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Abstract: Semantic segmentation for high-resolution remote-sensing imagery (HRRSI) has become
increasingly popular in machine vision in recent years. Most of the state-of-the-art methods for
semantic segmentation of HRRSI usually emphasize the strong learning ability of deep convolutional
neural network to model the contextual relationship in the image, which takes too much consideration
on every pixel in images and subsequently causes the problem of overlearning. Annotation errors and
easily confused features can also lead to the confusion problem while using the pixel-based methods.
Therefore, we propose a new semantic segmentation network—the region-enhancing network (RE-
Net)—to emphasize the regional information instead of pixels to solve the above problems. RE-Net
introduces the regional information into the base network, to enhance the regional integrity of images
and thus reduce misclassification. Specifically, the regional context learning procedure (RCLP) can
learn the context relationship from the perspective of regions. The region correcting procedure (RCP)
uses the pixel aggregation feature to recalibrate the pixel features in each region. In addition, another
simple intra-network multi-scale attention module is introduced to select features at different scales
by the size of the region. A large number of comparative experiments on four different public datasets
demonstrate that the proposed RE-Net performs better than most of the state-of-the-art ones.

Keywords: semantic segmentation; remote sensing imagery (HRRSI); deep convolutional neural
network; regional integrity of images

1. Introduction

Semantic segmentation of HRRSI, which classifies every pixel in an image, has been
one of the most popular research areas in remote-sensing image processing recently. In par-
ticular, with the emergence of 5G and other new technologies, the capability of applications
based on semantic segmentation of HRRSI has become stronger and more viable, such
as land attribute classification [1], capacity identification and road extraction [2]. Various
studies have been carried out, including multi-scale context learning [3–10], high-resolution
restoration [11–15], and contextual relationships aggregation [16–28], and so on.

Previous work has demonstrated the importance of contextual information for seman-
tic segmentation. Zhao et al. [3] and Chen et al. [4] extracted local contextual information
at multiple scales by using parallel convolution or pooling operations with different sizes
of receptive field. Zhao et al. collected global information at various scales under four
different levels of pooling of operation, such as PPM [3]. Chen et al. considered it by
using various atrous convolutions of different atrous rates. This was a classic work in this
field that is still widely used nowadays. However, the network with a fixed structure was
limited by the size of the local receptive field, so it could not effectively learn the long-range
correlation. In order to overcome this constraint, Zhang et al. [16] proposed a context
network based on an attention mechanism [29] which is used selectively to enhances
the global contextual information. In addition, DA-Net [17], OC-Net [18], PSA-Net [20],
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CC-Net [21], ANN [23], ATTENTION_U-Net [11], GC-Net [24], CF-Net [25], SA-Net [30]
and LA-Net [27] introduced contextual relations from various perspectives, respectively.
Among these networks, ANN and OC-Net successfully reduced the computational com-
plexity of an attention network without reducing the performance by simplifying the
expressions of non-local operations. All these networks operated at pixel scale.

These pixel-level context models have had some success, but the overly detailed
learning mode (pixel-by-pixel learning) can make the model sensitive [22]. Specifically, a
large number of confusing features and unavoidable mislabeling can lead to confusion
in the learning of contextual relations, which become the bottleneck of the pixel-based
networks. Therefore, how to solve the problems induced by the pixel-level learning
mechanism without degrading performance is the key to breaking through the bottleneck
of the current semantic segmentation methods.

In recent work, ACFN-et [22], OCR-Net [19] and HMA-Net [26] modified the original
pixel-level attention mechanism to the pixel-region/object ones and the performance of
the network using the pixel-region attention mechanism has been improved. Specifically,
they no longer calculate the correlation between each pixel, but calculate the correlation
between each pixel and the corresponding region [26] or object [19] instead. These methods
improved performance while reducing the amount of calculation. However, the relation-
ship between pixels and regions is not enough to completely solve the confusion and the
model is still relatively sensitive to some very similar features.

Our method constructs a region-enhanced semantic segmentation network for HRRSI,
which makes the model focus on learning the region-level context instead of pixel-level
context. Two modules, the region-enhancing module and the multi-scale context learning
module, are carefully designed in the proposed network to realize the region-level attention
mechanism. The region-enhancing module is composed of the region-correcting procedure
and the regional context learning procedure. Regional context learning procedure is
designed to learn the contextual relations at the regional level. The region-correcting
procedure is designed to enhance the regional features by getting rid of the random
pixels within a region and enhancing the heterogeneity between regions at the same time.
Considering that the size of regions varies greatly in different images, especially in HRRSI,
we designed the multi-scale context-learning module, ADAPTIVE_ASPP, to incorporate
multi-scale information according to the size of regions to take advantage of the powerful
learning ability of the ASPP module [4,6].

In addition, it should be noted that the multi-scale attention structure in the proposed
method is different from scale perception [31], and the “pyramid multi-scale attention
network” [5] recently released by NVIDIA, which belongs to post-processing and needs to
copy the original structure when training the model. However, our method incorporates
multi-scale information during model training, which does not require such complex and
memory-consuming operations.

We evaluated our approach on the Vaihingen and Postdam datasets of ISPRS, which
are very challenging public datasets. In these experiments, the proposed method is superior
to current popular methods, such as DEEPLABV3+ [6], DA-Net [17], OC-Net, PSP-Net [3],
and most recently HMA-Net [26], LA-Net [27]. These segmentation methods for very
high spatial resolution remote-sensing imagery have been widely used for land cover
classification, building detection, and so on.

The paper includes five parts. The first section is the introduction. Section 2 briefly
introduces the related work. Section 3 elaborates our proposed model. Section 4 describes
and analyses the experiments on three different public datasets, such as Vaihingen and
Postdam. Section 5 draws the conclusion.

2. Related Work

Multi-scale structure: PSP-Net and Deep-lab series [4,6] are the two classic multi-
scale structures in the field of semantic segmentation. The former uses adaptive pooling
with different pooling sizes, while the latter uses different atrous convolution to capture
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information at multiple scales. Sub-follow-up researchers continued to expand on these
two structures and derived Dense-ASPP [32] with a denser scale, which, to some extent,
solved the gridding problem caused by atrous convolution. At the same time, APC-Net [7]
considered contextual relations at various scales by using PSP-Net structure. MFRN [8]
uses a simplified version of the ASPP architecture to design a semantically segmented
backbone network. In addition, the encoder structure similar to U-Net can also extract the
multi-scale information of the network to a certain extent, such as V3+, AC-Net [9] and so
on. However, the performance only using multi-scale structure is not satisfactory.

Contextual aggregation: the earlier Enc-Net [16] as Non-local [29]’s following work
borrowed the attention mechanism to perform a weighted summation by balancing the
importance of features. Subsequent studies learn contextual relations from a broader
perspective. PSA-Net introduces the collecting and distributing branches to associate each
pixel with the whole image to learn the pixel-level context. DA-Net further added a channel
attention module to construct two parallel attention modules respectively at pixel-region
levels and achieve better performance. By considering the usefulness of the pixel’s context,
CC-Net designed a criss-cross attention module to learn the weight of the backbone position
in the image instead of learning the weight of all position pixels. However, because the
context is still learned at the pixel level, the complexity and performance of the model are
not satisfactory. OCR-Net, ACF-Net and HMA-Net reduced the time complexity of the
model and improved the segmentation accuracy by considering the contextual relationship
between pixel and region. However, the trade-off between model complexity and accuracy
is still an issue that needs to be carefully considered.

Boundary processing: GSCNN enhances the boundary prediction of the whole model
by introducing a gating mechanism to perform the boundary prediction independently.
DPC [10] applied boundary detection to improve the segmentation accuracy [12,33], which
forces the improvement of boundary accuracy by adding extra tasks. Super-pixel semantic
segmentation [28] attached heavier loss weight to boundary pixels, thus guiding the model.
Dense-CRF [13] and Seg-Fix [34] improves the boundary by employing post-processing.
All these methods require additional consumption.

Coarse-to-fine scheme: many coarse-to-fine segmentation schemes have been devel-
oped [14,35–38]; among them, the classic one is to perform coarse segmentation on the
intermediate features in the network [37], and then use the obtained segmentation result as
a new feature representation to help the original network obtained more refined results.

Our method is similar to this kind of coarse-to-fine, which does not use coarse pre-
dictions as additional features or refine features, but uses it to learn the regional context
information.

Semantic segmentation of remote-sensing images: in the field of semantic segmenta-
tion of remote-sensing images, deep learning methods are quickly combined with tradi-
tional machine learning methods after the rapid development of deep learning methods.
For example, TREE-U-Net [39] combines U-Net with decision tree structure. Super-pixel
segmentation [28] realizes the combination of Deeplabv3+ and random forest. Although
these methods have achieved good results, they have added additional modeling [40] and
SCS-Net [41] has designed two different network structures without extra expense. In
particular, due to the particularity of remote-sensing images, many remote-sensing images
have more than three channels. Therefore, deep learning methods based on the information
of the fourth channel or other channels are also derived, such as EEDFN [42]. HMA-Net
and LA-Net combined the above two methods on the basis of pure deep learning and
incorporating the additional feature information of a remote-sensing image. In addition,
some researchers tried to add the boundary detection as a separate task. These methods
either add additional calculations or require additional information.

Subsequently, our work is mainly focused on building a simpler and more efficient
network without using additional information from remote-sensing images. Our network
is similar to HMA-Net, which improves the performance of semantic segmentation of
remote-sensing images by building a mixed multiple attention network. However, unlike
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HMA-Net, which focuses on contextual relationships between pixels and region, our
network focuses on improving the integrity of the region and only use the three channels
of the image as our input.

3. Method

In order to further reduce the misclassification induced by the pixel-based method,
we propose a region-enhancing network by taking the contextual relation information at
regional scale instead of pixel scale. As shown in Figure 1, the architecture of the proposed
network is mainly composed of region-enhancing module (REM) and the adaptive ASPP
module. The RCM can be divided into the regional context learning procedure (RCLP)
and the region correcting procedure (RCP) separately. The two procedures form the upper
branch of the network by cascading and embedding. The RCLP is specially used for the
network to learn the contextual relationship from the perspective of the region, while
the RCP aims to enhance the consistency of the extracted features of each region, thus
promoting the learning of the region-level context. In addition, the adaptive ASPP module
takes the multi-scale information into consideration by automatically adjusting the weight
of each scale information according to the size of initial retrieved region. Specifically, given
a remote-sensing image, we first input it into the backbone to obtain the preliminary rough
feature mapping, which is adjusted to be 1/8 of the origin image, the same setting as
Chen et al. [4]. Then we input it into the region-enhancing module and the adaptive ASPP
module, respectively. Finally, the outputs from the two modules are stacked as the inputs
of the classifier for final segmentation.
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3.1. Region-Enhancing Module

RCM is the primary structure used to enhance the regional feature instead of pixel
information. RCM is composed of two procedures, RCLP and RCP. It should be noted that
another RCP is embedded in the RCLP.

3.1.1. Regional Context Learning Procedure

The purpose of the RCLP is to learn the region-level context and the flowchart of
the procedure is shown in Figure 2. Specifically, the feature F without reginal context
information extracted from the backbone network is processed by the RCLP and the feature
Fcontext learned regional context is subsequently retrieved. The detailed operations are
as follows.

At first, the RCLP is inherited from the treatment of object characteristics in papers
like OCR-Net [19] and ACF-Net [22]. These methods introduce the semantic segmentation
procedure at both the middle and the last of its network to better extract the rough region-
level features. Assume that the input features are F from the backbone network, which is
pixel-level features, and S is the region-level features obtained after a soft classification of F.
Equations (1) and (2) show the calculation of S.
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S = so f t(F) (1)

S = {s0, s1, . . . , sk−1}, (i ∈ (0, k− 1)) (2)

where si is the feature of the ith region, k represents the number of region, soft represents
one 1 × 1 convolutional layer, the rough classifier.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. The details of proposed regional context procedure. 

3.1.2. Region Correcting Procedure 
The overall structure of the RCP is shown in Figure 3. Firstly, each pixel’s features 

from the original feature map are accumulated to enlarge the differences of pixels be-
longing to different region and subsequently to remap the original image to obtain the 
corrected feature map R(c), which can greatly improve the wholeness of the classified re-
gions. An identity is added to R(c) to obtain the final corrected feature map F(c). Specifi-
cally, F represents the original feature map. In order to reduce the computation loading, 
the number of channels is also reduced (1x1_conv_red), so the calculation formula of R(c) 

is defined as Equation (8). 𝑅 = 𝑆𝑈𝑀 1 1_𝑐𝑜𝑛𝑣_𝑟𝑒𝑑 𝐹  𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑝𝑜𝑜𝑙 𝐹  (8)

where 1 × 1_conv_red is the 1 × 1 convolution used to halve the number of channels. Sum 
represents the operation sum in the channel dimension. 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑝𝑜𝑜𝑙 represents an 
adaptive average pooling with size of 1. 

The final feature map F(c) is calculated as Equation (9). 𝐹 = 𝐹 + 1 1_𝑐𝑜𝑛𝑣_𝑢𝑝 𝑅  (9)

 
Figure 3. Detailed design drawing of the area correction procedure. Where, adaptive pool(1) represents the adaptive 
pooling operation of size 1. SUM represents the sum operation in channel dimension. 

3.2. Intra-Network Adaptive ASPP Module 
The ASPP module is a classic multi-scale module that has been widely used for 

dealing with the multi-scale issues in the field of semantic segmentation. In this study, a 
simple change has been made to the ASPP module, which improve the efficiency of the 

Figure 2. The details of proposed regional context procedure.

The RCP, which greatly reduces the misclassified pixels to further improve the whole-
ness of region classification, is embedded explicitly into the RCLP to promote the learning
of region-level context, and the RCP is described in detail at Section 3.1.2. We use S(c) to
represent the region features after the RCP and rough classification, its calculation formula
is shown in Equation (3).

S(c) = so f t(RCP(F)) (3)

Then, according to the non-local [29] method of context learning, the relationship
matrix A between regions can be calculated as Equation (5).

Z = reshape
(

S(c)
)

(4)

aij =
HW

∑
d=0

Zid ∗ ZT
dj, (i, jε(0, K)) (5)

where aij is the relationship between region i and j, HW represents the height and width of
S(c) respectively. reshape represents the operation reshape S(c) from K × H ×W to K × HW.

By connecting S with A, the region-level contexts are learned subsequently and the
corresponding formula of the features (Scontext) after the regional context learning is defined
as Equation (6).

Scontext = reshape
(
(reshape(S)T ∗ A)

T)
(6)

where, reshape represents the operation rearranging the dimensions of the matrix to match
the matrix multiplication. Specifically, reshape S from K × H ×W to K × HW.

Finally, the obtained feature map Fcontext with region-level context is restored to the
dimension of the original feature map through a convolution, and an Identity is also added
to avoid the ineffectiveness of the procedure according to the design of the residual module,
which is defined as Equation (7).

Fcontext = 1× 1_conv_up
(
Scontext)+ Identity (7)

where 1 × 1_conv_up is the 1 × 1 convolution used to increase the number of channels.
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3.1.2. Region Correcting Procedure

The overall structure of the RCP is shown in Figure 3. Firstly, each pixel’s features
from the original feature map are accumulated to enlarge the differences of pixels belonging
to different region and subsequently to remap the original image to obtain the corrected
feature map R(c), which can greatly improve the wholeness of the classified regions. An
identity is added to R(c) to obtain the final corrected feature map F(c). Specifically, F
represents the original feature map. In order to reduce the computation loading, the
number of channels is also reduced (1x1_conv_red), so the calculation formula of R(c) is
defined as Equation (8).

R(c) = (SUM(1× 1_conv_red(F)))⊗ (adaptive_pool(F)) (8)

where 1 × 1_conv_red is the 1 × 1 convolution used to halve the number of channels.
Sum represents the operation sum in the channel dimension. adaptive_pool represents an
adaptive average pooling with size of 1.
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The final feature map F(c) is calculated as Equation (9).

F(c) = F + 1× 1_conv_up
(

R(C)
)
) (9)

3.2. Intra-Network Adaptive ASPP Module

The ASPP module is a classic multi-scale module that has been widely used for dealing
with the multi-scale issues in the field of semantic segmentation. In this study, a simple
change has been made to the ASPP module, which improve the efficiency of the network
while dealing with the information extracted from the ASPP module. Compared to the
original ASPP without considering the weight of each scale, the adaptive ASPP proposed
in this study designs scale-based weight, which can be calculated by passing a region map
classified from the initial feature map into two full connection layers.

3.3. Loss Function

In order to better compare with other studies, the simple and stable cross entropy loss
function is chosen in this study, whose calculation formula is defined as Equation (10):

CE(p, q) = −
C

∑
i=1

pi log(qi) (10)
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where pi represents the ratio of class i to the total sample, qi represents the probability that
class i is predicted as class i, and C represents the number of categories.

At the same time, since we designed several structures, we added two auxiliary loss
in the backbone and the REM in the network, respectively, to promote the learning of the
network. The first auxiliary loss is added to the backbone after RES422B and it is composed
of two 1 × 1 and one 3 × 3 convolution. The second auxiliary is added to the REM and it is
composed of the simplest 1 × 1 convolution.

4. The Experiment

To verify our proposed model, we conducted a large number of experiments on four
different open datasets, Vaihingen, Postdam, DLRSD, and GID. Among these datasets,
Vaihingen and Postdam with only five classes have been released and well-evaluated for a
long time; furthermore, the results using our model on the two datasets are compared with
the results based on some other modes. Subsequently, the dataset with much more images
and more classes (over 15 classes) including DLRSD and GID are also used for verification
purpose. In this section, we will first describe the datasets used for verification purpose
and their corresponding processing details. Secondly, we show our implementation in
detail. Thirdly, some small experiments have been carried out to verify the effectiveness of
the key procedures proposed in our network. Finally, our results on these two datasets are
compared with the results based on the state-of-the-art methods.

4.1. Datasets

Vaihingen [43]: the dataset is composed of 33 orthorectified image tiles acquired
over the town of Vaihingen (Germany), with an average size of 2494*2064 and a spatial
resolution of 9 cm. Among the 33 images, 16 are fully annotated and distributed to the
public, while the remaining ones comprise the test set and their ground truth is not released.
The Vaihingen dataset contains five foreground classes and one background class. The five
foreground classes include impervious surfaces (roads, concrete flat surfaces), buildings,
low vegetation, trees, and cars. The background class is a class of “clutter” to group
uncategorized surfaces and noisy structures. Classes are highly imbalanced, with the
classes “buildings” and “impervious surfaces” accounting for roughly 50% of the data,
while classes such as “car” and “clutter” account only for 2% of the total labels. In order to
make a close comparison with other methods, we follow the previous work and mainly
limit the research scope to the foreground scope. Meanwhile, in accordance with the setting
on the official website of the ISPRS dataset, 16 of the datasets defined by the benchmark
organizer were used as our training set and verification set, while the other 17 were used
to test our model. It should be noted that we did not use the DSM data in this study.

Postdam [44]: the Potsdam dataset has the same foreground and background classes
as the Vaihingen dataset. However, the Postdam dataset not only provides DSM data, but
also provides more band combinations including RGB: 3 channels (R-G-B), and RGBIR:
4 channels (R-G-B-IR). In our experiment, the RGB combination is used in order to better
compare with other research. The Postdam dataset contains a total of 38 high-resolution
6000*6000 remote-sensing images. According to the benchmark organization, 24 of them
are used for training and verification purposes and 14 of them for testing purpose.

It needs to be pointed out that Vaihingen is a relatively small village and Potsdam
a typical historic city with large building blocks, narrow streets and dense settlement
structure; there are big differences between these two datasets.

DLRSD [45]: DLRSD is a dense labeling dataset that can be used for multi-label tasks,
such as remote-sensing image retrieval and classification, and other pixel-based tasks like
semantic segmentation. DLRSD has a total of 17 broad categories [45] with 100 images
per class (1700 images totally), which is the same as the UC Merced archive, including
aircraft, docks, jungle courts, buildings and so on. Among the 17 classes, the dock and
airplane accounted for no more than 0.65% of the total data, which poses a great challenge
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to semantic segmentation. In this study, they are divided into training sets and verification
sets by 4:1. The detailed information of DLRSD can be referred to [45].

GID: GID is a large-scale land-cover dataset constructed with Gaofen-2 (GF-2) satellite
images, which has superiorities over the existing land-cover dataset because of its large
coverage, wide distribution, and high spatial resolution. GID consists of two parts: a large-
scale classification set and a fine land-cover classification set. In this study, the large-scale
classification set containing 150 GF-2 images annotated at pixel-level is used for verification.
The training and validation data with 15 categories is collected and they include farmland,
meadow, lake, arbor woodland, paddy field and so on. Among them, the most challenging
is shrub land, only accounts for 0.29% of the total dataset. GID and its reference annotations
can be found online at GID Dataset (x-ytong.github.io) (accessed on 20 November 2019).

We will do major experiments on the Vaihingen and Postdam datasets, and then test
the robustness of our model in GID and DLRSD, which owns more categories and more
complicated scenarios.

It is important to note that we have not fine-tuned the model when we tested it on
datasets other than Vaihingen.

4.2. Evaluation Indicators

In order to make a wider comparison with various research results, in addition to
adopting the F1 score and overall accuracy (OA) used by the benchmark organization,
we also took the mean intersection over union (MIoU) into account, which is one of
the most used indicators in the field of semantic segmentation. Their definitions are at
Equations (11)–(13) respectively.

F1 =
(

1 ∗ β2
)
∗ precision ∗ recall

β2 ∗ precision + recall
(11)

where β is used to balance recall and precision. In our experiment it was set to 1.

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji− pii
(12)

where Pij represents the probability that class i is predicted to be class j, and K + 1 is the
number of classes (including empty classes).

OA =
∑k

i=0 Pii

∑k
i=0 ∑k

j=0 pij
(13)

Notably, similar to previous work, all of our evaluation indicators are calculated on
the eroded data defined by the benchmark organization setters, in order to reduce the
impact of uncertain border definitions on the evaluation.

4.3. Implementation Details

This study, ResNet50 is used as the backbone of the proposed network for better
comparisons with the other methods because of its extensive use in sematic segmentation.
The pretraining parameters’ settings of the ResNet50 are the same as the official training of
PYTORCH. It should be noted that the setting of the backbone network is only for better
comparison purposes with other studies. The backbone network can use any network,
such as HR-NET [46,47]. In terms of learning rate, the momentum is set to 0.9, the weight
attenuation is set to 4E-5, and the initial learning rate was set to 0.02. Synchronous batch-
norm instead of the normal batch-norm is used in this study for taking distributed training
for accelerating purpose. In terms of data enhancement, all the training images were
randomly flipped horizontally or vertically, randomly scaled, and randomly cropped
while conventional normalization and color dithering are applied to all the images in the
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meantime. All the images are cropped to 512*512. DeepLabv1 is used as the baseline
network in this study.

We completed all our experiments on two 12GB NVIDIA TESLA P100.

4.4. Experiments on the Vaihingen Dataset

For the Vaihingen dataset, we clipped it by sliding window. The sliding window
size was set to 512*512, the moving step size was set to 384 and the images smaller than
128*128 pixels were abandoned; 500 images were obtained. After five random scaling
and clipping (0.5, 0.75, 1.25, 1.5, 2.0), 3 roasts (90,180,270), 1 random Gaussian blur, and
1 Gaussian noise, a data set of nearly 6500 images was obtained.

• Ablation experiments on multiple loss functions

Similar to previous studies, such as PSP-NET, the multiple loss functions were tested
to facilitate training of the model. In detail, we added a DECODER after RES422B as
auxiliary loss 1 (aux_1). In addition, a new loss function as auxiliary loss 2 (aux_2) was
added after the region enhancing module. Taking the final CLS loss (main loss) counted,
there were three losses in total. By fixing the proportion of the main loss function as 1.0,
the OAs could be retrieved by changing the weights of aux_1 and aux_2 respectively from
0.1 to 1.0 with 0.1 interval. The results of the ablation experiments are shown in Figure 4.
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Based on the results in Figure 4, the optimal weights for the two auxiliary loss functions
were both 0.2. Based on the optimal weight settings of the auxiliary loss functions, the OA
reached 91.192%, the MIOU reached 83.095%, and F1 score reached 90.616%, which were
obvious improvements. We show the results of the ablation experiment in Table 1.

Table 1. Ablation study for multiple loss functions.

Backbone Aux_1 Aux_2 Main Loss MIOU OA F1

RE-Net Resnet50 3 82.889 91.081 90.488
RE-Net Resnet50 3 3 83.054 91.141 90.588
RE-Net Resnet50 3 3 3 83.095 91.192 90.616

• Ablation experiments of various regional structures

In order to demonstrate the effectiveness of the proposed structures in the proposed
method, ablation experiments for various regional structures were designed and implanted.
Table 2 shows whether a simply designed self-adaptive ASPP module or a well-designed
region enhancing module has achieved an obvious improvement compared with the
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baseline network. When only the adaptive ASPP structure is employed, the network is
improved by 6.189 (MIoU), 2.223 (OA), and 3.996 (F1) respectively; meanwhile, the regional
context learning module was applied alone, the improvements were 6.374, 2.302, and 4.546
for MIoU, OA, and F1 respectively; furthermore, the indicators were improved by about
an extra 0.1, respectively, while combining the RCP and the RCLP together. When all the
structures were combined, the accuracy of the network achieved the highest with MIoU
of 83.095, OA of 91.192, and F1 score of 90.616. Compared with the baseline, the overall
improvements were 7.086 (MIoU), 2.742 (OA), and 4.546 (F1) respectively.

Table 2. Ablation study for various regional structures.

Model MIOU OA F1

Deeplabv1(baseline) 76.006 88.450 86.070
+adptive_aspp 82.189 90.673 90.066

+rcontext 82.380 90.752 90.182
+rcontext +rc 82.465 90.904 90.232

+all 83.095 91.192 90.616

• Comparisons with other contextual methods

In order to further demonstrate the effectiveness of our proposed method, the results
on the Vaihingen dataset from the proposed method were compared with the results from
some widely used methods by using contextual information, such as DeepLabv3+, PSP-Net,
OCR-Net, and so on. As shown in Table 3, our method performs the best for all the three
indicators. In the perspective of per-class, our method is the best on the two categories
of building and car. It should be noted that our results are the only ones without any
post-processing compared to the others.

Table 3. The results of each model on Vaihingen. MIOU, the mean intersection over Union; OA, the overall accuracy.

Method Backbone

Per-Class F1 Score(%)

MIOU OA F1Impervious
Surface Building Low

Vegetation Tree Car

Deeplabv3+ Resnet50 91.35 94.34 81.32 87.84 81.31 —— 88.91 86.60
PSP-Net Resnet50 91.44 94.38 81.52 87.91 78.02 —— 88.99 86.65
OCR-Net Resnet50 92.75 95.98 83.65 89.16 89.21 82.32 90.82 90.15

DA-Net [17] Resnet50 90.78 94.11 81.40 87.42 75.85 —— 88.59 85.91
ACF-Net Resnet101 92.93 95.27 84.46 90.05 88.64 82.68 90.90 90.27

TreeUNet [39] —— 92.50 94.90 83.60 89.60 85.90 —— 90.40 89.30
LA-Net [27] Resnet50 92.41 94.90 82.89 88.92 81.31 —— 89.83 88.09

HMA-Net [26] VGG16 91.86 94.52 83.17 89.81 87.15 —— 89.98 80.68
CC-Net Resnet101 93.29 95.53 85.06 90.34 88.70 82.76 91.11 90.58

CASIA2 [41] Resnet101 93.20 96.00 84.70 89.90 86.70 —— 91.10 90.10
BKHN11 Resnet101 92.90 96.00 84.60 89.90 88.60 —— 91.00 90.40
RE-Net Resnet50 93.27 96.24 84.14 89.42 90.01 83.10 91.20 90.62

As shown in Table 3, compared to other commonly used networks, our model is
effective in the segmentation of all categories and the per-class F1 score for each category
is very close or the best; therefore, the OA, MIoU, and F1 index are all the highest ones.
Especially, the smallest object, car, reaches the highest accuracy. However, it has to be noted
that the low vegetation and trees are the least classified categories because of their high
similarity under RGB color mode.

• Complexity comparisons with other similar modules

We compared the efficiency of our model with the efficiencies of the other similar
context models. We measured the increased parameters that were introduced by the
context modules, shown in Table 4. Most relational context schemes require less parameters
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compared with the multi-scale context schemes. For example, our REM(OA of 91.20) only
requires 1/5 of the parameters of PPM(OA of 88.99) and 1/4 of the ASPP(OA of 88.91).
Meanwhile, although the amount of parameter of PAM(included in DA-Net) is less than
that of ours, its accuracy, OA of 88.59 is lower than ours [17]. Thus, it shows that the
efficiency of the REM is quite good. In general, our REM is a much better choice if we
consider the balance between performance and memory complexity.

Table 4. Comparison with other similar work in terms of the number of parameters.

Method ASPP PPM [3] SA [29] PAM [17] OCR RCCA [21] REM(Ours)

Params(M) 3.3495 4.1984 2.1022 0.3283 14.8357 2.1433 0.8043

• Visualize results

We display part of the results of the baseline network (DeepLabv1) and our RE-Net
in Figure 5 and this shows that our results are clearly better than those from the baseline
network in different cases, especially in the red boxes. Since the region enhancing module
has considered the pixels in a whole, the regional integrity of our results is much better than
that from the baseline network. At the same time, in the recognition of smaller objects, such
as car, the region enhancing network is also better. However, the pixels at the boundary of
the region are still difficult to predict accurately. When there are complex boundaries in the
image, as in other people’s work, we still cannot obtain very good results.
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4.5. Experimental Results on Postdam Dataset

Some similar work [19,22] has already yielded excellent results on different datasets,
such as Cityscapes [19,22], ADE20K [19] and COCO-Stuff [19]. In order to further test our
model’s robustness, without any modifications, we conducted similar experiments on the
Postdam dataset of ISPRS and compared the results with those from the current popular
methods. As shown in Table 5, our model achieves the best performance on MIoU and OA.
The LA-Net has the highest F1 score and the F1 score of our results is very close to that of
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the LA-Net. The values of the three indicators (MIoU, OA and F1 score) from our results
are 84.93%, 91.37%, and 91.66%, respectively, based on the test on the Postdam dataset.

Table 5. The results of each model on the Postdam dataset.

Method Backbone

Per-Class F1 Score(%)

MIOU OA F1Impervious
Surface Building Low

Vegetation Tree Car

Deeplabv3+ Resnet50 92.35 96.77 85.22 86.79 93.58 —— 89.74 90.94
FCN Resnet50 90.98 94.10 81.25 87.58 76.80 —— 88.66 86.14

FCN+SE [48] Resnet50 90.43 93.95 81.33 87.50 63.33 —— 88.27 83.31
FCN+BAM [49] Resnet50 90.77 94.01 81.54 87.78 71.76 —— 88.62 85.17

FCN+CBAM [50] Resnet50 90.86 94.03 81.16 87.63 76.26 —— 88.64 85.99
FCN+GloRe [51] Resnet50 90.57 93.99 81.28 87.49 70.09 —— 88.41 84.68

PSP-Net Resnet50 91.61 96.30 86.41 86.84 91.38 —— 89.45 90.51
DA-Net Resnet50 91.61 96.44 86.11 88.04 83.54 —— 89.72 89.14

UZ_1 [48] —— 89.30 95.40 81.80 80.50 86.50 —— 85.80 86.70
UFMG_4 [52] —— 90.80 95.60 84.40 84.30 92.40 —— 87.90 89.50

LA-Net Resnet50 93.05 97.19 87.30 88.04 94.19 —— 90.84 91.95
RE-Net Resnet50 93.33 96.30 86.63 85.94 96.11 84.93 91.37 91.66

Based on the test of the Postdam dataset, the segmentation of cars is still as good as
that with the Vaihingen dataset, which indicates that our model performs very accurately
in segmenting small targets. However, the confusion between low vegetation and trees is
still one of the limitations of our model because the difference between low vegetation and
trees within the remote sensing imagery with only RGB bands is very small. Since trees
are much higher than low vegetation, the shadow of trees can be a good indicator to be
used for separating the two categories and it will be used in our next study. In addition,
categories with complex and unsharp boundaries are still bottlenecks, which limit the
performance of our model.

4.6. Experimental Results on the Other Datasets

We conducted further tests on two datasets without any fine-tuning. These datasets
are more complicated than Postdam and Vaihingen, which contain more images and have
many more classes.

Table 6 shows the results of RE-Net on DLRSD. Figures 6 and 7 show the comparison
between the predicted classes from our model and the annotated classes from the dataset,
and the most challenging classes including airplane and dock are presented, which only
accounts for 0.65% of the total annotations. RE-Net has also achieved very good results
other datasets with much different categories, such as court, field, pavement, ship, thanks,
and water. An overall accuracy of about 90% has been achieved for these categories. In
particular, the accuracy of field and sea both reaches an astonishing accuracy of 99.5%.
Although the number of classes reach 17 and they are tri-folds of Postdam and Vaihingen,
the overall accuracy reaches 86.04, which proves that our model is still efficient when
dealing with different resolution images, completely different categories and scenes.

Although the number of classes in the four datasets are very different, some of the
classes are exactly the same or very similar; therefore, we would like to compare the
segmentation accuracy of these classes. The Vaihingen, Postdam, and DLRSD all have
three categories that are the same including cars, trees, and buildings. The Vaihingen and
Postdam datasets achieved very similar per-class F1 scores for each of these classes because
they have the same spatial resolution. The per-class F1 scores for cars, trees, and buildings
are (90.01, 89.42, and 96.24) and (96.11, 85.94, and 96.3) on the Vaihingen and Postdam
datasets, respectively, and the difference may be caused by the labeling and numbers of
samples. Although the DLRSD has relatively lower spatial resolution, the per-class F1
scores have reached 83.5, 86.72, and 88.94 for cars, trees, and buildings, respectively. Among
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the three categories, the cars’ accuracy is lowered the most because it is the smallest object
within all these categories. This also reminds us that some of the classes from different
datasets can be incorporated into samples for comprehensive training to further improve
the model’s applicability and accuracy.

At the same time, our model was used on GID for land-cover classification and the
results are presented in Table 7. The overall accuracy reached 91.27, the F1 score reached
88.12, and the MIOU reached 79.38. Shrub land reached an accuracy of 78.45, whose data
volume only accounts for 0.25%. The experiment also verified the effectiveness of our
method well.
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Table 6. The results of RE-Net on DLRSD.

Airplane Bare-
Soil

Build-
ings Cars Chaparral Court Dock Field Grass Mobile

Home Pavement Sand Sea Ship Than-ks Trees Water

OA 88.65 73.61 88.94 83.5 70.38 92.55 73.56 99.58 80.81 78.88 90.22 82.28 99.59 91.46 94.18 86.72 92.1 86.04
F1 85.33 72.79 87.11 84.23 72.38 88.7 75.51 99.75 81.82 81.61 90.32 87.32 97.71 87.74 90.24 86.02 93.35 85.99

IOU 74.41 57.23 77.16 72.76 56.71 79.7 60.65 99.5 69.24 68.94 82.35 77.5 95.52 78.16 82.21 75.45 87.53 76.18

Table 7. The results of RE-Net on GID.

Industrial
Land

Urban
Residential

Rural Res-
idential Traffic Paddy Irrigated Dry

Cropland
Garden

Plot
Arbor

Woodland
Shrub
Land

Natural
Grassland

Artificial
Grassland River Lake Pond

OA 82.26 88.9 76.75 87.52 94.11 97.19 78.67 76.68 99.22 78.45 98.29 92.24 97.25 97.5 74.44 91.27
F1 83.12 87.98 79.77 88.72 90.07 95.76 84.14 81.04 99.36 81.28 98.28 85.36 97.55 86.89 82.46 88.12

IOU 71.11 78.54 66.35 79.72 81.94 91.87 72.62 68.12 98.72 68.46 96.63 74.46 95.22 76.83 70.16 79.38
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RE-Net has achieved almost the highest accuracy on the Vaihingen dataset for all the
indicators; the OA, F1 index and MIoU are 91.20, 90.62, and 83.10, respectively. Compared
with the baseline, the accuracy has been improved by 7.086, 2.742, 4.546 for OA, F1 index,
and MIoU, respectively. At the same time, it was tested directly on the other three public
datasets without any fine-tuning and they all obtained very good results. The three
indicators (OA, F1 index, and MIoU) are (91.37, 91.66, and 84.93), (86.04, 85.99, and 76.18),
and (91.27, 88.12, and 79.38) for the Postdam, DLRSD, and GID, respectively. In addition, it
should be noted that, compared with other common structures (like PPM, ASPP, etc.), the
RE-Net only uses 0.8043M parameters which is much less than the 3.3495M of ASPP, the
4.1984M of PPM and so on.

5. Conclusions

Deep learning models have shown their advantages on semantic segmentation for
remote-sensing image and the early models based on pixel-level context have achieved
some success; however, the overly detailed learning mode (pixel-by-pixel learning) can
make the model sensitive. Specifically, a large number of confusing features and un-
avoidable mislabeling can lead to confusion on the learning of contextual relations, which
become the bottleneck of the pixel-based networks. Therefore, in order to solve the prob-
lems induced by the pixel-level learning mechanism without degrading performance, a
new model for enhancing regional integrity is proposed in this study. The region-enhanced
network starts from the contextual relationship between regions, so the network mainly
learns the contextual relationship between regions as much as possible, which does im-
prove the accuracy of the segmentation. A large number of experiments of our network
on the Vaihingen and Postdam benchmark datasets from ISPRS show that our approach
brings consistent improvements. Furthermore, the dataset with many more images and
more classes (over 15 classes) including DLRSD and GID are also used for testing and the
results demonstrate that the proposed model is also applicable to the complicated datasets
without any fine-tuning. Our contribution can be summarized as follows:

(1) We designed a simple region-enhancing module to enhance the integrity of each
region; specifically, the embedded regional context learning procedure learns the
context relationship at the regional level. Meanwhile, the region correcting procedure
explicitly corrects the features of separated pixels by operating aggregation based on
the initial and rough features extracted from the backbone, which enhances both the
consistency within the region and the differences between regions and facilitates the
work of regional context learning.

(2) The in-network adaptive ASPP module is designed to focus on the multi-scale prob-
lem of remote-sensing images by considering the scale-based weights. That is, when
the area existing in the image is large, more attention will be paid to the features at a
larger receptive field, which greatly improves the robustness of the model while not
increasing complexity.

Based on the experiments on three different datasets, it can be concluded that our
model is effective and efficient for remote-sensing imagery segmentation for most of the
categories. However, for some categories, such as low vegetation and trees, which appear to
have little difference in RGB style in most of the datasets, the proposed model still performs
poorly. In order to improve the recognition rates, we found that the trees are always
accompanied with shadows but low vegetation is not, which is induced by the height of
the trees; therefore, the shadows can be used for better separating low vegetation and trees
in our next study. Furthermore, the shadows from different categories are very similar,
so the classification of shadows also influences the segmentation accuracy significantly;
subsequently, our future studies will continue to focus on the segmentation of shadows.
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