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Abstract: In this study, hybridized carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs)–
graphene, CNT–carbon nanofibers (CNFs), or CNT–graphite nanoplatelet (GNP) materials were
embedded in glass-fiber-reinforced plastic (GFRP) or carbon-fiber-reinforced plastic (CFRP) com-
posites to obtain electrical/piezoresistive sensing characteristics that surpass those of composites
with only one type of CNM. In addition, to quantitatively assess their sensing characteristics, the
materials were evaluated in terms of gauge factor, peak shift, and R-squared values. The electrical
property results showed that the GFRP samples containing only CNTs or both CNTs and graphene
exhibited higher electrical conductivity values than those of other composite samples. By evalu-
ating piezoresistive sensing characteristics, the CNT–CNF GFRP composites showed the highest
gauge factor values, followed by the CNT–graphene GFRP and CNT-only GFRP composites. These
results are explained by the excluded volume theory. The peak shift and R-squared value results
signified that the CNT–graphene GFRP composites exhibited the best sensing characteristics. Thus,
the CNT–graphene GFRP composites would be the most feasible for use as FRP composite sensors.

Keywords: carbon nanomaterials; polymer matrix composites; electrical properties; piezoresistive
characteristics

1. Introduction

Infrastructure typically refers to the fundamental services and systems that serve a
country, city, or other areas, including the roads, bridges, tunnels, water supply, sewers,
electricity grids, and telecommunication services that provide the basic necessities for a
society to function [1]. Transportation-related infrastructure comprises a sizable portion
of overall infrastructure and deteriorates over time. This is a significant issue in both
developed and rapidly growing countries [2]. Moreover, the deterioration of transportation
infrastructure has accelerated worldwide due to the effects of chemical de-icing agents and
overloaded vehicles [3]. Because infrastructure plays a significant role across nations and
in society, infrastructure damage can cause enormous social and economic losses.

Due to deterioration, many infrastructure components, such as bridges, have been
subjected to load restrictions or replaced before reaching their intended service life. Re-
placing infrastructure is expensive; therefore, one solution involves the implementation
of structural health monitoring (SHM) systems that can continuously monitor critical
components [4].

SHM refers to a series of tasks such as the installment of sensors, measurement of
parameters required for the assessment of structural health conditions, and the collection
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and interpretation of data [4,5]. Conventional SHM sensors include strain gauges and
accelerometers, while recently developed sensors (or examination equipment) include fiber-
optic sensors, such as fiber Bragg grating (FBG) sensors, and radiographic equipment [6,7].
These sensors possess both advantages and disadvantages [6]. For example, strain gauges
and accelerometers can precisely measure the strain or displacement in localized areas
where they are applied, but they are limited to quasi-point measurements [6]. If the sensors
are not located directly at the damage site, they may not record any observable data [6].
Fiber-optic sensors offer some advantages over traditional quasi-point sensors, as they
can be embedded in structures and capture changes in strain and temperature along their
length [6]. However, fiber-optic sensors are brittle and often require artificial defects in
the host structure to facilitate bonding between the sensor and the structure [6]. Lastly,
radiographic equipment provides comparatively clearer images to show the extent and
location of damage; however, expensive equipment and technical expertise are required to
operate the equipment [6].

Recently, a piezoresistive (electrical resistance changes) sensing scheme without the
drawbacks of conventional sensors was proposed. This scheme has attracted attention from
researchers [8–14]. This piezoresistive sensing scheme can be used to fabricate composite
sensor materials, and these composite materials can be employed in host structures in
the forms of plates or wrappings over large areas. This would then enable the composite
materials to detect changes in stress and strain over large areas. Moreover, this piezore-
sistive sensing scheme does not require expensive equipment or artificial defects in the
host structure.

In 2010s, researchers suggested a novel sensing system using piezoresistive sensors in
fiber-reinforced plastic (FRP) composites, which possessed SHM and structural strengthen-
ing functions [15,16]. In this polymer-based composite sensor, an electrically conductive
filler was incorporated in the polymer, due to its insulating characteristics. Among the
various conductive fillers, carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs)
and graphene, have been used as principal materials in numerous studies because of their
exceptional mechanical and electrical properties, as shown in Table 1 [17–22]. However,
some studies have reported drawbacks, such as limited mechanical and electrical properties
and low sensing performance when the composites were fabricated with a single type of
carbon nanomaterial [23,24].

Table 1. Comparisons of CNT and graphene materials in terms of their mechanical/electrical
properties and advantageous aspects of piezoresistive characteristics.

Property Carbon Nanotube Graphene

Young’s modulus
(TPa)

~1.25 (SWNT) [25]
~0.27–0.95 (MWNT) [26] 1 [27]

Tensile strength
(Gpa)

~13–52 (SWNT) [28]
~11–63 (MWNT) [26] 130 [27]

Electrical conductivity
(S·cm−1) ~0.17–2 × 105 [29] ~106 [30]

Thermal conductivity
(W·m−1·K–1)

6600 (SWNT) [31]
3000 (MWNT) [32] ~3000–5000 [33]

Density (g/cm3) 1.33 [34] 2.2 [35]

Advantage in
piezoresistivity

Tunneling effect (electron
transfer without tube/tube

contact) [10]

Relatively larger surface area
in 2D, leading to an increase

in contact probability [36]

To eliminate some of these drawbacks, the hybridization of one-dimensional CNMs
(CNTs and carbon nanofibers (CNFs)) and two-dimensional CNMs (graphene and graphite
nanoplatelets (GNPs)) was performed [13,14,37–39]. However, several studies have re-
ported synergistic effects, indicating that further enhancement cannot be accomplished
using a single type of CNM under the same conditions. This was demonstrated in terms
of mechanical, electrical, and piezoresistive characteristics via hybridized CNT–graphene
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networks [13,22]. However, few have attempted to harness the performance of hybridized
networks for the development of piezoresistive FRP composite sensors.

In this study, we developed piezoresistive FRP composite sensors by harnessing the
synergistic effects of hybridized carbon nanomaterials to surpass the electrical and piezore-
sistive characteristics of existing CNM-incorporated composites. We used the following
methods to create the hybridized-carbon-nanomaterial-embedded FRP composite and to
enhance its feasibility.

(1) Different combinations of hybridized carbon nanomaterials were dispersed in an
epoxy resin and applied onto glass-fiber- or carbon-fiber-woven fabrics to form the
CNM-incorporated carbon-fiber-reinforced plastic (CFRP) or glass-fiber-reinforced
plastic (GFRP) composites.

(2) The electrical properties were assessed using the two-probe method, and the piezore-
sistive sensing characteristics were examined by applying repeated tensile loads and
synchronously monitoring changes in electrical resistance/stress.

(3) The piezoresistive sensing characteristics were assessed in terms of gauge factor, peak
shift, and R-squared values.

2. Materials and Methods
2.1. Materials

The physical parameters of the four different CNMs (CNT, CNF, graphene, and GNP)
used in this work are shown in Table 1, obtained from research performed by Wang et al.
in 2020 [22]. Proprietary multi-walled CNTs, CNFs, and graphene were obtained from
Daoking Co. Ltd. (Beijing, China), and proprietary GNPs were obtained from Timenano Co.
Ltd. (Chengdu, China). We also used an epoxy resin and hardener produced by Xiangfeng
New Composite Co., Ltd. (Kunshan, China), and the epoxy consisted of a 3:1 mix ratio
of epoxy resin (E-4676) to hardener (HC-3008-5). These epoxy resins are known for their
mechanical strength after curing, high adhesion, transparency, and good wettability. The
physical parameters of the epoxy resin used in this work are shown in Table 2. In addition,
glass-fiber-woven and carbon-fiber-woven plain fabrics, as well as Teflon insulation tape
and conductive silver paste were used. The glass fiber fabric was produced by Suihua
Glass Fiber Co., Ltd. (Jiangxi, China), and possessed physical characteristics including
weather resistance, non-adhesive, chemical resistance, high insulation, high strength, good
durability, as well as acid and alkali resistance. The carbon fiber fabric was produced
by Miaohan Construction & Technology Co., Ltd. (Shanghai, China), and the physical
parameters of the glass fiber and carbon fiber fabrics used in this study are shown in Table 3.

Table 2. Physical properties of the epoxy resin.

Property Epoxy Resin

Color Colorless and transparent
Shrinkage rate (%) <1

Elongation (%) ≈1.2

Table 3. Physical properties of the glass fiber fabric and carbon fiber fabric.

Type of Fabric Glass Fiber Plain Fabric Carbon Fiber Plain Fabric

Grade (g) 200, first level 200, first level
Thickness (mm) ≈0.12 ≈0.11

Elongation at break (%) ≈3 ≈3

2.2. Mix Proportions

In this study, pure epoxy resin GFRP (and pure epoxy CFRP) without additives, CNT-
incorporated FRP (CNT-only FRP), and two types of hybridized-CNM-incorporated FRPs
were prepared. Three types of CNMs, graphene, carbon nanofibers (CNFs), and graphite
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nanoplatelet (GNP) sheets, were mixed along with the CNTs to produce CNT–graphene
FRP, CNT–CNF FRP, and CNT–GNP FRP composites, respectively. The weight proportion
of total CNMs was varied from 1.5 to 3 wt.% in the FRP composites. For the hybridized-
CNM-incorporated composites, the ratios of the two CNMs were 1:1 [14,40]. Table 4 shows
the mix proportions of the composite materials.

Table 4. Composite materials and their mix proportions.

GFRP/CFRP Type CNMs
Weight (g)

Base
Resin (g)

Hard-
Ener (g) Fiber Vol.% *

Pure epoxy GFRP/CFRP 0 150 50 29.3%/50.8%
CNT-only GFRP/CFRP 1.5% 3.05 150 50 32.4%/22.8%
CNT-only GFRP/CFRP 3% 6.09 150 50 23.1%/28.1%

CNT–graphene GFRP/CFRP 1.5% 1.525/1.525 150 50 26.7%/47.1%
CNT–graphene GFRP/CFRP 3% 3.045/3.045 150 50 23.1%/41.3%

CNT–CNF GFRP/CFRP 1.5% 1.525/1.525 150 50 30.0%/33.0%
CNT–CNF GFRP/CFRP 3% 3.045/3.045 150 50 24.0%/41.3%

CNT–GNP GFRP/CFRP 1.5% 1.525/1.525 150 50 29.3%/52.8%
CNT–GNP GFRP/CFRP 3% 3.045/3.045 150 50 30.0%/45.5%

* Glass fiber or carbon fiber volumetric content ratios were approximately estimated.

To precisely determine a range of percolation threshold, more compositions involving
different content ratios of CNMs can be suggested. However, attempting to determine the
precise range of percolation threshold is beyond the scope of the present study. Accordingly,
two different CNM content ratios were selected by referring to previous experimental
works, and the electrical/piezoresistive sensing characteristics were examined for them.

2.3. Sample Preparation

The CNMs, epoxy resin, and hardener were weighed according to the required
amounts. After measuring, the materials were placed in a steel bowl and manually stirred
for approximately two to three minutes. After preliminary mixing and stirring, to improve
the dispersion of the CNMs in the resin, the CNM and epoxy resin mixture was passed
through a three-roll milling machine (ZYE-50, Shenzhen Zhong Yi Technology Co. Ltd.,
Shenzhen, China), as shown in Figure 1.
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During dispersion, the epoxy resin and CNM mixture was squeezed through the small
gaps between the three rollers via rotary extrusion. The CNM–epoxy mixture was first
passed through a gap I (Figure 1), then passed again through gap II (Figure 1). The mixtures
were milled and dispersed twice during a single milling process to complete one cycle. The
gap distance between the rollers was controlled, with a specific range of 1–150 microns.
Twelve repetitive cycles were conducted during the dispersion process (Figure 2a), and the
gap distance was gradually reduced with each cycle. Table 2, from the research of Wang et al.
in 2020 [22], shows the decrease in gap distance of gaps I and II as the number of milling
cycles increased. After a total of twelve milling cycles, a good dispersion of the CNMs
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in the epoxy resin was confirmed by observing its dispersion through scanning electron
microscopy (SEM), according to research conducted by Wang et al. in 2020 [22].

After dispersion, the CNM-incorporated epoxy resin was coated evenly on a
320× 230 mm aluminum plate and wrapped with Teflon insulating tape using a plas-
tic spatula. After coating with the CNM-incorporated epoxy resin, the glass fabric was
laid on top, and a consecutive coat of CNM-incorporated epoxy resin was applied on
the surface of the glass fabric. This stacking process was repeated to create a total of five
layers of glass fiber fabric for the GFRP and six layers of carbon fiber fabric for the CFRP
composites. A layer of Teflon insulating tape was placed on the prepared composite surface
to protect the outermost CNM-incorporated epoxy resin layer. A vacuum preservation
machine (Shenzhen Airmate Technology Co., Ltd. (Shenzhen, China)) was then used to
facilitate vacuum bagging (Figure 2b). After curing for 48 h, the GFRP composites were
removed from the vacuum bag. The composites were then cut into rectangular strip plates
250 mm in length and 25 mm in width, according to the ASTM D 3039 standard (Figure 2c).
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3. Test Methods
3.1. Electrical Resistance and Conductivity Test

The electrical resistance of the CNM-incorporated FRP composites was measured
using a two-probe method, and a digital multimeter (Keysight 34461A), shown in Figure 3,
was used to measure the electrical resistance of the fabricated GFRP and CFRP composite
samples. To reduce the contact resistance between the sample surfaces and the probe, a
conductive silver paste was evenly coated on both test sample ends. To determine the
representative electrical resistance of the samples, three replicated samples from each
group were randomly selected. Then, the probe of the digital multimeter was placed in
contact with the conductive silver paste layer and the resistance was measured, as shown
in Figure 3. After the probe made contact for one second, the resistance data, as displayed
by the digital multimeter, were recorded. Then, the resistance of the composites was
calculated based on Ohm’s law. To determine DC conductivity, the following equation was
used [22,41]:

σ =
1
ρ
=

L
R × A

(1)

where R is the measured resistance value, A is the cross-sectional area of the silver paste
layer in contact with the composite, and L is the interval of the electrodes. The silver paste
was applied to both sides of the sample that were faced in opposite directions and used
as electrodes.
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3.2. Piezoresistive Sensing Performance Test

The experimental set-up and sample installment of the piezoresistive sensing test
were as follows: To perform the piezoresistive sensing test, we used a universal testing
machine (UTM) (Jinan Fangyuan Testing Instrument Co., Ltd., Jinan, China), and the
applied loading data were automatically recorded by a computer, as shown in Figure 4a.
To facilitate sample installment, sandpaper was attached to both sides of the sample. The
sandpaper improved the contact surface roughness between the composite sample and
the UTM, which increased the accuracy of the recorded data. Sandpaper also prevented
direct contact between the metal fixtures of the UTM and the FRP composites. A layer
of conductive silver paste was then uniformly coated 60 mm from both ends of the test
sample and with a width of approximately 5 mm, as shown in Figure 4b. A copper wire
was then wrapped around the surface of the two conductive silver coatings, and the two
digital multimeter electrodes were connected externally. After mounting the test sample
on the UTM, tensile loading was applied to the test sample at a rate of 1 mm/min and
unloaded when the maximum tensile stress reached approximately 15 MPa. The loading
and unloading cycles continued up to five times, and the electrical resistance and applied
loading data were collectively recorded by the computer.
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4. Results
4.1. Electrical Properties

Figure 5a shows the relationship between the electrical resistance of CNM-incorporated
GFRP samples and the quantity of incorporated CNMs. The pure GFRP sample, with-
out incorporated CNMs, exhibited an electrical resistivity greater than 100 GΩ·m, as it
was composed of insulating materials, namely epoxy resin and glass fiber [42]. Electrical
conductivity networks formed in the GFRP, as the CNMs were incorporated in the GFRP,



Sensors 2021, 21, 7291 7 of 19

which reduced the electrical resistance of the GFRP samples. As shown in Figure 5a, the
electrical resistance decreased dramatically when the incorporated CNM quantity was
equal to or greater than 1.5 wt.%, regardless of CNM type. This result indicated that the
incorporated CNMs in the insulating materials reduced their electrical resistance, changing
their intrinsic properties from those of insulators to those of conductors. In addition, it was
found that GFRP samples with just CNTs or both CNTs and graphene showed much
higher electrical conductivity than the other samples that included GNPs or CNFs
(Figure 5b). This was attributed to the electrical conductivity of the CNMs, indicating that
the conductivity of CNT and graphene was higher than GNPs or CNFs. This result was in
close agreement with results from previous studies [22]. Wang et al. (2020) investigated
the effects of CNM type on the electrical conductivity of epoxy-based composites, and
demonstrated that composites with CNT or graphene showed greater electrical conduc-
tivity than composites with CNFs or GNPs [22]. In addition, the percolation threshold
phenomenon was observed in Figure 5a, indicating a dramatic reduction in electrical re-
sistance as the incorporated CNM quantity increased [43]. As shown in Figure 5b, the
percolation threshold was present from 0 to 1.5 wt.% of incorporated CNMs. This indicated
that a percolated electrical network formed with incorporated CNM quantities of 1.5 to
3.0 wt.%. Furthermore, the CNT–graphene GFRP sample showed the highest electrical
conductivity value among the samples including the 3 wt.% CNM sample. This result
was deduced from the utilization of 2D-based CNMs, which improved the formation of
electrical networks, as investigated in the literature [44]. Wang et al. (2016) reported that
incorporated graphene in the prepared sheets was aligned in the in-plane direction during
fabrication [44]. The electrical conductivity improved when the carbon-based layer was
aligned in the in-plane direction, which was in good agreement with the results shown in
Figure 5b [44].
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GFRP composites.

The electrical resistance and conductivity values of the CNM-incorporated CFRP
samples are shown in Figure 6a,b, respectively. The pure epoxy CFRP samples exhibited
high electrical conductivity without the incorporation of CNMs, due to the high electrical
conductivity of the CFRPs, which had a value of 8933 S/m as shown in Figure 6b. The
electrical conductivity of the CNM-incorporated CFRP-based samples showed marginal
variations within the ranges of a 0.5 order of the conductivity regardless of the incorporated
CNM type, since the electrical conductivity value of the carbon fiber strands was about
3.8 × 104 S/m, which was greater than that of the CNT and graphene used in this study,
respectively [45].
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4.2. Piezoresistive Responses of the Fabricated FRP Composites

Figure 7 shows the electrical resistance change rate and the applied stress of all GFRP
composites containing just CNTs, both CNTs and graphene, and both CNTs and CNFs as a
function of time. The results show an increase and decrease in electrical resistance as the
tensile stress increased and decreased, respectively, which was typical of thermosetting-
polymer-based sensing composites [46]. The piezoresistive characteristics of the composites
containing CNMs, as derived from external loading, were due to the changes in contact
resistance between the CNM particles and the deformation of the CNMs [13]. Because the
latter had a smaller effect on the overall electrical resistance change compared to the former,
changes in contact resistance were a major factor [13]. The change in contact resistance was
further classified into changes in tunneling resistance and conductive pathways [13]. The
change in tunneling resistance was caused by the tunneling effect, which refers to electrons
hopping through spaces between the CNM particles without directly contacting the CNM
particles [13]. The distance between the CNM particles where the tunneling effect occurred
was a few nanometers. Once the conductive pathway weakened, changes in tunneling
resistance became a major factor in changes in piezoresistive characteristics [13].

As shown in the piezoresistive sensing results, the baseline for each cycle of electrical
resistance rate varied, regardless of CNM type. Studies on increasing the baseline with
repeated cyclic tensile loading can be found in the literature, where it was correlated to the
accumulation of damage in the CNM-incorporated composites. In contrast to the above
phenomenon, in this study, the baseline tended to decrease with repeated cyclic tensile
loading. This electrical resistance change rate trend has also been frequently reported in the
literature. According to previous studies, the gauge length part of the sample was stretched
in the longitudinal direction, and the width decreased in the transverse direction as the
tensile loading was applied to the composites [19,47]. This action was responsible for the
positive Poisson’s ratio of the composites [19,47]. Thus, transverse contraction led to the
reconfiguration and/or reorientation of the three-dimensional CNM-based networks and
created dense CNM-based networks, which decreased electrical resistance [19,47]. In the
GFRPs composed of both CNTs and GNPs, the initial resistance value was too high; thus,
the electrical resistance applied as external loadings exceeded the limitations that could be
measurable via the two-probe method. Accordingly, the piezoresistive characteristics of
the GFRP samples containing CNTs and GNPs will not be discussed.
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−1, (c) CNT–graphene GFRP 1.5% −3, (d) CNT–graphene GFRP 3% −1, (e) CNT–CNF GFRP 1.5% −1, and (f) CNT–CNF
GFRP 3% −1 composites obtained through cyclic tensile loading tests.

Figure 8 displays that the sensing characteristics of the CFRP composites were less
linear compared to the GFRP composites. It could have been expected that employing
carbon fibers, which possess intrinsic electrical conductivity surpassing that of glass fibers,
in FRP composites could contribute to enhancements in the piezoresistive sensing char-
acteristics. However, several pieces of research found in the literature have shown that
excessive inclusion of conductive fillers resulted in degradations of the sensing characteris-
tics. Kostopoulos et al. (2009) investigated the influence of an increase in CNT content on
piezoresistive sensing characteristics, and experimental results demonstrated that CNT in-
corporation exceeding 0.5% into CFRP composites caused adverse effects on piezoresistive
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sensing characteristics [48]. This can be explained with dense electrical networks. Owing
to excessive incorporations of conductive fillers, dense, electrically conductive networks
are initially formed in the composites, and notable changes in interconnections of the fillers
were not attained even though external loadings were applied to the composites.

Among the CNM-incorporated CFRP composites, the CNT-only CFRP 3% composite
was not included since it did not show an acceptable sensing response. Multiple CFRP
3% composites showed a decrease in electrical resistance under some parts of loading
procedures rather than showing an increase in it. It can be speculated that the anomalous
electrical resistance change responses can be ascribed to the low initial electrical resistance
of the CNT-only CFRP 3% composite since it exhibited the lowest level among all CFRP
composites, regardless of the CNM type and CNM content ratio. However, detailed
investigations explaining the anomalous responses should be carried out, and they will be
included in future works.

To quantitatively compare the sensing performance of the CRFP composites with each
other, several factors were used for comparison.
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Figure 8. The electrical resistance change rate and applied stress of the (a) pure epoxy CFRP, (b) CNT-only CFRP
1.5%, (c) CNT–graphene CFRP 1.5%, (d) CNT–graphene CFRP 3%, (e) CNT–CNF CFRP 1.5%, (f) CNT–CNF CFRP 3%,
(g) CNT–GNP CFRP 1.5%, and (h) CNT–GNP CFRP 3% composites obtained through the cyclic tensile loading tests.

4.3. Comparison of the Sensing Characteristics in Terms of the Average Maximum Electrical
Resistance Change Rate and Gauge Factor

Figure 9a shows the correlation between the average maximum electrical resistance
rate of the CNM-incorporated GFRP composites and the CNM content ratio. The average
maximum electrical resistance rate was determined by calculating the mean maximum
electrical resistance rate from three replicated CNM-incorporated GFRP samples for each
sample type.

Figure 9b shows the gauge factor of the CNM-incorporated GFRP composites as a
function of the CNM content ratio. The gauge factor value was determined by a ratio of
the maximum electrical resistance rate, R, to strain, ε, and refers to the electrical resistance
change rate per unit strain [22]. Accordingly, the larger the gauge factor of a composite
sample, the higher the electrical resistance that can be derived from the unit strain.

The average maximum electrical resistance rate and gauge factor were not determined
for the control GFRP sample, without CNM, as no conductive networks formed in the
material. The 1.5% and 3% CNMs formed conductive networks and yielded average
maximum electrical resistance rate and gauge factor values. Specifically, the gauge factor
obtained from the CNM-incorporated GFRP composites was comparable to the CNT-
incorporated polymeric composites found in the literature [46]. The gauge factor results
shown in Figure 9b varied within a range similar to that of the gauge factor shown in
the authors’ previous study [22]. However, the difference in the trend of the gauge factor
of the epoxy-based composites incorporating CNMs compared with that of the CNM-
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incorporated GFRP composites of the present study was exhibited. This was likely due to a
change in microstructure stemming from the insertion of glass fiber fabrics; details of the
affecting factors are subjects of further study.
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Figure 9. (a) Average maximum electrical resistance rate and (b) gauge factor of the CNM-
incorporated GFRP composites.

Figure 10a,b shows the average maximum electrical resistance change rate results
and gauge factor of each CNM-incorporated CFRP composite type, with various CNM
content ratios. The gauge factor of the pure epoxy CFRP fabricated without CNMs was 2.6.
This was in contrast to the pure epoxy GFRP, which did not exhibit sensing characteristics.
Compared to the gauge factor of pure epoxy CFRP, the CNT-only CFRP composite group
only showed a prominent increase in the gauge factor with the addition of CNTs and
reached a value of 8 at 3% CNT content.

The gauge factors decreased in all of the 3%-CNM-incorporated CFRP composites,
which is explained by the sufficiently electrically conductive pathways formed by the
carbon fibers and the relatively high CNM content ratio. Although breakage in the path-
ways due to external loading occurred, it did not significantly affect the overall conductive
pathways as the proportion of broken pathways was reduced among the overall conduc-
tive pathways. Therefore, the gauge factor was reduced, though the CNM content ratio
increased in the CFRP composites.
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incorporated CFRP composites.

Among the different types of CNM-incorporated GFRP composites shown in Figure 9,
the CNT–CNF GFRP group showed the highest values for the average maximum electrical
resistance change rate and gauge factor, followed by the CNT–graphene GFRP and CNT–
only GFRP groups. These different trends were dependent on the CNM type, which can be
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explained by the excluded volume theory, where the morphological effect of the CNM is
considered [23,46,49].

Excluded volume refers to the filler-free volume adjacent to the CNMs, and where
the center cannot penetrate in the composites with percolated networks of randomly
oriented CNMs [23,46,49]. When rod- or disk-shaped fillers are packed in a limited three-
dimensional space, they will pack more loosely than fillers with a spherical shape due to
their geometrical characteristics [23,46,49]. Thus, the three-dimensional space with the
loose packing will result in a higher degree of excluded volume. The excluded volume
can be assessed by the following equations when rod-shaped or disk-shaped fillers are
incorporated in a limited three-dimensional space [23,46], according to:

Excluded volume

 Vr
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where L and d indicate the length and diameter, respectively, and subscripts r and d denote
the rod and disk, respectively [23,46].

A CNM-percolated network with a large degree of excluded volume will likely cause
disruptions in the CNM network, as it is loosely packed. CNM disruptions can also cause
electrical resistance changes, resulting in an increase in gauge factor [23,46]. In a previous
study, CNMs with identical material properties to the present work were used to prepare
CNM-incorporated epoxy composites without carbon or glass fiber fabrics, and the gauge
factor was determined and explained by the excluded volume of the CNMs [22]. The
excluded volume was the largest in the GNP networks, followed by the CNF, graphene,
and CNT networks [22], as shown in Table 5. The previous study demonstrated that the
excluded volume order of the CNM was the same as the evaluated gauge factor [22]. This
outcome was also used in this study. In the piezoresistive characteristic experiments, the
CNT–GNP materials were not considered. However, the other three composite group types,
CNT-only, CNT–CNF, and CNT–graphene GFRP composites, were considered. Among
the three types, the excluded volume of CNFs was the largest, followed by graphene and
CNTs. The gauge factor results of the CNM-incorporated GFRP composites confirmed that
the calculated excluded volume was closely related to the gauge factor [22].

Table 5. Excluded volume determined by the geometrical features of the CNMs [22].

CNM Type d (µm) L (µm) Excluded Volume (µm3)

CNT 0.008 20 5.0
Graphene 1.75 6.6

CNF 0.17 20 110.4
GNP 9 898.5

4.4. Comparison of Sensing Characteristics in Terms of Peak Shift

To quantitatively assess the effect of CNM and fiber fabric type on the piezoresistive
sensing characteristics of the fabricated FRP composites, the sensing characteristics of the
CNM-incorporated GFRP or CFRP composites were compared in terms of a time-domain
factor, specifically the peak shift [50]. A peak shift consists of two physical parameters,
where one is the time interval, ∆t, measured as the time between the peak of the electrical
resistance change rate and the peak of applied stress. Another is the time, tp, required to
reach the point where the electrical resistance change rate is the highest from the start of
the corresponding resistance change rate cycle [50]. The peak shift is a ratio of these two
time-domain parameters and reflects the ability of the FRP sensing composites to convert
the externally applied stress peak into a physical signal, which is the electrical resistance
change rate in this study, without a time delay. Figure 11 shows ∆t and tp with illustrations,



Sensors 2021, 21, 7291 14 of 19

as well as the calculated peak shift values for the CNM-incorporated FRP composites. In
addition, the formula of the peak shift is provided as follows [50]:

Peak shi f t (%) =
∆t
tp

× 100 (3)
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Peak shift represents the electrical resistance changes in the composites with respect
to applied load in real-time. The higher the peak shift of the composites, the slower the
response time to convert the loading signals into the output of electrical signals. Conversely,
the lower the peak shift of the composites, the faster the response time to convert the loading
signal into the output of electrical signals.

The peak shift was obtained by averaging the peak shift of the three samples for each
composite type. As shown in Figure 11b, all the peak shifts of the CNM-embedded GFRP
samples were between 3.46 to 3.52%, indicating that they were not significantly affected by
the CNM type or content ratio. The peak shift results demonstrated that the GFRP samples
exhibited time-domain sensing performance comparable to the CNM-embedded polymeric
composites described in the literature [22,24].

The peak shifts of the CFRP samples were calculated using the same methods, and
the results are shown in Figure 11c. All CNM-incorporated CFRP composites had large
peak shifts ranging from 10 to 73%, and even the smallest peak shift for the CNT–GNP
1.5% group still exceeded 10%, indicating that the composites did not exhibit good time-
domain performance.
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This phenomenon was attributed to the conductive carbon fiber fabric in the CFRP
samples, which may have affected the piezoresistive sensing performance of the entirety of
the CFRP samples. Therefore, additional studies are needed to further investigate the effect
of carbon fiber fabric on the piezoresistive sensing performance of CNM-incorporated
CFRP composites.

4.5. Comparison of the Sensing Characteristics in Terms of R-Squared

To quantitatively evaluate the effect of CNM and fiber fabric type on the piezoresistive
sensing performance of CNM-incorporated FRP composites, sensing stability was assessed.
Thus, the R-squared values were determined by using the cubic polynomial regression
fitted from the applied loading and electrical resistance change rate values [22]. The R-
squared results can indicate the degree of data dispersion between the applied loading and
electrical resistance changes in each sample. If the applied loading and electrical resistance
change data showed a small dispersion and a pronounced regularity, the R-squared would
be close to 1.0. However, if the data dispersion became more scattered, the corresponding
R-squared value would be smaller. This is explained by the definition of R-squared, which
is also known as the coefficient of determination. According to the definition, the R-squared
value becomes smaller as the differences between actual data and corresponding fitted
data become larger.

The R-squared values of the CNM-incorporated GFRP samples are shown in
Figure 12a,b. All GFRP samples had R-squared values equal to or higher than 0.8, ex-
cept for one 1.5% CNT–CNF GFRP composite sample, which had an R-squared value
of 0.75 [22]. This result indicated that the fabricated CNM-incorporated GFRP samples
had stable and reliable electrical resistance change rates under external cyclic loading, as
utilized in sensor applications.

In Figure 12b, it was observed that the data dispersion was relatively small as CNTs
and graphene were simultaneously embedded in the GFRP composites, leading to R-
squared values that were higher than the GFRP composites with other types or com-
binations of CNMs. Overall, it was observed that the CNM-embedded GFRP samples
showed satisfactory sensing reliability with R-squared values of 0.8 or greater, and the
CNT–graphene GFRP composites had the highest R-squared values among the GFRP-based
composites [22]. Of note, the CNT–graphene GFRP composites also displayed excellent
gauge factor and peak shift results, as described in the previous sections. The prominent
sensing characteristics of the CNT–graphene conductive network were likely due to the
relatively high specific surface areas of graphene and CNTs, which may have increased the
contact probability of the two CNMs in the initial conductive networks, forming networks
susceptible to externally applied loads [13].
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Figure 13a,b shows the R-squared values of the CFRP-based composites. The R-
squared values of the CNM-embedded CFRP samples were significantly lower than the
CNM-embedded GFRP samples. Because the R-squared values of the CFRP-based samples
were all less than 0.52, this indicated that the piezoresistive sensing reliability degraded, as
the FRP composites were composed of carbon fiber fabric.
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Figures 12b and 13b show the averaged R-squared values of the GFRP- and CFRP-
based composites, as determined from three replicated samples for each composite type.
The figure also shows that the R-squared values increased once the CNMs were embed-
ded in the GFRP-based composites (because the R-squared of pure epoxy GFRP was 0).
However, the additional incorporation of CNMs, with content ratios of 1.5% to 3%, did not
further improve the R-squared values, which indicated excessive embedment of CNMs.
Thus, a 3% content ratio would no longer improve the sensing characteristics. In contrast to
the GFRP-based composites, the R-squared values of the CFRP-based composites declined
with the addition of CNMs, as shown in Figure 13b. Thus, considering the declining trend
in the R-squared values of the CFRP-based composites, it was deduced that the excessive
inclusion of conductive carbon materials in CFRP composites would be detrimental to their
sensing characteristics.

When comparing the R-squared values of the CNM-embedded GFRP composites
and the CNM-embedded CFRP composites, it was observed that the R-squared values
of the CFRP-based composites were relatively lower than those of the GFRP-based com-
posites. Kostopoulos et al. (2009) investigated the piezoresistive sensing characteristics
of CNT-embedded CFRP composites and demonstrated that the noise in electrical resis-
tance change rate was enlarged with CNT content ratios exceeding 0.5% [48]. This finding
showed agreement with the declining trend in the R-squared values of the CFRP-based
composites. In this regard, the effect of the excessive incorporation of CNMs and excessive
inter-connections between CNMs and carbon fibers, which were speculated as principally
affecting factors, on the degradation of sensing characteristics should be investigated further.

5. Conclusions

To overcome the drawbacks in the sensing performance of composites fabricated with
a single type of CNM, hybridized CNMs such as CNT–graphene, CNT–CNF, or CNT–
GNP materials were incorporated into epoxy resin and used to fabricate GFRP or CFRP
composites. The fabricated CNM-incorporated FRP composites were evaluated in terms
of their electrical properties and piezoresistive sensing characteristics. In particular, their
sensing characteristics were assessed on the basis of parameters such as gauge factor, peak
shift, and R-squared values. The experimental results can be summarized as follows:
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(1) In the electrical property results, it was found that the GFRP samples with just CNTs
or both CNTs and graphene showed much higher electrical conductivities than the
other composite samples, and the percolation threshold was in the range of 0 to
1.5 wt.% of incorporated CNMs. Furthermore, the CFRP samples exhibited high
electrical conductivity values, such as 8933 S/m, even without CNMs and marginal
variations in CNM addition.

(2) After evaluating the piezoresistive sensing characteristics, it was found that the CNT–
CNF GFRP composites exhibited the highest average maximum electrical resistance
change rate and gauge factor values, followed by the CNT–graphene and CNT-only
GFRP composites. These results were explained by the excluded volume theory,
which yielded a higher excluded volume in the order of CNFs, graphene, and CNTs.

(3) All 3%-CNM-incorporated CFRP composites showed deterioration in terms of gauge
factor, and this was ascribed to the adequately electrically conductive pathways
formed by the carbon fibers and the relatively high CNM content ratio.

(4) All peak shifts of the CNM-embedded GFRP samples were in the range of 3.46 to
3.52%, signifying that the electrical resistance change rates of the composites were
correlated to the applied loads. However, all CNM-incorporated CFRP composites
had relatively large peak shifts, ranging from 10 to 73%.

(5) The fabricated CNM-incorporated GFRP samples showed more stable and reliable
electrical resistance change rates, which accounted for their higher R-squared values,
compared to the fabricated CNM-incorporated CFRP samples. Furthermore, the CNT–
graphene GFRP composites exhibited the best R-squared value. Because the CNT–
graphene GFRP composites showed better peak shift and gauge factor performance,
these composites were the most feasible for use as FRP composite sensors.

(6) Although a synergistic effect was unclear in the electrical conductivity results, synergistic
effects were pronounced in the CNT–CNF GFRP composites and CNT–graphene GFRP
composites investigated in terms of the gauge factor and the R-squared value, respectively.
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