Detection of Ground Contact Times with Inertial Sensors in Elite 100-m Sprints under Competitive Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Protocol
2.2. Measurement Systems
2.3. Data Processing
2.4. Statistical Analysis
3. Results
3.1. Results on Validity
3.2. Results on GCT
4. Discussion
4.1. Discussion of Methods
4.2. Discussion of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCT | Ground contact time |
IMU | Inertial measurement unit |
GPS | Global positioning system |
LPS | Local positioning system |
VMU | Vector magnitude unit |
IC | Initial contact |
TC | Terminal contact |
RMSE | Root mean squar error |
SD | Standard deviation |
References
- Rimmer, E.; Sleivert, G. Effects of a Plyometrics Intervention Program on Sprint Performance. J. Strength Cond. Res. 2000, 14, 295. [Google Scholar]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Jeffriess, M.D.; Callaghan, S.J. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J. Strength Cond. Res. 2013, 27, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Coh, M.; Milanovic, D.; Kampmiller, T. Morphologic and kinematic characteristics of elite sprinters. Coll. Antropol. 2001, 25, 605–610. [Google Scholar]
- Di Michele, R.; Merni, F. The concurrent effects of strike pattern and ground-contact time on running economy. J. Sci. Med. Sport 2014, 17, 414–418. [Google Scholar] [CrossRef]
- Morin, J.B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef][Green Version]
- Mattes, K.; Habermann, N.; Schaffert, N.; Mühlbach, T. A longitudinal study of kinematic stride characteristics in maximal sprint running. J. Hum. Sport Exerc. 2014, 9, 686–699. [Google Scholar] [CrossRef]
- Seidl, T.; Russomanno, T.G.; Stöckl, M.; Lames, M. Assessment of Sprint Parameters in Top Speed Interval in 100 m Sprint—A Pilot Study Under Field Conditions. Front. Sport. Act. Living 2021, 3, 165. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.; Kelley, J. Non-invasive, Spatio-temporal Gait Analysis for Sprint Running Using a Single Camera. Procedia Eng. 2015, 112, 528–533. [Google Scholar] [CrossRef][Green Version]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of transition during human accelerated sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Purcell, B.; Channells, J.; James, D.; Barrett, R. Use of accelerometers for detecting foot-ground contact time during running. In BioMEMS and Nanotechnology II; Nicolau, D.V., Ed.; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6036, p. 603615. [Google Scholar]
- Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef][Green Version]
- Seidl, T.; Linke, D.; Lames, M. Estimation and validation of spatio-temporal parameters for sprint running using a radio-based tracking system. J. Biomech. 2017, 65, 89–95. [Google Scholar] [CrossRef]
- Schmidt, M.; Rheinländer, C.; Nolte, K.F.; Wille, S.; Wehn, N.; Jaitner, T. IMU- based Determination of Stance Duration During Sprinting. Procedia Eng. 2016, 147, 747–752. [Google Scholar] [CrossRef][Green Version]
- Machulik, M.; Hamacher, D.; Lindlein, K.; Zech, A.; Hollander, K. Validation of an inertial measurement unit based magnetictiming gate system during running and sprinting. Dtsch. Z. Für Sportmed. 2020, 71, 69–75. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D. Development of an IMU-based foot-ground contact detection (FGCD) algorithm. Ergonomics 2017, 60, 384–403. [Google Scholar] [CrossRef] [PubMed]
- Dehzangi, O.; Taherisadr, M.; ChangalVala, R. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion. Sensors 2017, 17, 2735. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, H.; Wang, Z.; Qiu, S.; Wang, J.; Xu, F.; Wang, Z.; Shen, Y. Adaptive gait detection based on foot-mounted inertial sensors and multi-sensor fusion. Inf. Fusion 2019, 52, 157–166. [Google Scholar] [CrossRef]
- Bailey, G.P.; Harle, R. Assessment of Foot Kinematics During Steady State Running Using a Foot-mounted IMU. Procedia Eng. 2014, 72, 32–37. [Google Scholar] [CrossRef][Green Version]
- Falbriard, M.; Soltani, A.; Aminian, K. Running Speed Estimation Using Shoe-Worn Inertial Sensors: Direct Integration, Linear, and Personalized Model. Front. Sport. Act. Living 2021, 3, 585809. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.; Held, S.; Klatt, S.; Donath, L. Limitations of Foot-Worn Sensors for Assessing Running Power. Sensors 2021, 21, 4952. [Google Scholar] [CrossRef]
- Ammann, R.; Taube, W.; Wyss, T. Accuracy of PARTwear Inertial Sensor and Optojump Optical Measurement System for Measuring Ground Contact Time During Running. J. Strength Cond. Res. 2016, 30, 2057–2063. [Google Scholar] [CrossRef][Green Version]
- Falbriard, M.; Meyer, F.; Mariani, B.; Millet, G.P.; Aminian, K. Accurate Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors. Front. Physiol. 2018, 9, 610. [Google Scholar] [CrossRef][Green Version]
- Bergamini, E.; Picerno, P.; Pillet, H.; Natta, F.; Thoreux, P.; Camomilla, V. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J. Biomech. 2012, 45, 1123–1126. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bergamini, E.; Guillon, P.; Camomilla, V.; Pillet, H.; Skalli, W.; Cappozzo, A. Trunk inclination estimate during the sprint start using an inertial measurement unit: A validation study. J. Appl. Biomech. 2013, 29, 622–627. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Setuain, I.; Lecumberri, P.; Ahtiainen, J.P.; Mero, A.A.; Häkkinen, K.; Izquierdo, M. Sprint mechanics evaluation using inertial sensor-based technology: A laboratory validation study. Scand. J. Med. Sci. Sport. 2018, 28, 463–472. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.; Neville, J.; Diewald, S. Quantification of the validity and reliability of sprint performance metrics computed using inertial sensors: A systematic review. Gait Posture 2019, 73, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Esposito, M.; Barrons, Z.; Clermont, C.A.; Wannop, J.; Stefanyshyn, D. Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit. Sensors 2021, 21, 2896. [Google Scholar] [CrossRef]
- Falbriard, M.; Mohr, M.; Aminian, K. Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensors. Sensors 2020, 20, 354. [Google Scholar] [CrossRef][Green Version]
- Schmidt, M.; Alt, T.; Nolte, K.; Jaitner, T. Comment on “Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensor”. Sensors 2020, 20, 2995. [Google Scholar] [CrossRef] [PubMed]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Morin, J.B. Reliability and validity of the Myotest® for measuring running stride kinematics. J. Sport. Sci. 2016, 34, 664–670. [Google Scholar]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef]
- Alvarez, D.; Sebastian, A.; Pellitero, L.; Ferrer, V. Validation of the Photoelectric Optogait System to Measure Racewalking Biomechanical Parameters on a Treadmill. ISBS Proc. Arch. 2017, 35, 253. [Google Scholar]
Step | GCT ± SD | % Diff ± SD | Absolute % Diff ± SD |
---|---|---|---|
ine 1–5 | 163.45 | 1.17% | 4.33% |
24.73 | 1.77% | 0.36% | |
ine 6–15 | 118.43 | 3.28% | 4.61% |
9.45 | 1.52% | 0.78% | |
ine 16–25 | 109.32 | 4.28% | 4.98% |
6.40 | 0.52% | 0.69% | |
ine 26–35 | 107.12 | 5.14% | 5.72% |
9.12 | 2.18% | 1.27% | |
ine 36–45 | 107.86 | 4.24% | 5.86% |
9.01 | 2.27% | 1.13% | |
ine 46–50 | 104.80 | 0.22% | 2.13% |
6.71 | 1.26% | 1.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blauberger, P.; Horsch, A.; Lames, M. Detection of Ground Contact Times with Inertial Sensors in Elite 100-m Sprints under Competitive Field Conditions. Sensors 2021, 21, 7331. https://doi.org/10.3390/s21217331
Blauberger P, Horsch A, Lames M. Detection of Ground Contact Times with Inertial Sensors in Elite 100-m Sprints under Competitive Field Conditions. Sensors. 2021; 21(21):7331. https://doi.org/10.3390/s21217331
Chicago/Turabian StyleBlauberger, Patrick, Alexander Horsch, and Martin Lames. 2021. "Detection of Ground Contact Times with Inertial Sensors in Elite 100-m Sprints under Competitive Field Conditions" Sensors 21, no. 21: 7331. https://doi.org/10.3390/s21217331