic Curve Cryptography (ECDH). Our solution minimizes the number of
signaling messages in comparison with Ben-Saied et al., C-HIP, D-HIP, Slimfit, and CD-HIP
that is the reason for the minimization of the computational overhead and as a consequence
the minimization of the overall energy consumption.

6.4.4. Overall Energy Consumption Results Compared with HIP-Based Solutions in IoT

Energy consumption is a decisive criterion for Wireless Sensor Networks in the context
of IoT. In Section 6.2, we present the comparison of HIP DEX packets’ sizes before and after
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the LC-DEX proposed compression solution of HIP DEX packets. The compression has a
direct impact on the computational and communications energy costs. Figures 14 and 15
represent both communication and computational costs of existing HIP solutions. From
Figure 15, we remark that solutions that propose compression (C-HIP, CD-HIP, Slimfit,
Bettoumi et al. and LC-DEX) reduce considerably the communication overhead. Figure 16
gives a comparison of the overall energy costs of LC-DEX with previous HIP solutions.

Figure 15. Computational and communication energetic costs of evaluated solutions in comparison with LC-DEX.

Figure 16. Overall energy consumption.

Ben-Saied et al., D-HIP, and CD-HIP solutions could be judged as costly energy com-
munication overheads solutions. Ben-Saied et al.’s solution proposes a distribution model
based on an important amount of messages involved in the communication. Concerning
CD-HIP, the implementation of HIP BEX with its heavy cryptographic primitives and
also, the introduction of a third party in the distribution phase without the proposition
of a strategy that minimizes the number of exchanged messages between the HIP peers
and the third party. CD-HIP has a significant energy consumption that is against the
poor capabilities of sensors of IoT networks. Accordingly, the total communication cost
is necessary very high in the case of frequent HIP session establishments. In the LC-DEX
solution, the combination of the header compression and the omission of two signaling
messages (NOTIFY, CLOSE_ACK) of the most efficient bootstrapping candidate for con-
strained devices (HIP DEX), proves an excellent reduction in energy consumption. The
introduction of a collaborator in the distribution model in LC-DEX takes into consideration
the minimization of the number of exchanged messages between the collaborator and the
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HIP peers. In addition, the integration of the third party in LC-DEX has an important role
in the alleviation of the scalar multiplication of ECDH cryptographic computation of HIP
DEX. Hence, an important impact is the minimization of the HIP energy costs.

6.5. Optimization in the Energy Consumption during the Life Cycle of the HIP-Sensor Peers

It is legitimate that when more security is applied, more energy is required. However,
it is an absolute necessity that must be adapted with maximum energy consumption opti-
mization. Cryptography computations consume more energy. Within WSN, all involved
nodes perform some cryptographic operations. Since WSN is a limited energy and con-
straint network, some kinds of cryptographic operations are not appropriate. Consequently,
it is meaningful to alleviate the heavy cryptographic operations by proposing either a soft-
ware solution or a hardware solution or both. This kind of intervention should be studied
during the sensor life cycle. The life cycle of a sensor can be defined differently according
to the application of WSN, such as industrial WSN, medical WSN, and so forth. In this
paper, we propose an authentication solution that may be applied in different constrained
environments. Thereby, a sensor can be in two main operational states: sleep state and
active state. The sleep mode coincides with the lowest energy consumption of a node
because it has no interaction with the network. The active state defines two sub-states:
idle mode or data transmission and/or reception data packets mode or generation of
data. During the authentication process with LC-DEX, we clearly contribute in minimizing
the total energy consumption in both communication and computational sides in an IoT
network based on HIP process Indeed, computing and generating the keying material are
performed during the active sensor state. As we presented in Section 4.1.2, we contributed
to lightening the sensor’s charge in the active state. Our new SLA scheme brings two
advantages in the sensor energy life cycle, as follows.

• The delegation of the most heavy cryptographic operation of HIP DEX to the CTTP,
has a direct impact in minimizing the computational energy cost of the sensor during
the active state and more precisely during the generation data mode;

• The exchanged parameters during the transmission of the R1 packet by the responder
and during the transmission of the I2 packet by the responder are minimized in the
proposed SLA model (see Section 4.1.2, Figure 7). Hence, we contribute to minimizing
the energy consumption during the transmission mode for both the initiator and the
responder in the active state.

Comparing with standard HIP DEX, LC-DEX improve an energy gain about 60% (see
Table 14). Consequently, the minimization in the energy cost of the sensor node during the
authentication process has a direct impact in the extension of its life. Studying in details
the proportion of the energy consumption caused by the HIP DEX authentication process
and the tangible extension of the HIP sensor device are with high importance and we are
working on it as a future direction.

Table 14. Communication and computational energetic costs of HIP existing solutions.

HIP Solutions Computational Cost
(mJ)

Communication
Cost (mJ)

Total Energetic Cost
(mJ)

Standard HIP DEX 13.365 0.329 13.694
Ben-Saied et al. [20] 3.43 94.55 97.98

D-HIP [19] 15.17 86.59 101.76
C-HIP [18] 63.622 47.186 110.808

CD-HIP [18] 14.93 52.16 67.09
Slimfit [17] 1.286 not indicated -

Bettoumi et al. [9] 4.182 1.729 5.911
LC-DEX 3.931 1.62 5.551
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7. Memory Requirements

To fix the memory size required by our implementation, we measured in real time
the memory consumption of our solution by execution top and free Linux commands. It
is worth explaining how we obtained these results. The measurements were conducted
in comparison with the memory size occupied initially by the Linux operating system
before launching any task. After that, we measured the memory size in the initiator node
after executing the corresponding module code. The same steps are performed in the
responder node. Then, we subtract the increase in memory after executing the HIP DEX
code. The ROM of the A8 node is On-Chip boot memory with programs like X-Loader/U-
boot for booting the node. So we will not expect a size variation during the execution of
our program. Table 15 presents the amount of data in RAM on both the initiator and the
responder sides.

Table 15. Memory consumption of LC-DEX software.

Extension RAM (KiB) Memory Percentage Use

Linux OS 7864 -
Initiator (I1 + I2) 8140 (+276) 3%
Responder (R1 + R2) 8136 (+272) 3%

Our implementation of LC-DEX is defined as an executable software under Linux OS.
Hence, we focus our research on lightening the authentication process especially for both
smart devices because IoT could not be defined without smart sensors. We can consider
our solution as the first authentication solution that can deal with the IIoT and, hence,
with the industry 4.0. We can talk about Industrial Linux, which enables distributed IIoT
applications. It is possible, in the future, that we work on converting our implementation
to a firmware so that it can be executed under ordinary sensor devices.

8. Security Considerations

Traditional security techniques are characterized by their important overhead in terms
of computation and communication costs. Hence, these mechanisms are infeasible in the
WSN based-IoT that contains sensor nodes with low processing and memory capabilities.
Table 16 recapitulates the possible threats that can occur during the LC-DEX handshake
and the security requirements that should be considered.

Collision attack: The channel frequency is not fixed arbitrarily by the nodes. We propose
to implement a dynamic selection of the Frequency Hopping Techniques after defining the
quality metrics [41]. Besides, the interference probability of the exchanged packets between
the communicating HIP peers decreases considerably. The combination of this technique in
addition to the minimization of the communication overhead, improved by our proposed
solution LC-DEX, may decrease the collision attack.

DoS attack: The countermeasures against DoS attacks must be defined regarding the
different networking layers. Since our work focuses on the link layer (exactly on the
MAC layer), we discuss only the DoS attacks on the link layer. HIP DEX is designed
to protect communications against DoS attacks that are due to the puzzle mechanism.
More the puzzle is difficult, more the communications are protected against DoS attacks.
Besides, the minimization of the processing overhead in LC-DEX decreases the probability
of such attacks.

Flooding attack: The compression and decompression are performed on the 6BR the
most near of the HIP peers except the edge router. An adversary tries to flood the 6BR
on the edge of the IoT domain. In our implementation, we propose that compressed HIP
packets are only forwarded by the edge 6BR if the target is in the external network with the
use of the firewalls and Intrusion Detection System (IDS). For this reason, we firstly propose
that all the sensor nodes in the internal WSN are running a robust IDS like SVELTE [42]
and especially the IDS proposed in [43] designed for securing WSN 6LoWPAN networks
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based on RPL as it is the adopted routing-protocol on our work. The internal 6BR is
charged with the compression/decompression of HIP packets. Hence, with this strategy
with the performed computation overheads of LC-DEX, flooding attacks will be minimized
in advantage.

Data freshness: We study this attack on two sides : (1) Null old message is being replied
by an adversary using an old shared key; (2) The attacker stored old HIP packets and then
replay them with the communicating peers as it is a legitimate node.

In (1), an attacker used an old key to initiate the connection with the HIP peers at the
same time as the distribution of a new key for all nodes in WSN. In our solution, HIP DEX
shared key is not distributed to the nodes in the IoT domain. The shared secret key is shared
only between the nodes that initiate communication using HIP DEX in the handshake.

In (2), the HIP DEX used a two-factor authentication mechanism [5]. The Initiator
stores a shared group key that will be used to encrypt credentials in the I2 packet. After
reception of the I2 packet, the responder verifies that its puzzle challenge was encrypted
with the shared and correct key. If it is the case, the handshake is continuing the process,
else the connection is discarded. The attacker does not know the group key shared between
the HIP peers and especially the private key. We could also propose to add a time counter,
as a sequence number of packets, to ensure data freshness by implementing an algorithm
for that in the correspondent HIP peers. In this case, we propose that the 6BR, which takes
the rôle of the collaborator on the proposed distribution model, check for every incoming
packet from the HIP peers that the sequence number is strictly higher from the last received
sequence number. Elsewhere, the 6BR (collaborator) drops any received packets with a
previously used sequence number.

Man in the middle attack (MITM): The leakage of the digital signatures in HIP DEX can
cause an MITM attack for the R1 packet. This attack is treated on the R2 packet with the
state machine. We reinforce our solution by the configuration of the HIT Access Control
List (ACL) in the initiator, the responder, the CTTP, and all network appliances (router,
firewalls). ACLs define the legitimate list of HITs and HIs. In addition, we propose to add
the password used to authenticate the responder and the CTTP (see Section 4.1.2) in the ACL
rather than storing it on a database on the base station. Thus, HIP peers discard any packet
if the sender’s HIT (or HI) is not assigned in the ACL. Lunching a link-layer attack can be
lessened by the minimization of the frame length and of the communication overheads we
worked on in this paper. This optimization on the communication between the initiator and
the responder lets the attacker not having enough time to capture exchanged packets on
the communication channel. In addition, the adversary can not hold the HIT’s responder,
since we proposed to revoke it. Hence, the initiator, when receiving the R1 packet from
the adversary, identifies that it is not from the legitimate responder and discards it. For
more precision, an indicator must be communicated between the HIP peers to indicate
the removal of the HIT’s responder so that a malicious packet containing a HIT value will
automatically be discarded by the initiator.

Node capture: The collaborator 6BR, on the LC-DEX solution, has a crucial role and if
an attacker succeeds to attack it by a node capture attack, the hole network is damaged.
Hence, we propose to not fix a collaborator for eternity. The collaborator on an IoT HIP
domain changes dynamically in a short certain period. So, if an attacker has access to the
collaborator, he loses authority on it after a very short period.
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Table 16. Security requirements.

Attack Layer Scenario Defense

Collision attack Link
A collision is triggered by the
usage of the same channel
frequency by the HIP peers.

HIP communicating peers should
implement a solution to avoid
collision attacks.

Denial of Service (DoS) attack Link

An attacker may produce a
collision when transmitting the
signaling CLOSE_ACK packet. A
bombardment in transmitting
repeatedly such resulting collision
has a costly resource consuming
on the victim node.

HIP peers must be protected
against DoS attack .

Flooding attack Transport

An adversary try to flood the
edge 6 BR to interrupt the
communication between the
peers.

Compressed HIP packets should
be protected against the flooding
attack on the 6LoWPAN edge
router.

Data freshness Link

An adversary lunch a replay
attack using an old shared key at
the same time when a new key is
being distributed to the nodes.
The adversary stores exchanged
HIP messages and then initiates
the communication with the
peers.

HIP peers do not receive new
keys from an external appliance.
HIP peers should be able to detect
malicious packets during the
handshake.

MITM Link

An attacker can store the HIP
packets (I1, R1, I2, R2) and then
replay a packet with the HIP peer
as it is the legitimate target.

The exchanged HIP packets must
be protected against MITM
attacks.

Node capture

An attacker may lunch node
capture attacks on the gateways
and get cryptographic keys and
add other malicious nodes in the
network as legitimate ones.

A defending strategy must take
place.

9. Results and Discussion

HIP DEX is the most encouraging candidate of the authentication or bootstrapping
processes in IoT. Since it is more legitimate to optimize an IoT-designed protocol than
working on existing Internet standards, our effort focuses on the quick authentication
process to access a WSN integrated into IoT based on HIP DEX protocol. Authentication
in IoT, which is composed of hundreds of devices, must have a lower cost overhead in
terms of the computation and communication of exchanged packets. Indeed, we worked
on minimizing the energetic costs of the authentication based on the HIP DEX protocol as a
keying material. Our contribution is around three axes: the first one is the compression of
the HIP DEX packets’ header with adaptation to the 6LowPAN packet header. The second
one is about the optimization of the number of exchanged messages during the handshake.
The last one consists of a novel solution that implements HIP DEX’s handshake in oppor-
tunistic mode. The proposed compression model, presented in Section 3.4, contributes
with an efficient minimization of the energetic communication and computational costs
comparing with existing works. The optimization of the handshake process concerns the
avoidance of two signaling packets (NOTIFY and CLOSE_ACK). We are not the first to
propose the compression technique of the HIP protocol, but we are the first to propose
such a minimal compression header. In this section, we discuss and compare previous
HIP solutions with LC-DEX. Slimfit [17] cannot be suitable for lossy IoT networks because
it does not deal with the minimization of the communication overhead that we consider
an obstacle on the real-time application on the IoT. In contrast, LC-DEX is considering
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this issue and shows better results in communication energy cost compared with previous
works. D-HIP [19] and HIP-TEX [44] are not optimal solutions that can be implemented on
IoT solutions because they increase the communication overhead due to the increase of the
exchanged messages caused by the integration of the proxies selection on the distribution
model during the authentication process. Security features in LHIP [16] are maintained
and communicated over the exchanged messages but ignored by the pairs. LHIP is weak
because it omits primordial security mechanisms as mutual authentication and key ex-
change. The authors of P-HIP propose the computation of unique pairwise keys when the
device moves from session to session or changes from the network. P-HIP [36] provides
the minimization of the communication cost by the use of minimal certificate size by the
implementation of the ECQV. However, we think that optimization in minimizing the
computational overhead on a constrained designed protocol such as HIP DEX is suitable
than working on HIP BEX (the same case for CD-HIP [18]). P-HIP is suitable only for
applications that are implemented over User Datagram Protocol (UDP) on the transport
layer. UDP indeed is less consuming of energy in communication because it is quicker
than Transport layer protocol (TCP) but TCP is more secure and guarantees the integrity of
exchanged data that constitutes a critical requirement for sensitive data as those sent by a
patient’s medical sensor connected to a dedicated health monitoring system. In addition,
P-HIP is suitable only for real-time applications in IoT with fix and regular data traffic.
P-HIP is very weak against Distributed Denial-of-service (DDoS) attack and exactly the
DrDOS (Distributed Reflection Denial of Service) that is based on the spoofing UDP param-
eter when the application uses UDP. To be used, E-HIP [22] must be added to all devices in
the target network and is not compatible with other versions of the HIP protocol. E-HIP
is limited for IoT solutions that define the responder as a powerful server and can not be
defined for a T2T architecture where both the initiator and the responder are constrained
nodes. Both compression and optimization deal with the improvement in minimizing
the overall energetic costs of sensor nodes. Another benefit of adopting the compression
of packets is that the number of fragments, to be sent, decreases comparing with uncom-
pressed handshake packets and as consequence the probability of packets’ lost decreases.
We believe, it is natural that the cryptographic-key management must be lightweight and
do not have a significant overhead since the number of communicating nodes in IoT is
very high. We also demonstrated by real experimentation the efficiency of LC-DEX over
multi-hops architectures, and we consider LC-DEX efficient WSN’s authentication solution
for IoT. It is worth mentioning that our solution software was programmed to support
both IPv4, IPv6, and 6LowPAN architecture. LC-DEX presents a novel security association
establishment with a HIP DEX opportunistic mode. Opportunistic mode combined to the
alleviation of the scalar multiplication of the key generation deal with an excellent energy
consumption minimization that could be ameliorated in advantage.

10. Conclusions and Future Works

In this paper, we presented an efficient authentication solution based on the HIP DEX
protocol as a keying material, CoAP for the application layer, and RPL in the routing process.
It is an End-to-End establishment security solution between HIP-IoT devices feasible for
T2T and M2M architecture. The proposed solution is based on an optimal compression
HIP header with the support of an extension of 6LoWPAN compression. HIP DEX uses
ECDH to minimize the cryptographic computation overhead during the authentication
mechanism. Hence, we contribute to minimize the overall handshake transmission time
with HIP DEX protocol, and we demonstrate that we improved the detailed delays of
the total transmission delay comparing with previous and recent works based on HIP
solutions and other existing solutions. The obtained results prove an excellent minimization
regarding the energy communication and computational costs. Our novel distribution
model based on the HIP DEX opportunistic mode and the delegation of the heavy scalar
multiplication to compute the session keys are the strength of LC-DEX that contribute to
secure the communication over the IoT based-WSN architectures with a minimal energy
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consumption. For future work, we assume that the integration of virtual abstraction of
the Software Defined Networking in the definition of the WSN connected to IoT is an
excellent future research field that deal with the improvement of the energy consumption
in the constrained environments. Our solution can be expanded in the Industrial IoT
solution like Deep-Green [28] to deal with the security requirements of the networking
access of IoT devices for architectures based on dispersed computing that extends the
existing computing model joint the optimization of computing resources in correlation
with network resources.
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