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Abstract: Most of the existing laser welding process monitoring technologies focus on the detection
of post-engineering defects, but in the mass production of electronic equipment, such as laser
welding metal plates, the real-time identification of defect detection has more important practical
significance. The data set of laser welding process is often difficult to build and there is not enough
experimental data, which hinder the applications of the data-driven laser welding defect detection
method. In this paper, an intelligent welding defect diagnosis method based on auxiliary classifier
generative adversarial networks (ACGAN) has been proposed. Firstly, a ten-class dataset consisting
of 6467 samples, was constructed, which originate from the optical and thermal sensory parameters
in the welding process. A new structured ACGAN network model is proposed to generate fake data
similar to the true defect feature distributions. In addition, in order to make the difference between
different defects categories more obvious after data expansion, a data filtering and data purification
scheme was proposed based on ensemble learning and an SVM (support vector machine), which is
used to filter the bad generated data. In the experiments, the classification accuracy can reach 96.83%
and 85.13%, for the CNN (convolutional neural network) algorithm model and ACGAN model,
respectively. However, the accuracy can further improve to 97.86% and 98.37% for the fusion models
of ACGAN-CNN and ACGAN-SVM-CNN models, respectively. The results show that ACGAN
can not only be used as an algorithm model for classification, but also be used to achieve superior
real-time classification and recognition through data enhancement and multi-model fusion.

Keywords: defect detection; ACGAN; sample generation; multi-algorithm model fusion

1. Introduction

In the manufacturing process of metal products, laser welding, as an important
processing technology, has been widely used in many fields of industry. In the laser
welding process, there will be severe thermal conversion effects, which require extremely
high precision for the welding process parameter and fixing workpiece, and small weld
deviation can lead to serious welding defects, which affects the quality of the welded
products [1]. Moreover, the difference of welding materials and welded joints will also
affect the quality of welding [2-4]. Therefore, rapid and effective defect detection of
welded products is particularly important in the process of mass production. Existing laser
welding defect detection schemes are mainly focused on the detection of post-welding
defects. Conventional nondestructive testing methods are widely used but they have some
limitations [5-7]. For example, visual testing can easily miss detection [8-10]; radiographic
testing has radiation risk and its equipment cost is high [11]; magnetic particle testing and
penetration testing can locate the defect position but cannot specifically display its shape;
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and eddy current detection and other signal detection technologies can not directly reflect
the defect shape [12].

Because the actual process of production and manufacturing is complex and change-
able, different instruments and methods are needed during defect detection in different
processes. In most cases, a single device or method cannot accurately complete the de-
tection task, however, it is impossible to integrate all the corresponding instruments and
methods into one single system due to the large workload and high complexity of detecting
every possible problem in each production process [13]. In the process of laser welding,
the above-mentioned problems still exist. Thus, due to the complexity of both processes
and defects, the judgement system is difficult to establish.

In the existing researches, four kinds of sensors are mainly used to monitor the laser
welding process, such as visual [14-16], acoustic [17-19], optical [20,21] and thermal [22,23]
sensors. These sensors are used to capture the changes of characteristic quantities during
the welding process [24-27] and establish a correlation between the changing trends of
characteristic quantities and the final welding effect. In the actual production line, it is
difficult to realize real-time visual testing because of the need to capture and process a large
amount of image data. In addition, the strong light during laser welding can lead to image
saturation and thus reduce the accuracy of the system. Moreover, due to the unavoidable
background noise in the production line, it is not suitable to integrate acoustic sensors into
the laser welding process monitoring system to detect defects.

With the rapid developments and maturity of deep learning theory, intelligent fault
diagnosis technology has become a research hotspot and development direction in the
field of artificial intelligence. At present, the intelligent fault diagnosis algorithms mainly
include artificial neural network [28-31], fuzzy logic [32,33], etc., which developed from
single strategy classification prediction to multi-strategy fusion [34-36]. In addition, in
some actual experiments, it is found that sample data is difficult to obtain, so that it is
difficult for the deep learning method to fully learn the differences between different
categories of data. To solve this problem, a data enhancement method is commonly used
to expand the training data set. In 2020, Bal et al. [37] explored an effective machine
learning method, the extreme learning machine, to predict the number of software faults,
which could predict the software fault type in time when the software fault data was
unbalanced. Generative adversarial networks (GAN) proposed by Goodfellow et al. [38]
have been widely used in image processing and natural language processing, in which
the generator and discriminator compete with each other, and fake data obtained from
the generator and real data can be used to train the discriminator. By adversarial learning
mechanism and adding new samples, the discriminator ability and the generation ability
can be improved simultaneously, so as to improve the learning and generalization ability
of the neural network. In 2020, Waheed et al. [39] proposed Covid-GAN which can
produce composite images and can be used to enhance CNN (convolutional neural network)
detection performance. In a brain computer interface (BCI) system, the performance
of a classifier depends on the quality and quantity of training data to a great extent.
Fahimi et al. [40] proposed a framework based on the deep convolutional generative
adversarial networks for generating artificial electroencephalogram to augment the training
set in order to improve the performance of a BCI classifier. In 2021, Guo et al. [41] developed
a welding defect detection method using a generative adversarial network combined with
transfer learning which is proposed to solve the data imbalance and improve the accuracy
of defect detection. Jiang et al. [42] proposed a data selection strategy based on data filtering
and data purification in model training, which combines supervised learning and the data
generation process to obtain an end-to-end model.

The main contributions of this paper are summarized as follows.

(1)  Ahybrid welding fault diagnosis scheme based on ACGAN [43,44] (auxiliary classifier
generative adversarial networks) and CNN [45,46] model has been proposed. Fake
data are generated by the ACGAN generator using real data, and the CNN classifier
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is trained with both fake data and real data. Test samples are then input into the
trained CNN model for fault diagnosis and prediction.

(2)  Secondly, in order to increase the difference between categories and improve the recog-
nition performance of the classifier, a data filtering and purification scheme based
on ensemble learning is proposed. Multiple support vector machines (SVMs) [47,48]
are used to learn different features of defect states and make integrated classification
judgments. This integrated classifier filters out the bad data generated by the genera-
tor. The filtered data and the original training data are then put into the CNN model
for training.

(3) Finally, under different amounts of training data, the ability of different models to
identify welding defects is tested. Through experimental comparison with other
classical classification models, the superiority of the ACGAN-SVM-CNN detection
scheme has been proved.

The rest of this paper is organized as follows. Section 2 briefly introduces the basic
theory of ACGAN. Section 3 describes the proposed hybrid detection approach, and the
effectiveness and superiority of the proposed method have been investigated and proved
by the comparative experiments of different models with different amounts of original
data. Finally, conclusions are drawn in Section 4.

2. Auxiliary Classifier Generative Adversarial Networks (ACGAN)

GAN is an unsupervised deep learning model, from which other types of network
structures can be derived, such as conditional generative adversarial nets (CGAN) and
semi-supervised learning with generative adversarial networks (SGAN). CGAN improves
the quality of generated data by combining tag information, while SGAN improves the data
quality by reconstructing tag information. On the basis of these two networks, ACGAN
extends its advantages and adds a category classification network to the system.

2.1. Structure Principle

The ACGAN is improved by the GAN model with supervised mechanism. The main
difference between ACGAN and GAN is the added label information of auxiliary training.
As shown in Figure 1, ACGAN is composed of a generator and a discriminator, whose
output contains judgment information of not only the true or false data, but also the data
category. Meanwhile, ACGAN considers the diversity of samples better than other varieties
of GAN models.
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Figure 1. Main Structure of ACGAN.
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ACGAN can generate higher quality samples using auxiliary classification tags. The
‘c’ in Figure 1 represents the class label of the corresponding data. The loss function of
AGAN contains two parts, as shown in Equations (1) and (2), respectively.

Ls = Exwpyy, [log D(x)] + Ez~p.[log(1 = D(G(2)))] @

Le = Ecwpyy, [10g D(€)] + Ecp. [log(1 — D(G(c)))] 2

In the above formulas, Ls represents the cost function for data authenticity and L.
represents the cost function for data classification accuracy. E represents the operation
to find the mathematical expectation, x/c ~ Py, ensures x/c obeys the original data
distribution, z/c ~ P, ensures z/c obeys the Gaussian distribution and z represents
random noise. Since the discriminator should distinguish the generated data from the
real data as much as possible, for classifying the data effectively, the training goal of
discriminator D is to make L. 4 Ls as maximum as possible. Meanwhile, it is expected that
the data generated by the generator will be recognized as real data by the discriminator
and effectively classified, which means that the goal of generator G training is to make
L; — Ls as large as possible.

2.2. The ACGAN Training Process

The training process of ACGAN is basically the same as that of GAN. Based on the
theory of zero-sum game, the discriminator and generator are trained alternately to achieve
the final optimization effect.

In the ACGAN model, the first step is to train the discriminator with real data and
fake data generated by the generator. When the discriminator training is completed,
the parameters of the discriminator can be kept unchanged temporarily, at which the
parameters of the discriminator will not be updated, and only the parameters in the
generator will be updated according to the loss of feedback from the discriminator. The
generator will generate fake data which is closer to the real data distribution. The updated
generator will generate a new generation of fake data, and then train the discriminator
with the new generation of fake data and real data. The iteration training repeats as above.
The specific training steps are described as follows:

Input the randomly generated noise z vector with Gaussian normal distribution into
generator G, and then generate fake data G(z).

Mark the fake data X, = G(z) generated by generator G as 0 and the corresponding
category label c is attached. Real data X,,,; is marked as 1 and the corresponding category
label c is also attached. The real and fake data are input into discriminator D together
in batches, and the network terminal outputs the distinguished result through softmax
classifier. The objective function of the optimized discriminator is as follows:

Lp = log Byear + log(l - Bfuke) + 10g Creal + log Cfake 3)

In Equation (3), C,,, is the category probability of multi-classification output when
real data are input into the discriminator, and Cy is the category probability of multi-
classification output when fake data are input into the discriminator. By, is the real/fake
(1/0) binary output when the fake data are input into the discriminator, and B, is the
real/fake (1/0) binary output when the real data are input into the discriminator.

Keep the parameters of discriminator D unchanged, input the random noise vector z
into generator G to generate fake data X, = G(z), and attach the corresponding category
label c. Fake data and real data are labeled as 1 together and input to discriminator D.
When discriminator D determines that fake data X, is false (the output label is 0), it
means that the fake data Xy, fails to deceive discriminator D successfully. In order to
make the fake data generated by generator G successfully deceive discriminator D, it is
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necessary to maximize the objective function L of the generator. The definition of L can
be expressed as follow.

Lg =log Bfake +10g Crear + 10g Cfake 4)

Repeat steps (1)—(3) to train the discriminator D and generator G iteratively until
Nash equilibrium is reached, in which the true and fake resolution of the discriminator D
are 50%. This indicates that the effect of the data generated by the generator is closest to
the distribution of the original data, and the trained discriminator can be used for defect
detection and classification.

3. Algorithmic Design and Experimental Analysis

In this section, we describe the ACGAN structure in detail and propose a data filtering
and data purification strategy based on ensemble learning. By comparing different models
and training data settings with different amounts of data, the superiority of the proposed
welding defect detection scheme is demonstrated.

3.1. Data Acquirement Method and Data Description

The scanning laser welding machine mainly includes an SPI (Southampton Photonics
Inc., Southampton, UK) pulsed fiber laser, a galvanometer scanner, a flat field lens and
two vibrating mirrors. The galvanometer scanner can reflect laser light to the desired
position by turning the vibrating mirrors to change the laser path. The front-end signal
acquisition consists of two different photodiode sensors, a thermometer sensor and some
optical elements. The overall schematic structure of the data acquisition system is shown
in Figure 2. The first photodiode sensor is installed behind a 45-degree prism to obtain
plasma intensity. After the other 45-degree prism, the second photodiode sensor is set up to
capture light intensity information. Pyrometer sensors at the end can monitor temperature
changes during welding.

photodiode
sensor

vibrating photodiode
mirror(x) sensor

vibrating
mirror(y)

flat field lens —> reflection
I —> focusing
T =2 transmission
weld . .
workpiece collection

Figure 2. Structure diagram of data acquisition system.

In the process of the data collection experiment, 130 sampling times are set for each
standard workpiece welding process, and the values of plasma intensity, light intensity and
temperature are collected at each sampling time. In this way, we collected and constructed
a data set with 6467 data, which contains 10 welding defects. The standard part is SUS304
stainless steel plate (Jiangsu Weigang alloy products Co., Ltd., Wuxi, China) with the
thickness of about 0.3 mm and a radius of 22 mm. CW (continuous wave) optical fiber
laser (Suzhou Chuangxuan Laser Technology Co., Ltd., Suzhou, China) was used in the
experiment. The laser output power is 80 W, and the welding speed is 50 mm/s.

After the data are collected, they need to be standardized. Here we convert the data to
a standard dataset with a mean of 0 and a variance of 1. The ten kinds of welding defects are
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“Qualified”, “Defocus 3 mm”, “Defocus —3 mm”, “Deformation”, “Cracks”, “Repetition”,
“Lack of Weld”, “Drift”, “Tilt” and “Watermarks”, respectively. Additionally, the concrete
data amounts have been shown in Figure 3. In order to avoid the mode collapse during
training, we try to keep the same amount of data for each category when collecting sample
data. The descriptions of these categories are as follows:

1.
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“Qualified” means that no weld defects have been found and that they meet the
technological requirements.

“Defocus 3 mm” refers to the defocusing distance over 3 mm. The focus plane above
the workpiece is positive defocus, while the focus plane below the workpiece is
negative defocus. The defocusing distance of excessively large absolute value leads
to the overly low power density acting on the workpiece, making it difficult to reach
the purpose of welding.

“Defocus —3 mm” represents defocusing distances of less than —3 mm.
“Deformation” means that as the welding current increases, the width of the weld
increases, and splashes occur gradually, resulting in oxidative deformation and rough-
ness on the surface of the weld product.

“Cracks” refer to high temperature cracks. In the process of laser welding, due to the
small heat input of laser, the welding deformation and welding stress are small, thus
generally, high temperature cracks will not occur.

“Repetition” means to weld again based on the existing welded seam.

“Lack of Weld” indicates that there are some missing welding points. ‘Lack of Weld’
is a widespread operation error.

“Drift” indicates the welding position suddenly drifted.

“Tilt” represents the base metal’s tilt during welding, so that defocusing distance has
been changed.

“Watermarks” indicates there is water on the surface of the base metal.

690
679 676 675 63
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624
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Q\)’b - o #34 KQO O KO( QQ
3 N ') <0 03 @
kg Q Q

Figure 3. The composition of the data set.

3.2. Design of ACGAN Model

In the field of deep learning, the dependence of neural network algorithm on the

amount of data is well known. As a prior knowledge, the larger the capacity of the original
data, the more sufficient the information about the target it contains, which is beneficial
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to the training of deep neural network. However, in some experimental scenarios where
it is difficult to measure or the experimental measurement data is very complicated, it is
hard to collect the data. In order to solve this problem, we can use the data enhancement
ability of ACGAN to generate fake data and expand the data capacity for training deep
neural network.

The Pytorch deep learning framework (Pytoch is the python version of torch (version
1.6.0), which is an open-source neural network framework by Facebook. The pytoch used
in this article is downloaded from the Internet.) is used in all of the experiments. The
Anaconda3 virtual environment is used for management. The Python version is 3.6.12,
the optimizer is “Adam”, and the learning rate is 0.001. The detailed configurations of the
experimental environment can be found in Table 1.

Table 1. Server configuration information.

Parameters Specifications
RAM 256 G
CPU Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHZ
GPU GeForce GTX TITAN X
0S Windows 10

During the experiment, we designed a model structure of ACGAN for defect detection
of laser welding data. The structure of ACGAN is shown in Tables 2 and 3. In designing the
structure of generator and discriminator, Leaky ReLu is selected as the activation function
of each layer through comparative experiments. Such a choice also solves the problem of
neuron death. Dropout is used after each convolution layer, which can eliminate the joint
adaptability between neurons and enhance the generalization ability of neural network.
Using the structure described above, generator G and discriminator D can generally be
optimized after 120 training epochs.

Table 2. Structure of the generator.

Operation Kernel Strides Feature Maps BN? Dropout Nonlinearity
input (128 x 512 x 1 x 1)
Linear N/A N/A 128 x 256 x 1 x 1 X 0.0 Leaky ReLu
Linear N/A N/A 128 x 16,640 x 1 x 1 X 0.0 N/A
Upsample scale factor = 2 128 x 128 x 130 x 4
Convolution 3x2 1x1 128 x 128 x 130 x 3 Vv 0.0 Leaky ReLu
Convolution 3x1 1x1 128 x 64 x 130 x 3 Vv 0.0 Leaky ReLu
Convolution 3x1 1x1 128 x 1 x 130 x 3 X 0.0 Sigmoid
Table 3. Structure of the discriminator.
Operation Kernel Strides Feature Maps BN? Dropout Nonlinearity
input (1 x 130 x 3)
Convolution 3x3 2 128 x 16 x 65 x 2 X 0.2 Leaky ReLu
Convolution 3x3 2 128 x 32 x 33 x 1 4 0.2 Leaky ReLu
Convolution 3x3 2 128 x 32 x 17 x 1 Vv 0.2 Leaky ReLu
Convolution 3x3 2 128 x 64 x 9 x 1 Vv 0.2 Leaky ReLu
Convolution 3x3 2 128 x 128 x 5 x 1 Vv 0.2 Leaky ReLu

3.3. ACGAN-SVM-CNN Defect Detection Fusion Algorithm

The training difficulty of GAN is usually greater than that of a general neural network.
When D and G are entangled with each other, the generator generated low-quality and
high-quality data. Therefore, the fake data Xy, generated by the generator of the AC-
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GAN algorithm model are not all optimal data. In order to eliminate some inferior fake
data, we proposed to use original training data X;,;, to train a filtering model based on
SVM algorithm, so as to screen the generated fake data, and combined the filtered data
Xfiltered_data and training data Xi,;, together for the training of CNN algorithm model.
In order to compare the performance of the fusion algorithm, the data of the test set was
derived from real data, and the test set was always kept unchanged. The fused algorithm
model is shown in Figure 4.

X X

train

X

real test

train

X Sfake
-

Xﬁltered_data +Xtrain train

test

CNN <

Figure 4. ACGAN-SVM-CNN.

3.4. Data Filtering and Purification Strategy

Our goal is to select data which can approximate the original data distribution char-
acteristics from the generated data. Using the ACGAN model designed in this paper to
generate 2010 pieces of data (201 pieces of data are generated for each welding defect), and
the classification accuracy of ACGAN discriminator is 85.13%. For the generated fake data,
it is not always very close to the original data distribution, and those inferior data need to
be filtered out. In this issue, we propose to use the concept of ensemble learning to filter
data. We use the original real data (6467 x 1 x 130 x 3) to train three SVM models, which
can be used to filter the fake data. Three SVM classifiers are trained by using the three
features in the original data, so that each feature data can be trained to obtain a classifier. In
the ensemble learning theory, a strong learner can be formed by training several individual
learners and following certain combination strategies [49,50]. We collected three physical
quantities (plasma intensity, light intensity and temperature) in the welding process to
determine if there is a welding defect or not. These classifiers are then used to identify
whether each feature in the generated fake data corresponds to the type of welding defect.
The features of the generated fake data are input into the corresponding SVM classifier for
classification. If two or more classifiers give correct classification results, the fake data can
be retained. The process is shown in Figure 5.

Through the above filtering method, 2010 pieces of data were filtered and 1147 pieces
of data were obtained. In this way, the original data were expanded from 6467 pieces
to 7614 pieces. By eliminating the fake data which does not match the original data
distribution, the differences between categories will be more prominent, which lays a good
foundation for the subsequent training of the classification model.
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Figure 5. Integrated decision model.

3.5. Comparative Experiment and Result Analysis

In order to compare with the traditional CNN method, we divide the original data
into two parts, 5174 pieces are taken as the general training set and 1293 pieces are taken as
the general test set. When dividing data sets, the balance of each category of data is fully
considered. The fake data filtered by ACGAN- SVM ensemble model and 5174 pieces of
original data are combined as an enhanced training set. The enhanced training set is sent
to the CNN model for training, and then the general test set is used to test the accuracy
of CNN.

The changing curve of loss in the training process and the changing curve of accuracy
in the test set are shown in Figure 6. Finally, the classification accuracy of our proposed
ensemble model can reach 98.37%.

100 1 L1.4

ri1.2
90 1

801 —— Test Set Accuracy | 0.8

—— Training Set loss

Accuracy(%)
Loss

70 0.6

r0.4
60 1

0.2

0 80 160 320 400
Epoch

Figure 6. Loss and accuracy curve of ACGAN-SVM-CNN.

Figure 7 shows the confusion matrix obtained from 10-fold cross-validation on the
enhanced dataset. The analysis of the confusion matrix shows that the CNN classifier at
the final training site has a good classification effect. However, there are some deficiencies
in the distinction between “Defocus 3 mm” and “Cracks”. This indicates that our classifier
is not very good at learning the difference between these two types of welding defects and
needs further improvement in future research.
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Figure 7. Confusion matrix of ACGAN-SVM-CNN integrated model for welding defect identification. (a) Confusion matrix
of the classification result; (b) confusion probability matrix of the classification result.

Through Figure 7, it can be seen that the classification prediction result of “Defocus 3
mm” is relatively worse. The model sometimes classifies “Defocus 3 mm” into “Cracks” by
mistake, which indicates that the two welding defect states have high similarity. As shown
in Table 4, we use precision, recall and F1 (F1 score) to measure the detection performance
of the model in different categories. The abbreviations “Qua”, “Def3”, “Def-3”, “Defor”,
“Cra”, “Rep”, “LoW”, “Dri”, “Tilt” and “W” in the table represent “Qualified”, “Defocus 3
mm”, “Defocus —3 mm”, “Deformation”, “Cracks”, “Repetition”, “Lack of Weld”, “Drift”,
“Tilt” and “Watermarks”, respectively. It can be seen from Table 4 that our proposed fusion
model has the best performance in detecting the “Qualified” state, but the recognition of
“Defocus 3 mm” category is relatively inferior.

Table 4. Performance metrics of ACGAN-SVM-CNN integrated model in each category.

Class Qua Def3 Def-3 Defor Cra Rep LoW Dri Tilt \4
m (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Precision 100.0 95.87 99.17 99.24 95.20 97.83 98.29 99.22 99.22 99.16
Recall 98.80 95.87 98.35 97.74 97.54 99.26 99.14 99.22 99.22 98.33
F1 99.40 95.87 98.75 98.48 96.35 98.54 98.71 99.22 99.22 98.74

The diversity of samples is enriched through data enhancement, and the difference
between classes is ensured through filtering and purification of the generated data. In
order to compare the time consumption of models with different complexity, we take the
training set and test set of the same volume for the timing test (5174 pieces of training data
and 1293 pieces of test data), and the results are shown in Table 5. The ACGAN-SVM-CNN
can reach an average speed of 0.76 ms per sample, which meets the real-time requirement
for industrial production. Because of the complexity of training ACGAN, the training time
is relatively long.

In order to further compare the proposed method of ACGAN-SVM-CNN in this paper
with other classical methods in machine learning, we adjust the number of original data.
We compare the classification accuracy of various algorithm models through reducing the
amount of original data by 10%, 20%, 25% and 30%. Table 6 shows the comparison results
of classification accuracies of various methods in the case of different amounts of original
data. By comparing the experimental results under different data volumes, our proposed
detection model has better discrimination ability in detecting defect categories. When the
amount of data is reduced to only 75% of the original data, the classification accuracies of
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all classifiers will decline greatly. In the process of reducing the amount of original data,
the accuracy of the proposed fusion model (ACGAN-SVM-CNN) also decays, but it is the
slowest one, which reflects the resistance of the model to data loss.

Table 5. Training and testing time of different models.

Training Testing
(min) (ms/Sample)
ACGAN-SVM-CNN 21.61 0.76
ACGAN-CNN 16.19 0.71
CNN 6.81 0.69
SVM 4.53 1.78
ADABOOST 5.21 2.26

Table 6. Performance of different models under different amount of training data.

100% 90% 80% 75% 70%
ACGAN-SVM-CNN 98.37% 98.02% 96.78% 92.02% 91.15%
ACGAN-CNN 97.86% 97.33% 96.62% 92.18% 90.04%
CNN 96.83% 96.17% 95.82% 86.75% 86.33%
ACGAN discriminator 85.13% 76.54% 64.85% 60.37% 53.26%
SVM 83.35% 81.47% 80.26% 65.31% 64.25%
ADABOOST 81.65% 80.25% 71.35% 66.27% 63.93%

4. Conclusions

In this paper, we have proposed an intelligent diagnosis method (ACGAN-SVM-CNN)
for detecting laser welding defects. This detection scheme combines and makes full use
of the data enhancement ability of ACGAN and the classification ability of CNN. The
trained ACGAN model learns the potential space corresponding to all kinds of welding
defect data, and generates fake data for data enhancement. In addition, we propose an
ensemble learning-based data filtering and data purification method to filter out the bad
ones from generated fake data, which makes the difference between the class characteristics
of the enhanced dataset more obvious. The filtered enhanced dataset can train models with
higher classification recognition rate. This method has been compared with other existing
detection models, in which the amount of original training data has been adjusted differ-
ently. The experimental results show that the ACGAN-SVM-CNN scheme can detect the
categories of welding defects better when the amount of original training data is decreasing.
In our further research, we will develop more effective multi-model fusion strategies and
model parameter sharing schemes to improve the training speed and recognition ability of
the fusion models.

This method has a good reference significance for the industrial sector where it is
difficult to obtain process data, and can be easily extended to deal with the fault or defect
detection problems of some key machine components.
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