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Abstract: Fractional vegetation cover is a key indicator of rangeland health. However, survey tech-
niques such as line-point intercept transect, pin frame quadrats, and visual cover estimates can be
time-consuming and are prone to subjective variations. For this reason, most studies only focus on
overall vegetation cover, ignoring variation in live and dead fractions. In the arid regions of the
Canadian prairies, grass cover is typically a mixture of green and senescent plant material, and it is
essential to monitor both green and senescent vegetation fractional cover. In this study, we designed
and built a camera stand to acquire the close-range photographs of rangeland fractional vegetation
cover. Photographs were processed by four approaches: SamplePoint software, object-based image
analysis (OBIA), unsupervised and supervised classifications to estimate the fractional cover of green
vegetation, senescent vegetation, and background substrate. These estimates were compared to in
situ surveys. Our results showed that the SamplePoint software is an effective alternative to field mea-
surements, while the unsupervised classification lacked accuracy and consistency. The Object-based
image classification performed better than other image classification methods. Overall, SamplePoint
and OBIA produced mean values equivalent to those produced by in situ assessment. These findings
suggest an unbiased, consistent, and expedient alternative to in situ grassland vegetation fractional
cover estimation, which provides a permanent image record.

Keywords: fractional vegetation cover; SamplePoint; image classification; OBIA; image analysis;
Northern Mixed Grasslands

1. Introduction

The Fractional vegetation cover (FVC) is defined as the percentage of the ground
surface covered by vegetation elements from the overhead perspective [1]. This metric
describes vegetation quality and composition, which contributes to ecosystem change and
control transpiration and photosynthesis among other terrestrial processes [2]. For this
reason, analyses of fractional vegetation cover are widely used in land surface modelling [3],
ecosystem monitoring [4], and natural resource management [5]. The ability to conduct
systematic, accurate, and repeatable vegetation fractional cover estimation is a fundamental
part of ecosystem biodiversity and function studies.

In arid and semiarid rangelands, live and senescent vegetation materials are often
intermixed and difficult to discriminate [6]. These materials both play vital, but different,
roles in ecological cycling and natural grassland conservation. Senescent vegetation consists
largely of prostrate litter and standing dead grass, but like live vegetation, provides forage
for grazers [7], alters the microclimate at a local scale [8], provides habitats to many species
at risk [9], and is crucial in grassland fire dynamics [10,11]. Hence, the simultaneous
estimation of both green and senescent vegetation covers is important to understand,
manage and conserve arid and semi-arid rangelands.
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Many efforts have been made to measure vegetation fractional cover in the field.
Conventional methods of ground FVC estimation include the line-point intercept transect
(LPIT) [12] and the Daubenmire cover class methods [13]. Both are labor-intensive and
prone to overestimating standing vegetation cover due to field survey design [14].

At large spatial scales, satellite-based remote sensing can be effective in estimating
FVC [15,16]. Various vegetation indices have been developed to estimate FVC in arid and
semiarid grasslands [2,15], and spectral mixing analysis (SMA) has been applied to FVC
modeling [17]. However, satellite remote sensing approaches need to be calibrated with
in situ data to maintain accuracy and account for spatial–temporal heterogeneity [18,19].
FVC field measurement remains critical to provide a baseline for improving inversion
algorithms and validating remote sensing products [20].

Close range photography has become a popular method to estimate FVC in the field.
It offers a nondestructive approach that has the potential to be equally as, or more accurate,
faster, and less biased than, in situ techniques [21–24]. Digital images taken of small plots
processed using supervised [25] or unsupervised [26] classification, object-based image
analysis (OBIA) [27], and rule-based decision or machine learning [28] have been successful
in objectively quantifying the percent of vegetation cover in a range of environments. In
concert, many tools have been developed to process close-range digital images, including
SamplePoint [29], VegMeasure [30], and Canopeo [23]. However, most research has focused
on estimating the live or green vegetation fractional cover, ignoring senescent vegetation,
which is a significant component of arid and semiarid prairie grasslands.

In arid and semiarid regions, senescent plant materials include standing dead biomass,
dormant grass, or litter from nondecomposed biomass. These are often intermixed with the
green vegetation making it challenging to differentiate the senescent and green vegetation
fractional cover from the background [6]. While a few studies have compared the results
of different image-processing methods to estimate green, nongreen and senescent vegeta-
tion [6,31], the accuracy of different approaches involving close-range imagery has yet to
be thoroughly evaluated. This is particularly the case under conditions where senescent
and green vegetation are mixed in native grasslands.

The main objective of this research is to evaluate the accuracy and consistency of
vegetation fractional cover extracted using different methods, including in situ assessment
and image analysis. To fulfill this objective, we used a camera stand to acquire close-range
digital photographs in Grassland National Park (GNP), Saskatchewan, a typical Northern
Mixed Grassland region. The digital images were then analyzed with SamplePoint software
for visual interpretation and with Environment for Visualizing Image (ENVI) software [32]
for pixel-based classification and object-based image analysis (OBIA) to obtain the fractional
cover of senescent and green vegetation. We used in situ assessment to quantify the
fractional vegetation cover (FVC) as a reference. FVC estimates from image processing
were compared to field measurements to corroborate links and consistency.

2. Materials and Methods
2.1. Study Area

Fieldwork was conducted in the west block of Grasslands National Park (GNP; 49◦ N,
107◦ W), located in the semiarid, mixed grassland ecoregion of southern Saskatchewan,
Canada [33], from 28 June to 3 July 2018. GNP lies in a region with a mean annual
temperature of 4.1 ◦C and total annual precipitation of 352.5 mm [34]. Almost half of
the annual precipitation falls as rain during the spring growing season, followed by a
long, dry summer [35], during which annual plants die and perennial herbaceous plants
wither above ground while their below-ground parts persist [36]. Therefore, there is a high
proportion of brown and grey senescent vegetation (nonphotosynthetic biomass, NPV)
above ground in addition to green, photosynthetic vegetation (PV).
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2.2. Field Experiment Design

We built a collapsible camera stand, two meters high with a one square meter
(1 m × 1 m) base frame; each edge of the frame was marked by decile ticks to facilitate
in situ measurement (Figure 1). A tripod with a pan-tilt head and independent axes and
controls was attached to the top of the camera stand (Figure 1b). A NIKON D5500 camera
with an AF-S DX 18–55 mm f/3.5–5.6 G lens was attached to the head (Figure 1c). The
camera was held at a nadir position relative to the base frame by adjusting the pan-tilt
head. An umbrella was used to shade the base above the frame. We used a remote release
to control the shutter and mobile phone connected with the camera by Bluetooth to check
photos. The camera was preset to user-shutter-priority mode with a maximum of 1/200 s
shutter speed to avoid wind effects on the grass canopy imagery [37].
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We surveyed nine sites across the study area’s dominant topographical features: valley,
sloped, and upland grasslands. The distance between sites was at least 1.5 km to prevent
the spatial autocorrelation [38]. At each site, two perpendicular transects, 100 m long and
intersecting at their centers, were surveyed, oriented in the cardinal directions (Figure 1a).
Five images were taken along each arm at 10 m intervals, excluding the center, thus,
20 images were recorded per site (Figure 1d). At each plot, we recorded the percentage
cover of grass, forb, shrub, standing dead material, litter, lichen, moss, bare soil, and rock
by visual assessment within each base frame after taking the photo of that frame. Percent
cover was estimated to the nearest 5% for cover values ranging from 10 to 90% and the
nearest 1% for values less than 10% and greater than 90% [39,40]. To limit the subjective
bias, two people independently assessed the in situ cover and their interpretations were
averaged. We sorted the original record of each plot fraction by summing up into PV (green
grass, forb, shrub, green moss), NPV (standing dead material, litter), and BS (bare soil,
rock, lichen).

2.3. Image Analysis

We estimated the fractional cover of PV, NPV, and BS from the digital image using four
methods: (1) visual classification using SamplePoint software, (2) unsupervised image clas-
sification, (3) supervised image classification, and (4) object-based image analysis (OBIA).
The unsupervised and supervised classifications as well as the OBIA were conducted
using ENVI 5.5 (Harris Geospatial Inc. Broomfield, CO, USA) and ArcMap 10.6 (Esri Inc.
Redlands, CA, USA).

SamplePoint is a popular software for visual inspection of ground cover in grassland
and pasture research and management [29]. This software loads images listed by the user in
an Excel spreadsheet, and systematically or randomly identifies and locates a user-defined
number of sample points in the image. It then moves from one point to the next so that
the user can classify each point visually [22]. We identified the 10 × 10 (100 in total)
points systematically spread across each image for visual classification using the same
nine categories as in the field assessment and grouped the results into PV, NPV, and BS for
future analysis. Two independent assessments were performed on 180 images using the
SamplePoint software and the results from the two assessments were averaged.

For the unsupervised classification, we followed methods described by Smith, Hill
and Zhang [26,41]. Images were transferred from the original RGB (red, green, blue) color
spectrum into HIS (hue, intensity, saturation) space. Images were divided into 14 classes
using the ISODATA algorithm in ENVI 5.5 image analysis software. The original 14 classes
were visually examined with reference to the original photos and were merged to derive
PV, NPV, and BS. For the supervised classification, we used the maximum likelihood
classification algorithm by predefining the regions of interest (ROI) for PV, NPV, and BS.
For each class, at least 50 ROIs were selected for training.

For OBIA, we used the feature extraction module in ENVI 5.5. In this method, an
image is segmented into homogeneous areas based on two parameters: scale and merging
level (spectral information). The scale parameter is unitless and controls the relative size
of image objects (polygon or segment), with a smaller scale parameter resulting in more
image objects. Merging combines adjacent segments with similar spectral attributes, a
larger merging parameter results in more adjacent segments with similar colors and border
sizes. Images were segmented at a 40–70 scale level and 10–30 merging level; choosing a
high scale level results in fewer defined segments, while choosing a high merging level
results in more segments to be aggregated into small segments within larger, textured areas.
Specific parameter settings were adjusted interactively using the preview window in the
feature extraction module because the texture and color features for individual images
were dependent on the site-specific plant composition and background [6,26]. This also
allowed us to predefine the training data for PV, NPV, and BS. The image was classified
using the support vector machine (SVM) algorithm with all available attributes (spatial,
spectral, and textural).
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180 images (20 images per site for 9 sites) were used to compare the nine categories
inventoried for both the field assessment and SamplePoint classification (Figure 2). We
binned the nine categories into PV, NPV, and BS and compared results from both field and
SamplePoint based on these bins. The unsupervised, supervised, and OBIA classification
methods were applied to 36 selected images (4 images randomly per site) using PV, NPV,
and BS categories. Results were compared to the field assessment.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16 
 

 

180 images (20 images per site for 9 sites) were used to compare the nine categories 
inventoried for both the field assessment and SamplePoint classification (Figure 2). We 
binned the nine categories into PV, NPV, and BS and compared results from both field 
and SamplePoint based on these bins. The unsupervised, supervised, and OBIA classifi-
cation methods were applied to 36 selected images (4 images randomly per site) using PV, 
NPV, and BS categories. Results were compared to the field assessment. 

 
Figure 2. Methodology flowchart. 

Coefficient of determination (R2), root-mean-square error (RMSE) [41–43], and the 
Bland-Altman plot (Tukey mean difference plot) [44] were used to evaluate the compari-
son. The Bland-Altman plot allows the identification of any systematic differences be-
tween two measurements or possible outliers by plotting the differences between the two 
methods against their averages. The Cartesian coordinates of a given sample S with values 
S1 and S2 are: , = + 2 , −  (1)

The mean of n sample pairs’ difference (S1-S2) is the estimated bias, and the standard 
deviation (SD, σ) of the differences indicating the random fluctuations around this mean. 

In the Bland-Altman plot, horizontal lines are drawn at the mean difference and at 
the limits of agreement. These are defined as the mean difference plus and minus 1.96 
times the SD of the differences. The mean difference plus and minus 3.0 times the SD lines 
are defined as the extreme limits of agreement. A Wilcoxon test [45] of the paired samples 
was performed to compare paired data among the in situ assessments and four other 
methods (SamplePoint estimation, unsupervised classification, supervised classification, 
and OBIA). The Wilcoxon test was chosen to assess whether the population mean ranks 
differed among two applied FVC estimation methods. The paired Student’s t-test was not 
used because the data violate the normality distribution assumption [46]. In the paired 
samples Wilcoxon test, a p-value of 0.05 was selected as the threshold for significance. 

3. Results and Discussion 
3.1. Comparison of SamplePoint Estimation and In Situ Assessment 

SamplePoint FVC estimation was consistent with the in situ assessment, however, 
the correlation coefficient (R2) varied among land surface-cover subcategories (Figure 3). 

Figure 2. Methodology flowchart.

Coefficient of determination (R2), root-mean-square error (RMSE) [41–43], and the
Bland-Altman plot (Tukey mean difference plot) [44] were used to evaluate the comparison.
The Bland-Altman plot allows the identification of any systematic differences between two
measurements or possible outliers by plotting the differences between the two methods
against their averages. The Cartesian coordinates of a given sample S with values S1 and
S2 are:

S(x, y) = ((S1 + S2)/2 , S1 − S2) (1)

The mean of n sample pairs’ difference (S1-S2) is the estimated bias, and the standard
deviation (SD, σ) of the differences indicating the random fluctuations around this mean.

In the Bland-Altman plot, horizontal lines are drawn at the mean difference and at the
limits of agreement. These are defined as the mean difference plus and minus 1.96 times
the SD of the differences. The mean difference plus and minus 3.0 times the SD lines are
defined as the extreme limits of agreement. A Wilcoxon test [45] of the paired samples was
performed to compare paired data among the in situ assessments and four other methods
(SamplePoint estimation, unsupervised classification, supervised classification, and OBIA).
The Wilcoxon test was chosen to assess whether the population mean ranks differed among
two applied FVC estimation methods. The paired Student’s t-test was not used because the
data violate the normality distribution assumption [46]. In the paired samples Wilcoxon
test, a p-value of 0.05 was selected as the threshold for significance.

3. Results and Discussion
3.1. Comparison of SamplePoint Estimation and In Situ Assessment

SamplePoint FVC estimation was consistent with the in situ assessment, however,
the correlation coefficient (R2) varied among land surface-cover subcategories (Figure 3).
Shrub and standing dead material had the highest R2 values (0.85 and 0.73), while forb
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and lichen had the lowest R2 values (0.36 and 0.57). Standing dead material had the
highest RMSE (9.93%) (Figure 3). Shrub, standing dead material, and litter estimates from
SamplePoint and in situ assessments were similar, as indicated by their regression and
identity lines (Figure 3). Grass, bare ground, and lichen tend to be overestimated by
SamplePoint when the fractional cover is larger than 20% (Figure 3). For the upscaling
categories, the PV has the highest R2 (0.78), while the R2 values for NPV and the BS are
0.65 and 0.70, respectively (Figure 4).

The SamplePoint and in situ estimates of PV are close (Figure 4). The BS from Sample-
Point tends to be overestimated above 25% of the fractional cover, compared with the in
situ assessment (Figure 4). Similarly, NPV from SamplePoint is overestimated above 55% of
the fractional cover and underestimated below 55% of the fractional cover (Figure 4). Most
of the differences between the SamplePoint assessment and the in situ estimation of PV
are within a ±3σ range, with several exceptions very close to the ±3σ threshold (Figure 5).
This indicates that the SamplePoint and in situ methods are very similar. For the NPV and
BS, almost all the differences are within the ±3σ range, although there are outliers that
depart from the ±3σ range (Figure 5 and Table 1). These results are comparable to those
reported in Booth et al. [47]. Since the theoretical basis of SamplePoint relies on a discrete
classification for certain points (10 × 10 grids in this study) rather than on global image
classification, there may be considerable bias for images in complex scenes. Like in situ
assessment, which can be subjective, visual interpretation using SamplePoint software
depends on the investigator experience.
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Table 1. Mean, standard deviation (SD), and mean ± 1.96 (or 3) SD of the differences between in situ assessment and four
imagery methods (SamplePoint estimation, unsupervised classification, supervised classification, and OBIA).

SamplePoint Unsupervised Classification Supervised Classification OBIA

PV NPV BS PV NPV BS PV NPV BS PV NPV BS
Mean (%) 0.45 −0.37 −0.52 −4.39 −9.22 14.06 −2.64 −5.36 8.08 1.31 −2.75 1.75

SD (%) 8.76 12.90 11.78 15.35 16.83 17.92 8.22 11.70 11.65 7.59 9.41 8.72

Mean ± 1.96SD
−16.7

~
+17.6

−25.7
~

+24.9

−23.6
~

+22.6

−34.5
~

+25.7

−42.2
~

+23.8

−21.1
~

+49.2

−18.8
~

+13.5

−28.3
~

+17.6

−14.8
~

+30.9

−13.6
~

+16.2

−21.2
~

+15.7

−15.3
~

+18.8

Mean ± 3SD
−25.8

~
+26.7

−39.1
~

+38.3

−35.9
~

+34.8

−50.4
~

+41.7

−59.7
~

+44.5

−39.7
~

+67.8

−27.3
~

+22.0

−40.5
~

+29.7

−26.9
~

+43.0

−21.5
~

+24.1

−31.0
~

+25.5

−24.4
~

+27.9

We compared the quantile–quantile plot for the in situ assessment and SamplePoint
classification of grass and NPV fractional cover (Figure 6). The in situ assessment of green
grass cover based on the nine FVC categories had a clear clustering pattern (step curves)
(Figure 6a). The piecewise polyline indicated that the in situ assessment had a categorical
trend for the fractional cover estimation. This was caused by the protocol used in situ
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(as described in Section 2.2) as the fractional cover was estimated to the nearest 5% for
values ranging from 10 to 90% and to the nearest 1% for values less than 10% and greater
than 90% [39,40]. SamplePoint results resembled a normal distribution with a slight, right-
skewed distribution (Figure 6b). This phenomenon indicated that SamplePoint can achieve
a continuous estimate of detailed ground fractional cover, even when inputs are discrete
points (10 × 10 grid in this study).
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between image analysis methods and in situ estimates are within the ±3σ range (Figure 
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Figure 6. Quantile-quantile plot (qqplot) of (a) in situ assessment of Grass fractional cover (%), (b) SamplePoint classification
of Grass fractional cover (%), (c) in situ assessment of NPV fractional cover (%), and (d) SamplePoint classification of NPV
fractional cover (%).

The in situ assessment of green grass cover based on the three-category schema (PV,
NPV, and BS) showed no categorical trend but an under dispersed trend with negative
excess kurtosis (Figure 6c). Comparatively, the qqplot from SamplePoint showed a slightly
S-shaped curve, suggesting that it is approaching a normal distribution.

3.2. Comparison of Image Analysis Methods and In Situ Assessments

The image analysis methods used in this study, including the unsupervised classifi-
cation, the supervised classification, and the OBIA, perform differently than the in situ
assessment (Figure 7). For all three categories (PV, NPV, and BS), the unsupervised im-
age classification has the lowest R2 (all below 0.5) and the largest RMSE (Figure 7). The
OBIA has the highest R2 (all above 0.7) and a relatively smaller RMSE (Figure 7). The
supervised image classification performance is moderate. For the 36 images tested, the
differences between image analysis methods and in situ estimates are within the ±3σ range
(Figure 8), however, the range varies among methods (Table 1 and Figure 8). We found
larger SDs (>15%) for unsupervised classifications (Table 1). Hence, ranges of ±1.96σ and
±3σ are smaller for the OBIA, moderate for the supervised method, and largest for the
unsupervised method (Figure 8).
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Mean differences for both PV and NPV were negative (Table 1) when we performed
supervised and unsupervised classification analyses, indicating that these two methods
underestimate PV and NPV, compared with the in situ assessment. In the OBIA, PV and
BS are overestimated (mean differences > 0) whereas NPV is underestimated (Table 1).

The unsupervised classification misclassified rock, moss/lichen, and high reflectance
regions in the background leading to biased estimations of PV, NPV, and BS fractional cover
(Figure 9). The supervised classification was an improvement on the unsupervised method;
however, the OBIA identified greater detail in the three fractional covers. Our findings are
similar to those reported by Laliberte, Rango, Herrick, Fredrickson and Burkett [27], in
which OBIA was also used to investigate the fractional cover of North American grassland.
They suggested that shadow is the greatest problem in scene decomposition when applying
OBIA to high-resolution, close-range digital photographs. This concern was also raised in
Song, Mu, Yan and Huang [20], and was partially resolved by using a shadow-resistant
algorithm. We did not include a shadow-resistant method to estimate the fractional
cover in our study. However, we acknowledge that it is a problem for close-range photo
processing, especially in heterogeneous grasslands with complex vertical structures and
high biomass volumes. Shadow not only affects fractional cover estimation but also affects
visual interpretation. This partially explains the outliers in our SamplePoint estimation
(Figure 5), as our original photos, despite being umbrella-shaded, still had shadow effects.
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3.3. Differences between In Situ Assessment, Visual Classification with SamplePoint Software, and
Image Classification Methods

We performed a paired-samples Wilcoxon test between the in situ assessment and
four remote methods to assess PV, NPV, and BS fractional covers. Measurements assessed
using SamplePoint software and in situ samplings were not significantly different (thresh-
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old p = 0.05) among the three fractional covers, while assessment of BS was marginally
insignificant (Table 2). NPV and BS estimated from the unsupervised classification, and the
BS estimated from the supervised classification, were significantly different from the in situ
assessment (Table 2). The OBIA assessment was not significantly different from the in situ
assessment, however, p values of NPV and BS were close to the threshold (Table 2). Thus,
SamplePoint assessment was the most consistent with in situ assessment, compared to
unsupervised classification. Although the reliability of the OBIA would make it a suitable
alternative for in situ methods, the OBIA requires sophisticated image processing and
human training before it can be effective [19,27].

Table 2. p-value of the paired-samples Wilcoxon test between in situ assessment and four other approaches (SamplePoint
estimation, unsupervised classification, supervised classification, and object-based image analysis (OBIA)).

SamplePoint 1 Unsupervised Classification 2 Supervised Classification 2 OBIA 2

PV NPV BS PV NPV BS PV NPV BS PV NPV BS
p-value (%) 0.25 0.33 0.071 0.11 0.003 * 0.0002 * 0.08 0.10 0.0005 * 0.17 0.06 0.089

1 n = 180; 2 n = 36. * indicates p-value < 0.05

We found that spatial scale and merging level had varying effects on OBIA analy-
ses processing within a single image. The vegetation-dominated part of the image was
accurately assessed for green vegetation, dead and senescent materials, and background
(Figure 10a,b). This suggests the reason why the OBIA had greater accuracy than super-
vised and unsupervised classifications as it is based on relatively homogeneous segmented
objects rather than pixels. In contrast, training samples selected in the supervised classifica-
tion were largely based on polygons containing numerous mixed pixels [48]. However, in
bare-soil dominated images, shrubs were incorrectly classified as background (Figure 10c,d,
double arrow 1), as well as portions of green leaf (Figure 10c,d, double arrow 2). Because
shrub branches, green leaf, dead materials, and bare soil (as well as moss, lichen, and rocks)
all had different morphologies, a global setting of scale and merging level was unable to
segment a heterogeneous scene [49,50].

Different images with diverse species compositions required distinct scale and merg-
ing level settings when using OBIA (Figures 10 and 11). Since juniper and needle-and-
thread grass have different morphologies and community structure, the scale and merging
level were 50 and 10 for the site EC2, plot E3, and 40 and 5 for the site UG2, plot S5. The
latter image had greater fragmentation with layers of green grass (top), senescent grass
(middle), and dead material (bottom). However, the scene was relatively simple in the
former image except for the misclassification of shrub branches.

We tested the effect of spatial scale and merging level on OBIA classification (Figure 11).
Larger scale and merging levels (60 and 10) caused misclassification of green grass (Figure 11b),
while the smaller scale and merging levels (40 and 5) had better results (orange rectangle 1 in
Figure 11a–c). A scaled-in view (as shown in Figure 11d,e (orange rectangle 2 and 3)) resulted
in the pseudo-enlargement of green grass objects. This indicated that the selection of proper
segmentation and merging parameters related to scene composition was critical for accurate
assessment using OBIA. As mentioned above, we used the preview window in the Feature
Extraction Module of ENVI 5.5 for the interactive adjustment of these parameters. This is
time-consuming and needs knowledge of OBIA.

As is apparent in these comparisons, the SamplePoint-processed results were highly
related to in situ estimation, even with nine different categories (Figure 3). The unsuper-
vised image classification method was unable to discriminate PV, NPV, and BS with the
desired accuracy, while supervised image classification outperformed the unsupervised
method. OBIA had the highest accuracy among the three image classification methods
compared with the in situ estimation.
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Figure 10. Comparison between the original image and OBIA region means: (a) original image (vegetation (grass and
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(a,b) are subsets of site EC2, plot E3 (shrub (Juniperus) dominated). The scale level was 50 and the merging level was 10.
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4. Conclusions

In this study, a mobile camera stand equipped with a NIKON D5500 camera was
used to photograph vegetation plots in a typical northern mixed grassland, the Grassland
National Park, Canada. This grassland type has a large amount of dead senescent vege-
tation material. The imagery was processed by SamplePoint, unsupervised, supervised,
and object-based image classification approaches to derive the vegetation fractional covers,
which were compared with in situ visual assessment.

Our results demonstrated that imagery processing methods for mixed grassland veg-
etation communities can accurately determine the fractional vegetation cover in sample
plots, which is comparable to in situ measurement. We found that SamplePoint software
estimates corresponded highly to in situ assessments, accurately distinguishing and quan-
tifying PV, NPV, and BS fractional covers as well as the detailed vegetation community
categories. The object-based image analysis method performed better than the unsu-
pervised and supervised classification methods and produced reasonable coefficients of
determination (>0.7) for PV, NPV, and BS, comparable to in situ assessment. The OBIA
method nevertheless required sophisticated processing knowledge. Meanwhile, the unsu-
pervised classification method lacked accuracy in the discrimination of fractional cover in
mixed grassland plots. These results suggest that the in situ estimation method is compara-
ble with a more accurate SamplePoint approach based purely on imagery. Further research
into image-based estimation approaches could resolve ongoing issues with shadow and
various image-scene compositions.
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