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Abstract: Bearings are the key and important components of rotating machinery. Effective bearing
fault diagnosis can ensure operation safety and reduce maintenance costs. This paper aims to develop
a novel bearing fault diagnosis method via an improved multi-scale convolutional neural network
(IMSCNN). In traditional convolutional neural network (CNN), a fixed convolutional kernel is often
employed in the convolutional layer. Thus, informative features can not be fully extracted for fault
diagnosis. In the proposed IMSCNN, a 1D dimensional convolutional layer is used to mitigate
the effect of noise contained in vibration signals. Then, four dilated convolutional kernels with
different dilation rates are integrated to extract multi-scale features through the inception structure.
Experimental results from the popular CWRU and PU datasets show the superiority of the proposed
method by comparison with other related methods.

Keywords: multi-scale; CNN; dilated convolutional; fault diagnosis

1. Introduction

Bearings are regarded as critical components in rotating machinery. However, bearings
often suffer from failure conditions, since they are usually working in a harsh working
environment [1,2]. Early and effective bearing fault diagnosis technique plays an important
role in avoiding unforeseen downtime of rotating machinery.

Compared to current signals [3] and acoustic emission signals [4], vibration signals [5,6]
contain abundant information that reflects the health state of bearings. Thus, vibration signals are
widely used in bearing fault diagnosis. Generally, fault diagnosis techniques can be categorized
into two types, signal analysis, and data-driven methods. For signal analysis methods, vibration
signals are first dealt with signal processing methods such as time-domain analysis [7], frequency
domain analysis [8] and time-frequency domain analysis [9,10]. Then, based on the expert
knowledge, features extracted from different domains are used to detect bearings health changes
and assess health states. A major limitation of signal analysis methods is that comprehensive
and great expert knowledge is required to determine the health states and faulty types of
bearings from extracted features.

Different from signal analysis methods, data-driven methods only rely on the collected
vibration data for fault diagnosis. In data-driven methods, labeled vibration data are first
collected. Then, features are extracted from different domains similar to the signal analysis
method. For further fault diagnosis purpose, with these extracted features, classifiers are
trained using machine learning methods such as Support Vector Machine (SVM) [11,12],
Random Forest (RF) [13,14] and Multi-Layer Perceptron (MLP) [15].

Recently, deep learning methods have gained considerable attention in the field of
data-driven fault diagnosis. A huge advantage of deep learning is that deep features can be
extracted automatically. Generally, deep features can exhibit more useful information for
fault diagnosis, compared to shallow features extracted from traditional machine learning
methods. It has proved that better diagnostic performance can be achieved using deep
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learning methods [16]. As representative deep learning methods, auto-encoder (AE),
deep belief networks(DBN), and convolutional neural network (CNN) have shown their
superiority in bearing fault diagnosis. For example, Chen and Li fed the extracted time-
domain and frequency-domain features from the different sensor signals into multiple
two-layer sparse autoencoders (SAE) neural networks for fault classification [17]. Gan et al.
designed a two-layer hierarchical diagnosis network (HDN) to identify fault types and
recognize fault severity ranking by employing deep belief networks (DBNs) to provide
representative features [18].

As one of the most effective deep learning methods, a convolutional neural network
(CNN) has also been applied to fault diagnosis. The common CNN-based methods can be
categorized into one-dimensional (1-D) CNN-based and two-dimension (2-D) CNN-based
methods. For 1-D CNN methods, the raw 1-D time-domain vibration signals are directly
fed into the 1D CNN model [19]. For 2-D CNN methods, the raw vibration signals are
usually transformed into 2-D time-frequency domain data, and then the 2D data are dealt
with 2D-CNN [20]. Levent et al. [19] took the raw vibration data as the input, and used
the compact adaptive 1D-CNN to diagnose the bearing fault. Gao et al. [21] proposed a
novel hybrid deep learning method (NHDLM) based on Extended Deep Convolutional
Neural Networks with Wide First-layer Kernels (EWDCNN) and long short-term memory
(LSTM) to enhance diagnosis accuracy for rotating machinery in complex environments.
Han et al. [22] presented a novel diagnosis framework that combines the Spatio-temporal
pattern network (STPN) approach with CNN and applied it to fault diagnosis of com-
plex systems. Wang et al. [23] fused the multi-sensor vibration signals and transformed
them into images to obtain more informative features. Then the input was fed to the
bottleneck CNN for fault diagnosis. However, in CNN-based fault diagnosis methods,
each convolutional operation often uses convolutional kernels of the same size. To further
extract more informative features from vibration data, inspired by the inception structure,
convolutional kernels of different sizes can be selected to improve the performance of
fault diagnosis. To extract multi-scale features, Qiao et al. [24] employed the convolutional
kernels with different widths to act as filters with different scales of frequency domain
resolution to simultaneously extract features of different frequency bands of the vibration
signal. Further, Wang et al. [25] combined the dilated convolutional with multi-scale con-
volutional for remaining useful life prediction. Compared with the convolutional layer,
dilated convolutional layer has a larger receptive field with the same size convolutional
kernel. Due to this advantage, dilated convolutional can ignore the redundant information
in vibration signals.

Motivated by the above discussions, an improved multi-scale convolutional neural
network is developed for bearing fault diagnosis in this paper. To extract more informative
features, we employ four dilated convolutional kernels with different dilation rates in multi-
scale CNN. Among these four dilated convolutional kernels, the dilation rates of the two
kernels are set as 1. Thus, these two dilated convolutional kernels become convolutional
kernels. Moreover, different from multi-scale CNN [24], a 1D convolutional layer is adopted
before using multi-scale CNN to mitigate the effect of noise for bearing fault diagnosis.
In summary, the main contributions of the proposed method can be listed as follows,

(1) To enlarge the receptive of multi-scale CNN, four dilated convolutional kernels with
different dilation rates are designed. Thus, more informative features can be extracted
for fault diagnosis.

(2) For reduction of the noise in vibration signals, an additional one-dimensional convolu-
tional layer is adopted to extract the features before dilated convolutional layer.

(3) Two widely used datasets including CWRU and PU datasets are employed to evaluate
the performance of the proposed method compared with other related methods.
Results show the superiority of the proposed method.

The rest of this paper is organized as follows. Section 2 offers a brief review of
CNN and its inception structure. In Section 3, the improved multi-scale dilated CNN is
developed for bearing fault diagnosis. Two widely used experimental cases are carried out
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to evaluate the performance of the proposed method compared with other related methods
in Section 4. In the final section, the conclusions are drawn.

2. Related Works
2.1. Convolutional Neural Networks (CNN)

CNN is one of the most popular deep neural networks in recent years [26]. It has been
widely used in computer vision [27], natural language processing [28] and other fields [29].
CNN usually consists of three parts: (1) convolutional layer; (2) pooling layer; (3) fully
connected (FC) layer.

2.1.1. Convolutional Layer

Due to the characteristics of sparse interactions and parameter sharing of convolutional
operation, the number of weights of convolutional operation is determined by the size
and number of the convolutional kernel in CNN. Each convolutional kernel deals with a
part of the input data. Thus, the number of weights is significantly reduced. Meanwhile,
the convolutional operation has the characteristics of equal representations since the fixed
convolutional kernel is adopted. The convolutional operation is below,

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

j + bi
l

 (1)

where xl
j represents the jth output of the lth layer network. Mj is the number of inputs.

kl
j, bl

j and ∗ represent the convolutional kernel, the bias and the convolutional operation,
respectively. f (·) is the activation function.

Compared to the commonly used sigmoid function, ReLU function has become a
ubiquitous activation function in DNN, due to its computational efficiency and the ability
of reducing the gradient vanishing. ReLU function is defined as follows,

Zl
j = f (xl

j) = max
{

0, xl
j

}
(2)

where xl
j is the input and Zl

j is the output.

2.1.2. Pooling Layer

To reduce the overfitting, pooling layers are often adopted in CNN. The commonly
used pooling methods include average pooling and max pooling. In this study, the max
pooling is adopted.It can be defined below:

Pl
j,t = max Wt(Zl

j) (3)

where Pl
j,t is the tth output in the jth feature map of the lth layer network. Wt(·) represents

the tth sliding window operation for input with the size of n× n pooling window.

2.1.3. Fully Connected Layer

For classification, a fully connected (FC) layer is usually employed as classifier where
all the inputs from one layer are connected to every activation unit of the next layer.
The formula of FC layer is defined as follows:

xl
j = f

(
m−1

∑
i=0

xl−1
i × kl

ij + bi
l

)
(4)

where xl
j is the output of the lth FC layer and xl−1

i is the output of l − 1th layer.
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2.2. Dilated Convolutional Neural Networks

Although the pooling layer is widely used to maintain invariance and control over-
fitting, it will suffer from the reduction of spatial resolution. Thus, the spatial information
of the feature map would be lost. The dilated convolutional layer was developed in the
field of image segmentation to address this issue [30]. Dilated convolutional can expand the
receptive field without increasing the number of parameters or the amount of calculation.
The formula for dilated convolutional is as follows:

xl
j = f

 ∑
i∈Mj

Dr(xl−1
i ) ∗ kl

ij + bi
j

 (5)

where Dr represents the dilated operation with dilation rate r.
In dilated convolutional operation, dilation rate defines a spacing between the values

in a kernel. Figure 1 shows the 3 × 3 convolutional process with dilation rates of 1 and 2,
respectively. As displayed in Figure 1, if the dilation rate is set to 1, the dilated convolutional
becomes the traditional convolutional. In Figure 1b, a receptive field of 5 × 5 is presented
(r = 1), while a receptive field of 3 × 3 is obtained (r = 2) as shown in Figure 1a.

(a) (b)

Figure 1. The calculation process of dilated convolutional (r = 1, 2). (a) Dilated convolutional with
dilation rate 1 (Traditional convolution); (b) Dilated convolutional with dilation rate 2.

2.3. Inception Architecture

To improve the performance of networks, inception architecture was introduced in
CNN. In GoogLeNet [31], the inception V1 structure was developed as shown in Figure 2.
By employing the concept of inception architecture, the depth and width of the networks are
increased. Additionally, the advantage of inception V1 architecture is that computational
costs can be reduced.

As shown in Figure 2, there are three convolutional kernels with different sizes
and a max-pooling layer in inception V1 architecture. The formula of inception can be
expressed as:

Fl =
[
Fl

C1; Fl
C2; Fl

C3; Fl
P

]
(6)

where Fl
C1, Fl

C2, Fl
C3 and Fl

P represent feature maps after three convolutional layers with
different convolutional kernel sizes and pooling layer, respectively. Fl represents the feature
map of lth layer which combines Fl

C1, Fl
C2, Fl

C3 and Fl
P.

Since Fl contains features computed over different scales, the subsequent network will
select the more useful features adaptive.
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Figure 2. Diagram of the inception structure V1.

3. The Architecture of the Proposed IMSCNN

In the proposed method, the raw vibration data is used as the input of the neural net-
work. The raw vibration data is divided into a number of groups. To facilitate subsequent
processing and accelerate the convergence of the neural networks, maximum-minimum
normalization is used to deal with each group of input data,

innormalize
i =

ini − inmin

inmax − inmin , i = 1, 2, . . . , N (7)

where ini is the ith sample. inmin
i and inmax

i are the smallest and largest values in the group.
N is the size of samples in group.

The structure of the proposed IMSCNN is shown in Figure 3. In practice, the vibration
signals are often contaminated by noises. To alleviate this problem, a 1-D convolutional
layer is first employed in the proposed method. By using a 1D convolutional layer, noises
contained in the raw vibration signals can be filtered. To enhance the ability of feature
extraction, a dilated multi-scale convolutional (DMSConv) layer with a larger kernel size
is employed to extract multi-scale features. Inside the DMSConv layer, there are four
multi-scale convolutional as shown in Figure 4.

Figure 3. Structure of the proposed IMSCNN method.



Sensors 2021, 21, 7319 6 of 15

Figure 4. Structure of DMSConv layer.

In the DMSconv layer, four dilated convolutional kernels with different dilation rates
are integrated to extract features through the inception structure. The details of DMSconv
layer are shown in Table 1, where KS and NC represent the kernel size and number of
channels, respectively. From Table 1, it is noticed that the kernel size of each convolutional
layer is singular in multi-scale convolutional. This is for the convenience of using the same
convolutional to unify the size of feature map output. Therefore, the number of output
channels of the DMSconv layer is 4 × NC.

Table 1. Architecture-related hyperparameters of DMSconv layer.

NO. Layer Name Layer Size Dilation Rate

1 MSConv1 (KS + 1)× 1× NC 1

2 MSConv2 (KS ∗ 2+ 1)× 1×NC 1

3 MSConv3 (KS + 1)× 1× NC 2

4 MSConv4 (KS + 1)× 1× NC 3

The multi-scale feature map (MSFM) is defined as,

MSFM = [FT1; FT2; FD1; FD2] (8)

where the FT and FD represent the feature maps after dilated convolutions, respectively.
To increase the robustness and reduce the computational effort, the max-pooling

operation is performed on the FM obtained after the first DMSconv layer. To extract deeper
features, a second DMSconv layer with a smaller kernel size is utilized. Additionally,
the global average pool (GAP) is used to compress the features of each channel into four
features. Finally, these features are fed into an FC layer for classification.

The structure of the proposed IMSCNN model is shown in Table 2. Usually, vibration
signals are often collected under high-frequency noise background. Thus, in the first and
second DMSconv layers, relatively large kernel size and small kernel size are selected to
suppress the high-frequency noise. According to [32], the kernel sizes of the two DMSconv
layers are 32 and 2 in this study, respectively. To train the proposed IMSCNN model,
cross-entropy loss function is adopted for fault diagnosis.
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Table 2. Architecture-related hyperparameters of IMSCNN.

NO. Layer Name Layer Size

1 Conv 17× 1× 64

2 DMSconv1 KS = 32 NC = 32

3 Pool 2× 1

4 DMSconv2 KS = 2 NC = 64

5 GAP 4

6 FC1 1024× 1

7 FC2 64× 1

8 FC3 output× 1

The widely used Adam [33] method is employed. And batch normalization (BN) [34]
is used to regularize the model and reduce the need for Dropout,

x̂i =
xi − E

(
xi)√

Var
(
xi
) (9)

where xi represents the output of the ith layer.

4. Experiments and Results

To verify the performance of the proposed IMSCNN method, two cases including
CWRU and PU datasets are carried out. For comparison, the widely used neural networks
including MLP, CNN and MSCNN are employed. The details of these neural networks are
described as follows,

• MLP: it is composed of five FC layers. The details are shown in the Table 3.

Table 3. Architecture-related hyperparameters of MLP.

NO. Layer Name Layer Size

1 FC1 1024× 1

2 FC2 512× 1

3 FC3 256× 1

4 FC4 128× 1

5 FC5 64× 1

6 FC6 output× 1

• CNN: it is composed of four one-dimensional convolutional pooling layers (Conv&Pool)
and three FC layers. The activation function is ReLU. The details are shown in the
Table 4.
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Table 4. Architecture-related hyperparameters of CNN.

NO. Layer Name Layer Size

1 Conv&Pool1 15× 1× 16

2 Conv&Pool2 3× 1× 32

3 Conv&Pool3 3× 1× 64

4 Conv&Pool4 3× 1× 128

5 GAP 4

6 FC1 512× 1

7 FC2 256× 1

8 FC3 64× 1

9 FC4 output× 1

• MSCNN: its main structure is the same as IMSCNN, where the dilation rate is set as 1.
• SimpleIMSCNN: The structure of SimpleIMCNN is similar to IMSCNN, except the

first 1D convolutional layer shown in Figure 3 is ignored.

For all comparative methods, the batch size is set to 64. Adam is used as an optimizer.
The maximum number of epochs is selected as 100. 1024 data points are set as a group of
data input to the neural network. The working environment is Intel Core i7-8750h CPU@
2.20 GHz, 24.0 GB ram, and Geforce GTX 2070 GPU under Windows 10 operating system.
All methods are implemented through Python 3.6.12 and Pytorch 1.7.1.

4.1. Case 1: CWRU

The CWRU datasets were provided by the Case Western Reserve University bearing
data center [35]. The vibration data was collected under three faulty conditions and one
normal condition. Each fault has three kinds of faults in different positions, so there are
a total of 9 kinds of faults to be classified. In this study, the data with the acquisition
frequency of 12 K is selected. The details of the fault are shown in the Table 5. Table 5
shows that in addition to the normal bearings there are three different fault locations, Ball
(B), Inner Race (IR), and Out Race (OR). Each fault location contains three fault diameters
of 0.07 inches, 0.014 inches, and 0.021 inches respectively. All faults were created manually
by electro-discharge machining (EDM).

Table 5. Description of each type of fault in the CWRU dataset.

NO. Bearing State Fault Diameters Fault Location

0 Health / /

1 Fault 1 0.007 inch IR

2 Fault 2 0.014 inch IR

3 Fault 3 0.021 inch IR

4 Fault 4 0.007 inch B

5 Fault 5 0.014 inch B

6 Fault 6 0.021 inch B

7 Fault 7 0.007 inch OR

8 Fault 8 0.014 inch OR

9 Fault 9 0.021 inch OR
All the vibration signals were collected under same motor loads at 1797 rpm and 0 HP.

In the experiment, 80% of the collected data from each condition is used for training
and the other 20% is for testing. The accuracy results are shown in Table 6. The confusion
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matrix is shown in Figure 5. It can be seen from Table 6 that both CNN and MLP offer
satisfactory performance, where the accuracy reaches 99.77% and 94.63% respectively.
Through extracting multi-scale features, MSCNN, SimpleIMSCNN, and IMSCNN can
provide 100% accuracy.

To further compare the ability of feature extraction, t-SNE [36] is used to visualize the
extracted features for all methods. As shown in Figure 6, it can be found that the features
extracted by MLP are close between class 1, class 4, class 7, and class 8, while the features
extracted by CNN are close between classes 5 and 8. Thus, there exist misclassified results
by MLP and CNN. The data in the confusion matrix can also prove this point as plotted in
Figure 5. Contrary, the distance between features extracted from MSCNN, SimpleIMSCNN,
and IMSCNN are relative far.

(a) (b)

(c) (d)

(e)

Figure 5. Confusion matrix of the CWRU dataset. (a) MLP; (b) CNN; (c) SimpleIMSCNN;
(d) MSCNN; (e) IMSCNN.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Feature visualization via t-SNE: CWRU dataset. (a) MLP; (b) CNN; (c) SimpleIMSCNN;
(d); MSCNN (e) IMSCNN (f) class of the each color.

Table 6. The accuracy of each method in CWRU dataset.

Method Acc

MLP 94.63%

CNN 99.77%

MSCNN 100%

SimpleIMSCNN 100%

IMSCNN 100%

4.2. Case 2: PU Dataset

PU datasets were provided by the Paderborn University Bearing Data Center [37].
In the PU dataset, there are 14 faulty conditions. In this study, the vibration data was
collected under the working conditions of rotating speed 1500 rpm, load torque 0.7 nm,
and radial force 1000 N. The descriptions of 14 faults are listed in Table 7. In Table 7,
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the fault location is represented by fault mode. Since the fault type of NO.13 KI04 is
the same as NO. 8 KI14, we only consider NO. 8 KI14. Thus, our goal is to classify the
13 faulty conditions.

All data are collected on the test rig through the transducer. The sampling frequency
of vibration data is 64 k Hz and the sampling time is 4 s. The real damages bearing used
in this experiment were obtained by accelerated lifetime test. Low viscosity oil was also
used during the experiments, which was more conducive to the appearance of damage.
Most damage is caused by fatigue damages, which arise in the form of pittings. The rest of
the damage types are mainly plastic deformation in the form of indentations caused by the
debris. We use 80% of the data from each condition for training and 20% for testing.

Table 7. Detailed description of PU datasets.

NO. Bearing Code Fault Mode Description

0 KA04 Outer ring damage
(SP, S, Level 1)

Caused by fatigue
and pitting

1 KA15 Outer ring damage
(SP, S, Level 1)

Caused by plastic
deform and
indentation

2 KA16 Outer ring damage
(SP, R, Level 2)

Caused by fatigue
and pitting

3 KA22 Outer ring damage
(SP, S, Level 1)

Caused by fatigue
and pitting

4 KA30 Outer ring damage
(D, R, Level 1)

Caused by plastic
deform and
indentation

5 KB23
Outer ring and

innerring damage (SP,
M, Level 2)

Caused by fatigue
and pitting

6 KB24
Outer ring and

innerring damage (D,
M, Level 3)

Caused by fatigue
and pitting

7 KB27
Outer ring and

innerring damage (D,
M, Level 1)

Caused by plastic
deform and
indentation

8 KI14 Inner ring damage
(SP, M, Level 1)

Caused by fatigue
and pitting

9 KI16 Inner ring damage
(SP, S, Level 1)

Caused by fatigue
and pitting

10 KI17 Inner ring damage
(SP, R, Level 3)

Caused by fatigue
and pitting

11 KI18 Inner ring damage
(SP, S, Level 1)

Caused by fatigue
and pitting

12 KI21 Inner ring damage
(SP, S, Level 2)

Caused by fatigue
and pitting

13 KI04 Inner ring damage
(SP, M, Level 1)

Caused by fatigue
and pitting

[1] SP: single point fault; D: distributed fault. [2] S: single damage; R: repetitive damage; M: multiple damage.

The confusion matrix is displayed in Figure 7. As shown in Figure 7, there are many
faulty samples misclassified by MLP and CNN. For MLP, the accuracy rate is only 58.89%
for fault 7. For CNN, the accuracy of fault 11 is only 67.9%, and 13.58% of samples of fault
11 are misclassified as fault 8. From the data in confusion matrices of SimpleIMSCNN,
MSCNN, and IMSCNN, it can be seen that there are much fewer misclassified samples.
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(a) (b)

(c) (d)

(e)

Figure 7. Confusion matrix of the result on each method with PU dataset. (a) MLP; (b) CNN;
(c) SimpleIMSCNN; (d) MSCNN (e); IMSCNN.

In a similar way, t-SNE is used to visualize the extracted for all comparative methods.
The visualization results are plotted in Figure 8. As displayed in Figure 8, it can be seen that
the features extracted from MLP and CNN can not be well separated. Compared to MSCNN
and SimpleIMSCNN, the features extracted from IMSCNN are more distinguishable.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Feature visualization via t-SNE: PU dataset. (a) MLP; (b) CNN; (c) SimpleIMSCNN;
(d) MSCNN; (e) IMSCNN; (f) class of the each color.

Table 8 lists the accuracy results. From Table 8, the accuracy of MLP and 1DCNN are
69.69% and 85.64%, respectively. Through extracting multi-scale features, the accuracy
of MSCNN is 95.53%. On the other hand, the accuracy of SimpleIMSCNN is 92.1%.
The proposed IMSCNN method can provide the best performance among the comparative
methods, where the accuracy reaches 96.55%. It indicates that the noises contained in
vibration signals can be filtered by the first 1D convolutional layer of the proposed IMSCNN.
Thus, the diagnostic performance of IMSCNN is improved.
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Table 8. The accuracy of each method in PU data set.

Method Acc

MLP 69.69%

CNN 85.64%

MSCNN 95.53%

SimpleIMSCNN 92.10%

IMSCNN 96.55%

5. Conclusions

A novel CNN-based bearing fault diagnosis method called IMSCNN is developed in
this paper. In the proposed IMSCNN method, the one-dimensional original vibration signal
is preprocessed through a one-dimensional convolutional layer to alleviate the influence of
noise. To extract more informative features, a multi-scale feature extraction layer called
the DMSCov layer which consists of four dilated convolutional operation with different
dilation rates is employed for fault diagnosis. Two widely used CWRU and PU datasets
are utilized to verify the superiority of the proposed IMSCNN by comparison with other
related methods.
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