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Abstract: Motor Imagery (MI)-based Brain–Computer Interfaces (BCIs) have been widely used as
an alternative communication channel to patients with severe motor disabilities, achieving high
classification accuracy through machine learning techniques. Recently, deep learning techniques
have spotlighted the state-of-the-art of MI-based BCIs. These techniques still lack strategies to
quantify predictive uncertainty and may produce overconfident predictions. In this work, methods
to enhance the performance of existing MI-based BCIs are proposed in order to obtain a more reliable
system for real application scenarios. First, the Monte Carlo dropout (MCD) method is proposed
on MI deep neural models to improve classification and provide uncertainty estimation. This
approach was implemented using Shallow Convolutional Neural Network (SCNN-MCD) and with
an ensemble model (E-SCNN-MCD). As another contribution, to discriminate MI task predictions of
high uncertainty, a threshold approach is introduced and tested for both SCNN-MCD and E-SCNN-
MCD approaches. The BCI Competition IV Databases 2a and 2b were used to evaluate the proposed
methods for both subject-specific and non-subject-specific strategies, obtaining encouraging results
for MI recognition.

Keywords: Brain–Computer Interfaces; Monte Carlo dropout; motor imagery; Shallow Convolu-
tional Neural Network; uncertainty estimation

1. Introduction

Deep neural network (DNN) techniques have gained enormous acceptance in the
scientific community with respect to other machine learning techniques. For this reason,
DNN is becoming more attractive for various research areas, such as language processing,
computer-assisted systems, medical signal processing, and autonomous vehicles, among
others. Particularly, Motor Imagery (MI)-based Brain–Computer Interfaces (BCIs) by using
DNN have proven potential for MI tasks classification with good discrimination. BCI
systems constitute an alternative communication pathway for patients with severe neural
impairments, and they consist of brain signal acquisition and processing, which is then
translated into control commands for robotic devices, such as exoskeletons, wheelchairs,
etc. [1]. Despite the impressive accuracy of employing DNN-based BCIs, these approaches
may produce overconfident predictions. Moreover, the analysis to quantify the uncertainty
of predictions is still a challenge. Overconfident incorrect predictions may be undesirable;
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hence, an analysis for uncertainty quantification is crucial to guarantee more robust BCIs
with reliable responses, and consequently, making them suitable for real-life scenarios [2,3].

The uncertainty estimation in deep learning is an open area. A variety of research
has focused on dealing with the uncertainty of DNN models in some fields, such as
medicine [4–6], autonomous navigation systems [7,8], robotic [9], and natural language
processing [10] to improve the decision making of recognition systems. For medical
applications, the uncertainty analysis has been widely used for diseases diagnoses, such as
COVID-19 [11], tuberculosis [12], ataxia [13], cancer [14], diabetes [15,16], and epilepsy [17].
Nevertheless, to the best of our knowledge, the uncertainty analysis in MI-based BCIs has
not been reported. Dealing with EEG signals that have naturally a poor signal-to-noise ratio,
small amplitudes, and high variability intra-and inter-subjects and inter-sessions make
the EEG-based BCI systems more difficult and prone to produce unreliable predictions,
affecting their effectiveness. In fact, healthy BCI novices and people with attention deficit
suffering also with severe motor impairments [18,19] can have problems for appropriately
executing MI tasks, which may increase the uncertainty of BCI predictions.

Therefore, we hypothesize that an MI-based BCI including methods for uncertainty
analysis may improve the closed-loop between both user and end-effector, enhancing
neuroplasticity [20].

Regarding uncertainty estimation, Bayesian neural networks (BNN) [21,22] are a prob-
abilistic version of neural networks, which are intrinsically suitable to estimate uncertainty.
The variational inference [22] is commonly used to approximate the posterior model by
using simple variational distribution, such as the Gaussian distribution. However, the
training process of these networks is more complex, and the trained networks may not
always offer superior accuracy results.

Gal and Ghahramani [23] introduced a method for determining the model uncer-
tainty. They noted that training any neural network by using dropouts, typically used
for preventing overfitting, can be interpreted as an approximate inference of the weight’s
posterior. In short, applying dropout at test time, this method makes multiple forward
passes with the trained model. Then, for a given input, the prediction and the model uncer-
tainty can be statistically estimated. This popular method, known as Monte Carlo dropout
(MCD) [13,16,23–26], has become attractive in practice, since it scales well to large amounts
of data, and it does not require the change of existing model architectures. MCD can be
interpreted as an averaging ensemble of many networks with shared weights [24,27,28].

The objective of this study is to propose methods for accuracy improvement and
uncertainty analysis in a deep neural network scheme for MI-based BCIs in order to
obtain robust predictions, and therefore, more reliable responses of robotic devices during
motor rehabilitation. An existing Shallow Convolutional Neural Network (SCNN) [29]
scheme was used in our study to test the main contributions of this paper, such as SCNN
combined with Monte Carlo dropout (SCNN-MCD) to classify motor imagery EEG in BCI
applications and estimate the model uncertainty. We investigate with SCNN-MCD how
different uncertainty measures correlated with the predictive accuracy and also introduce a
threshold method that rejects EEG inputs that produce predictions of very high uncertainty
in cases when we should not rely on the prediction and minimizes the error rate of the
classifier. The SCNN-MCD model was tested on the BCI Competition IV datasets 2a and 2b,
and it yields significant accuracy improvement compared to the state-of-the-art. Finally, the
MCD of deep ensemble models is explored and evaluated on both datasets, also obtaining
promising results.

2. Materials and Methods
2.1. Databases Description

Two popular public datasets from BCI Competition IV, specifically datasets 2a and
2b [29–37], were used.

Dataset 2a: This dataset contains EEG signals of different MI tasks (left hand, right
hand, tongue, and foot), which were recorded from nine healthy subjects on 22 locations
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(Fz, FC1, FC3, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1, Pz,
P2, and POz) with a sampling rate at 250 Hz. A total of two sessions on different days was
performed for each subject, completing a total of 288 trials per session. The first session
was used here for training, and the other session was employed for testing, as done in
previous works [29–34].

Dataset 2b: This dataset comprises EEG signals from two MI tasks (left hand and right
hand), which were collected from nine subjects over three bipolar EEG channels (around
C3, Cz, and C4) with a sampling rate at 250 Hz. Each subject completed a total of five
sessions summing 720 trials (first two sessions with 120 trials each, and the last three of
160 trials each). Then, the first three sessions were used for training, while the last two
sessions were used for testing, as done in previous works [29,35–37].

2.2. Preprocessing

Some studies [38–43] reported that real or imagined unilateral movements can attenuate
or enhance the amplitude of mu (from 8 to 12 Hz) and beta (from 13 to 30 Hz) EEG rhythms
over the primary motor cortex in both contralateral and ipsilateral hemispheres, respec-
tively, which are phenomena known as event-related desynchronization/synchronization
(ERD/ERS). For this reason, as shown in Figure 1, the EEG signals are band-pass filtered
here in a frequency range from 4 to 38 Hz through a Butterworth filter, aiming to preserve
the ERD and ERS rhythms, rejecting undesirable physiological and non-physiological
artifacts. Next, each filtered EEG trial x is standardized by applying the electrode-wise
exponential moving standardization with a decay factor of 0.999 [29,31], according to the
following equations:

µ(ti) = 0.001x(ti) + 0.999µ(ti−1) (1)

σ2(ti) = 0.001(x(ti)− µ(ti))
2 + 0.999σ2(ti−1) (2)

x̃(ti) = (x(ti)− µ(ti))/σ(ti) (3)

which compute mean µ(ti), variance σ2(ti), and standardized x̃(ti) values on each electrode
taken at sample ti. The initial values µ(t0) and σ2(t0) are the mean and variance calculated
over periods corresponding to the rest state preceding each trial. To rectify outliers, the
EEG amplitudes of each trial are limited to µ(ti)± 6σ(ti). Finally, the trial crops strategy is
employed for data augmentation. For both datasets, crops of 4 s every 8 ms in the interval
from −0.5 to 4 s (cue onset at 0s) over all trials were extracted in our study.
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Figure 1. The raw EEG signals’ preprocessing and data augmentation.

2.3. Architecture

A shallow architecture that performs temporal and spatial convolutions is used here.
The temporal convolutional layer with a 45 × 1 filter and 40 channels has input tensors of
size 1000 × 22 × 1 and output tensors of size 478 × 22 × 40 when using dataset 2a, while
input tensors of size 1000 × 3 × 1 and output tensors of size 478 × 3 × 40 are used for
dataset 2b. Then, downsampling from 250 to 125 Hz by employing a stride of 2 is performed.
The spatial convolutional layer is composed of 40 channels and a 1 × 22 filter when using
dataset 2a and a 1 × 3 filter when using dataset 2b. After the temporal convolution and
the spatial filter, a squaring nonlinearity, an average pooling layer with 45 × 1 sliding
windows, a max-pooling layer with an 8 × 1 stride, and a logarithmic activation function
are applied. These steps together are analogous to the trial log-variance computation,
which is widely used in the Filter Bank Common Spatial Patterns (FBCSPs) [30,44]. The
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use of quadratic activation functions, or even higher-order polynomials, is not new in
neural network research [45], and to the best of our knowledge, it was first used in BCI
applications by Schirrmeister [31]. The classification layer is composed of a dense layer
with Softmax activation function that receives a total of 2160 features. To avoid overfitting,
batch normalization and dropout layers are used, and also the “MaxNorm” regularization
is further applied in both convolution and dense layers. Moreover, the “Early Stopping”
method and the decay of learning rate are also considered. The Adam optimizer [46]
and the Categorical Cross-Entropy as a cost function are employed. As a result, the
proposed architecture contains a total of 45,804 weights for dataset 2a and 11,082 weights
for dataset 2b.

The neural network shown is totally deterministic and does not permit broader rea-
soning about uncertainty. To estimate the uncertainty, the Monte Carlo dropout described
in the next section was used.

2.4. Monte Carlo Dropout

The dropout technique is commonly used to reduce the model complexity and also
avoid overfitting [24]. A dropout layer multiplies the output of each neuron by a binary
mask that is drawn following a Bernoulli distribution, randomly setting some neurons
to zero in the neural network, during the training time. Then, the non-dropped trained
neural network is used at test time. Gal and Ghahramani [23] demonstrated that dropout
used at test time is an approximation of probabilistic Bayesian models in deep Gaussian
processes. Monte Carlo dropout (MCD) quantifies the uncertainty of network outputs
from its predictive distribution by sampling T new dropout masks for each forward pass.
As a result, instead of one output model, T model outputs {Pt; 1 ≤ t ≤ T} for each input
sample x are obtained. Then, the set {pt} can be interpreted as samples from the predictive
distribution, which is useful to extract information regarding the prediction’s variability.
This information is valuable for making decisions. In fact, quantifying the uncertainty of
the model may allow uncertain inputs to be treated differently.

The main drawback of MCD is its computational complexity, which can be propor-
tional to the number of forward passes T. As an alternative, the forward passes can run
concurrently, resulting in constant running time. Moreover, if the dropout layers are located
near the network output, as in the SCNN model (see Figure 2), the input of the first dropout
layer can be saved in the first pass, to reuse it in the remaining passes, avoiding redundant
computation [26]. Consequently, the computational complexity of MCD can be significantly
reduced, enabling it for real-time applications.

The MCD model estimation can be computed as the average of T predictions:

p∗ =
1
T ∑T

t=1 pt. (4)

According to [23], T = 50 is considered a safe choice to estimate the uncertainty, but
this value must also be evaluated, considering the predictive performance of MCD. In
our study employing the SCNN architecture (see Figure 2), the performance by applying
MCD through different T samples was analyzed for each subject in both datasets 2a and
2b. Figure 3 shows the accuracy improvement (∆ ACC) from the baseline T = 1. We
observed that generally when T increases, the accuracy of SCNN-MCD improves, reaching
an evident stabilization for values prior to T = 50. For this reason, T = 50 was adopted in
SCNN-MCD.
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Figure 3. The performance using Monte Carlo dropout for several forward passes: (a) Subjects in
dataset 2a; (b) Subjects in dataset 2b.

The Monte Carlo dropout can be seen as a particular case of Deep Ensembles (training
multiple similar networks and sampling predictions from each), which is another alterna-
tive to improve the performance of deep learning models and estimate uncertainty. A brief
description of Deep Ensembles is presented in the next section.
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2.5. Deep Ensemble Models

Deep ensembles have shown potential to improve the accuracy and out-of-distribution
robustness as well as reduce the uncertainty of deep learning models [27,47]. The ensemble
learning combines several models to obtain better generalization. Therefore, the disadvan-
tages of using a single model can be tackled and masked by the strengths of other models.
The averaged predictions are most useful when all models are statistically independent,
having different hyperparameters, or being trained with different data.

Bagging [27,47], also known as bootstrap aggregating, is the type of ensemble tech-
nique in which a single training algorithm is used on different subsets over the same
architecture. Bagging samples may be generated with/without replacement. Given a
dataset, an ensemble predictor can be obtained by training the same architecture several
times, where each training instance uses one bagging sample as training set. At prediction
time, the same input is evaluated by each network, and the results are averaged. The main
drawback of deep ensembles is their high computational cost and complexity for training
and implementation.

To evaluate the generalization of DNN-based BCI systems, it is common to randomly
partition the available data, defining a part for training, another set for validation, and the
rest for testing. The pre-trained models from each partition can be added in an ensemble
that corresponds to bagging without replacement [27,47]. This strategy is followed in our
work for obtaining the ensemble model.

2.6. Uncertainty Analysis and Prediction Performance

The uncertainty in neural networks measures how reliable a model makes predictions.
Several uncertainty measures can be used to quantify model uncertainty [48,49]. For a
better understanding, we first present five well-known metrics, such as variation ratio
(VR), predictive entropy (H), mutual information (I), total variance (Vtot), and margin of
confidence (M). The next descriptions assume the aforementioned predictive distribution
obtained from the stochastic forward passes.

Let C be the total number of classes for classification, and pt = (p1t, p2t, · · · , pCt);
the model output for a forward pass, t, is 1 ≤ t ≤ T. If the last layer of the model is
softmax, the sum of all outputs is equal to 1. Let p∗ =

(
p∗1 , · · · , p∗C

)
be the average of the

predictions {pt; 1 ≤ t ≤ T}.
Variation ratio VR. This measures the dispersion or how spread the distribution is

around the mode.
VR = 1− fc∗

T
(5)

where fc∗ is the frequency of the mode c∗ of the discrete distribution {ct} and
ct = arg max{p1t, p2t, · · · , pCt} is the predicted class in each stochastic forward pass.

Notice that VR ∈ [0, 1/C], and it reaches its minimum and maximum values for fc∗

closest to T and T/C, respectively.
Predictive Entropy H. This metric captures the average of the amount of information

contained in the predictive distribution. The predictive entropy attains its maximum value
when all classes are predicted to have an equal uniform probability. In contrast, it obtains
zero value as minimum when one class has a probability equal to 1, being 0 for all others
(for instance, when the prediction is certain). The predictive entropy can be estimated as:

H ≈
C

∑
j=1

p∗j log2(p∗j ). (6)

The maximum value for H is log2 C. Therefore, it is not fixed for datasets with different
numbers of classes. To facilitate the comparison across various datasets, we normalize the
predictive entropy here as follows: Hn = H/ log2 C, Hn ∈ [0, 1].
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Mutual Information I. It measures the epistemic uncertainty by capturing the model’s
confidence from its output.

I ≈ H− 1
T

T

∑
t=1

C

∑
j=1

pjt log2(pjt) (7)

Total variance Vtot. It is the sum of variances obtained for each class:

Vtot =
1
T

C

∑
j=1

T

∑
t=1

(
pjt − p∗j

)2
. (8)

Margin of Confidence M. The most intuitive form to measure uncertainty is analyzing
the difference between two predictions of the highest confidence.

Let c = argmax p∗j be the predicted class through the MCD approach.
Then, for dt = pct −max

j 6=c
pjt, we compute:

M =
1
T

T

∑
t=1

dt (9)

where M takes values close to zero for points toward high uncertainty, and it increases
when the uncertainty decreases. We noted that M can be negative.

The prediction’s uncertainty can be intuitively expected to be correlated with the
classification performance. For instance, Figure 4 shows the histograms of the normalized
predictive entropy, for predictions classified correctly and incorrectly, when applying
subject-specific classification on dataset 2a. We observed for almost all subjects that well-
classified predictions were grouped predominantly toward low-entropy values, while the
incorrect classified predictions were more clustered in regions of high entropy. A similar
effect also occurred when applying the other uncertainty measure presented here. This
indicates that the most uncertain predictions also tend to be incorrect. In areas of high
uncertainty, the model can randomly classify patterns, and therefore, it is preferred to reject
their associated inputs. The rejection decision can be carried out by using some uncertainty
metrics, and preferably, it must be statistically inferred. Next, the more suitable uncertainty
measures to achieve this purpose are determined.

As a novelty, a new approach based on the Bhattacharyya distance to compare the
ability of several uncertainty measures for discriminating correct and incorrect classified
predictions is proposed here in order to enhance the MI tasks recognition. The Bhat-
tacharyya distance measures the similarity of two probability distributions p and q over
the same domain X, and it can be calculated as

DB(p, q) = − ln

(
∑

x∈X

√
p(x)q(x)

)
. (10)

Table 1 shows the Bhattacharyya distance computed between histograms obtained
from correct and incorrect classified predictions, using the aforementioned uncertainty
measures.

Table 1. The Bhattacharyya distance between distributions of correct and incorrect classified predic-
tions for different uncertainty measures. The best values are highlighted in bold.

Dataset VR H I Vtot M

2a 0.1500 0.1365 0.1331 0.1522 0.1589
2b 0.0862 0.1715 0.1638 0.1465 0.1657

Mean 0.1181 0.1540 0.1485 0.1494 0.1623
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Notice that the margin of confidence M reached the highest Bhattacharyya distance on
dataset 2a and the mean of both datasets, outperforming the other metrics. Thus, we used
it in the classification process to reject those EEG trials that were less certain. The margin of
confidence is a sample mean of 50 random values {dt}; consequently, a normal distribution
can be assumed for the random variable M. This allows fixing a threshold M̂ on the values
of M to split the predictions into certain

(
M > M̂

)
and uncertain

(
M ≤ M̂

)
. Notice that

if the prediction is certain, the zero value must be outside the confidence interval of M,
and therefore, M must be necessarily greater than σdz1− α

2
/
√

T, where σd is the standard

deviation of samples {dt}, z1− α
2
= Φ−1(1− α

2
)
, Φ is the cumulative distribution function

(CDF) of the standard normal distribution, and 1− α is the confidence level. Consequently,
as threshold, the following equation can be used:

M̂ =
σdz1− α

2√
T

. (11)

The certainty condition is satisfied if the mean M of the differences {dt} is “very large”
or if the standard deviation σd is “very small”. As a result, this threshold scheme does
not classify as uncertain those predictions in which the model is consistent (σd ≈ 0), even
when M is close to zero. As a highlight, the proposed threshold does not require prior
knowledge of the data, as it depends exclusively on the predictive distribution.

Finally, four subsets for predictions can be obtained by using the proposed method,
which are incorrect–uncertain (iu), correct–uncertain (cu), correct–certain (cc), and incorrect–
certain (ic) predictions.

Let Niu, Ncu, Ncc, and Nic be the number of predictions in each subset, N be the total
number of predictions, and Rc be the certain ratio. This last ratio is the proportion of certain
predictions with respect to the total number of predictions.
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In any recognition system, the correct classification of certain predictions is desirable.
Then, the correct-certain ratio Rcc in Equation (12) [50] can be used to measure this
expectation.

Rcc

(
M̂
)
=

P(correct ∩ certain)
P(certain)

=
Ncc

Ncc + Nic
(12)

On the other hand, if the model makes an incorrect prediction, it is desirable to have
high uncertainty, which can be measured by the incorrect–uncertain ratio Riu [50], as
follows:

Riu

(
M̂
)
=

P(uncertain ∩ incorrect)
P(incorrect)

=
Niu

Niu + Nic
. (13)

The overall accuracy of the uncertainty estimation can be measured through the
Uncertainty Accuracy (UA) as:

UA
(
M̂
)
=

Ncc + Niu
N

= 1− Nic + Ncu

N
(14)

where UA
(
M̂
)

penalizes the incorrect–certain and correct–uncertain predictions, aiming
to increase the reliability, effectivity, and feasibility of EEG MI-based recognition systems
in practical applications. UA takes higher values for the best threshold values; thus, it can
be further used to compare different thresholds.

2.7. Experiments

A first experiment to evaluate the accuracy performance by applying the SCNN-
MCD approach was carried out. For the second experiment, a Monte Carlo dropout of an
ensemble (E-SCNN-MCD) was executed in order to verify its feasibility to discriminate
MI tasks. Finally, a third experiment to analyze the uncertainty of predictions during MI
tasks classification was performed for both SCNN-MCD and E-SCNN-MCD approaches.
All experiments were designed according to the conditions of the BCI competition IV
to compare directly with recent works that also employed this dataset. For this, the
training set (the first session from dataset 2a and the first three sessions from dataset
2b) was employed to calibrate the recognition system, while the testing set (the second
session from dataset 2a and the last two sessions from dataset 2b) was used only for
evaluation. A repeated holdout validation over the same testing set was carried out for
both subject-specific and non-subject-specific classification strategies to evaluate the model
generalization. For instance, the training set T was split randomly into new sets T1, V1 ,
one for training (T1) and the other for validation (V1), repeating this random procedure
16 times (T = Ti ∪ Vi; 1 ≤ i ≤ 16). Once the model was trained for each Ti and Vi, the
average accuracy was calculated by using the testing set E . Figure 5a,b show the strategy
to select the training and testing sets for both subject-specific and non-subject-specific
strategies, respectively. As a result, when applying the subject-specific classification, the
training data are composed randomly of trials from the training set of the same subject, as
shown in Figure 5a for Subject 5. In contrast, when using the non-subject-specific strategy,
the training data are selected randomly from the training set of all subjects, as shown in
Figure 5b for Subject 5.

An HPC using a Dell PowerEdge R720 server with four 2.40 GHz Intel Xeon processors
and 48 GB RAM, NVIDIA GM107L Tesla M10 GPU with 32 GB memory was used to train
and test the deep learning models by using the Python TensorFlow 2.3.0 framework.
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3. Results and Discussion
3.1. Experiment #1: Monte Carlo Dropout to Improve MI Classification

Prior to the implementation of Monte Carlo dropout in the Shallow Convolutional
Neural Network (SCNN) of Figure 2, several experiments were carried out on datasets 2a
and 2b, using SCNN in [29] for both subject-specific and non-subject-specific classification.
Once the model was trained, we then evaluated the Monte Carlo dropout accuracy on
testing set E .

For a subject-specific session to session classification (subject-specific system), the
training set T from dataset 2a (first session) was composed of 288 trials per subject, while
from dataset 2b, a total of 400 trials per subject (first three sessions) was used. The validation
set Vi was formed with 1/6 and 1/5 of the former training set T when using dataset 2a and
dataset 2b, respectively. Tables 2 and 3 show for our subject-specific system the averaged
accuracy obtained on both dataset 2a and dataset 2b, respectively, as well as comparison
with relevant state-of-the-art studies. Both tables highlight the best accuracies in bold,
while the lowest accuracies of SCNN-MCD with respect to SCNN [29] are underlined.

Table 2. The subject-specific session to session classification results (accuracy in percentage) on dataset 2a. The best
accuracies are highlighted in bold; the lowest accuracies of SCNN-MCD with respect to SCNN are underlined.

Methods A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

FBCSP [30] 76.00 56.28 80.88 61.07 54.85 45.48 82.98 81.63 70.45 67.70
SCN [31] 86.56 62.29 89.86 65.61 55.19 48.47 86.07 78.41 76.05 72.05

C2CM [32] 87.50 65.28 90.28 66.67 62.50 45.49 89.58 83.33 79.51 74.46
MCNN [34] 90.21 63.40 89.35 71.16 62.82 47.66 90.86 83.72 82.32 75.72
CCNN [34] 87.14 63.10 86.76 68.29 63.61 48.32 87.73 80.17 78.83 73.77

GLOBAL [33] 88.60 55.90 86.70 71.00 66.50 56.00 88.40 80.90 77.10 74.60
SCNN [29] 83.81 51.97 91.48 73.82 69.82 53.90 91.17 81.87 82.39 75.58

SCNN-MCD 85.27 57.11 92.48 75.42 74.38 57.02 92.15 82.36 80.68 77.43

Table 3. The subject-specific session to session classification results (accuracy in percentage) on dataset 2b. The best
accuracies are highlighted in bold; the lowest accuracies of SCNN-MCD with respect to SCNN are underlined.

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean

CNN-SAE [35] 78.10 63.10 60.60 95.60 78.10 73.80 70.00 71.30 85.00 75.10
CWT-SCNN [36] 74.70 81.30 68.30 96.30 92.50 86.90 73.40 91.60 84.40 83.20

CAgross [37] 68.31 55.10 54.61 91.14 80.17 72.23 67.79 88.65 80.23 73.13
SCNN [29] 75.43 55.36 52.09 94.96 87.60 79.71 79.77 87.87 84.69 77.50

SCNN-MCD 74.84 54.34 52.44 95.84 87.32 82.04 80.42 88.34 83.92 77.72

Tables 2 and 3 show that the SCNN-MCD method improved the mean ACC for both
databases (around 2% for dataset 2a and 0.22% for dataset 2b) with respect to SCNN,
surpassing the other analyzed methods except for CWT-SCNN on dataset 2b. SCNN-MCD
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reached the best results on subjects A03, A04, A05, A06, A07, and B07 compared with the
state-of-the-art.

Interestingly, applying the SCNN-MCD approach for the subject-specific strategy did
not improve the accuracy for some subjects (A09, B01, B02, B05, and B09), which suggests
co-adaptation [24,51]. When dropout is applied at test time, the dropped neurons may
degrade the model’s accuracy, especially if the neurons are relying too much on each
other to make the prediction. The co-adaptation in the neural network is defined as the
expected performance decrease when the dropout is applied at test time. In order to verify
the co-adaptation scenario for these subjects, a Monte Carlo Dropout with T = 1 was
performed, taking into account 16 pre-trained weights for each subject. Figure 6 shows
that for subjects A09, B01, B02, B05, and B09, the mean accuracy decreased for T = 1 with
respect to SCNN, indicating possibly a co-adaptation scenario.
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Figure 6. The SCNN-MCD performance with T = 1 compared to SCNN on selected subjects during
subject-specific session to session classification.

For a non-subject-specific session to session classification (non-subject-specific sys-
tem), as shown in Figure 5b, the training set from dataset 2a was composed of 2592 trials
(288 trials per subject), while the training set from dataset 2b was composed of 3600 trials
(400 trials per subject). Tables 4 and 5 (for both datasets 2a and 2b, respectively) show the
results obtained for non-subject-specific classification. Both tables highlight the best accura-
cies in bold, while the lowest accuracies of SCNN-MCD compared to [29] are underlined.

Table 4. The non-subject-specific session to session classification results (accuracy in percentage) on dataset 2a. The best
accuracies are highlighted in bold; the lowest accuracies of SCNN-MCD with respect to SCNN are underlined.

Methods A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

SCN [31] 47.06 31.22 41.02 33.19 41.57 34.71 43.09 46.01 51.78 41.07
MCNN [34] 51.91 38.06 43.34 35.81 41.50 31.11 48.09 45.01 51.29 42.09
CCNN [34] 62.07 42.44 63.12 52.09 49.96 37.16 62.54 59.32 69.43 55.34
SCNN [29] 72.29 39.26 81.59 60.90 54.03 51.58 74.70 77.11 76.86 65.37

SCNN-MCD 80.39 46.28 82.91 62.65 58.78 49.76 71.51 79.76 78.76 67.87

Table 5. The non-subject-specific session to session classification results (accuracy in percentage) on dataset 2b. The best
accuracies are highlighted in bold; the lowest accuracies of SCNN-MCD with respect to SCNN are underlined.

Methods B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean

SCNN [29] 66.94 55.66 54.08 93.78 79.09 80.81 74.18 90.05 83.42 75.33
SCNN-MCD 73.49 56.94 53.35 94.42 78.45 81.28 76.16 92.73 84.15 76.77

Tables 4 and 5 show that the SCNN-MCD approach increased the mean ACC on both
databases (2.5% for dataset 2a and 1.4% for dataset 2b), outperforming generally the SCNN
approach. The SCNN-MCD improved its accuracy for most subjects, in comparison to
SCNN, although it also decreased the ACC on some subjects (A06, A07, B03, and B05),
indicating possibly co-adaptation [24,51]. The highest ACC improvement occurred on
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subjects A01 (8%), A02 (7%), and A05 (4.75%) from dataset 2a as well as on B01 (6.55%)
from dataset 2b.

3.2. Experiment #2: Monte Carlo Dropout of an Ensemble to Improve MI Classification

Here, the Monte Carlo dropout of an ensemble of SCNN, termed as E-SCNN-MCD, is
evaluated and compared with other methods. Then, from previous experiments,
16 trained models Mi per subject were obtained. It allowed the testing of an ensem-
ble with 16 models {M1, M2, · · · , M16}. This ensemble can be seen as a particular case of
bootstrap aggregating [27,47] in which bagging samples are performed with replacement.
To accomplish this experiment, a Monte Carlo dropout was implemented in SCNN as
aforementioned, where each prediction pt, 1 < t < 50 of an ensemble was obtained by
averaging the corresponding predictions of each model Mi, using dropout at test time.

The results obtained on dataset 2a are shown in Table 6 for both subject-specific and
non-subject-specific classification. For both strategies, E-SCNN-MCD reached superior
results compared to SCNN, with an improvement of 4.88% for subject-specific classification
and 4.39% for non-subject-specific classification. With respect to SCNN-MCD, E-SCNN-
MCD improved 3.03% for subject-specific classification and 1.89% for non-subject-specific
classification. Similarly, Table 7 shows the results of E-SCNN-MCD on dataset 2b. For the
subject-specific strategy, this approach improved 1.08% compared to SCNN and 0.86% with
respect to SCNN-MCD. Furthermore, for non-subject-specific classification, E-SCNN-MCD
increased the accuracy 2.87% and 1.43% compared to SCNN and SCNN-MCD, respectively.
These results using ensemble are promising, as it reused trained models without another
particular design.

Table 6. The classification results (accuracy in percentage) by applying the E-SCNN-MCD model on dataset 2a.

E-SCNN-MCD A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

Subject-specific 87.47 60.90 93.60 80.93 78.43 62.96 94.21 84.62 80.98 80.46
Non-subject-specific 80.97 47.37 83.87 64.89 62.05 52.15 75.25 80.86 80.44 69.76

Table 7. The classification results (accuracy in percentage) by applying the E-SCNN-MCD model on dataset 2b.

E-SCNN-MCD B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean

Subject-specific 74.92 54.30 53.33 96.22 88.02 84.09 80.59 89.37 86.36 78.58
Non-subject-specific 74.82 58.67 54.35 94.96 80.91 84.11 77.11 93.89 84.98 78.20

3.3. Experiment #3: Uncertainty and Prediction Performance

This experiment was carried out to analyze the uncertainty of predictions and evaluate
the certainty condition based on the proposed threshold (see Equation (11)), splitting the
predictions into both certain and uncertain groups for both SCNN-MCD and E-SCNN-MCD
approaches, enhancing the decision making. Similar to previous experiments, subject-
specific and non-subject-specific classifications were considered. For this purpose, the
confidence level (1− α) at 0.95 was selected. To assess the suitability of using the proposed
threshold with this confidence level, different thresholds from 0.1 to 10 were tested, and
their corresponding Rc, Rcc, Riu, and UA values were also calculated. Figure 7 shows the
uncertainty accuracy (UA) achieved for each threshold, using both subject-specific and non-
subject-specific strategies. It is worth noting that UA values for thresholds corresponding
to confidence levels of 0.95 and 0.99 are very close to the optimal value UA∗ for both
strategies (see Figure 7a,b), which is remarkable. Particularly, the difference between UA∗

and UA (corresponding to α = 0.05) is less than 0.1%.
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Table 8 shows Rc, Rcc, Riu, and UA values, using α = 0.05 for subject-specific
classification on both datasets.

Table 8. The uncertainty metrics (%) obtained by using the SCNN-MCD scheme for subject-specific
session to session classification.

Dataset 2a Dataset 2b

Subjects UA * Rc Rcc Riu UA UA * Rc Rcc Riu UA

1 85.33 95.71 86.74 13.87 85.06 74.87 96.98 75.63 6.04 74.86
2 63.04 81.62 61.27 26.31 61.29 54.39 94.40 54.58 6.09 54.31
3 92.52 97.83 93.42 14.42 92.47 52.68 93.34 52.63 7.04 52.47
4 76.92 87.30 79.97 28.86 76.91 95.85 99.47 96.08 6.34 95.84
5 75.67 89.26 78.02 23.42 75.64 87.35 98.48 87.90 6.04 87.33
6 62.59 80.31 61.44 27.95 61.36 82.04 97.41 82.84 6.92 81.94
7 92.24 96.75 93.48 19.60 91.98 80.43 97.50 81.18 6.28 80.38
8 83.03 92.66 85.25 22.50 82.96 88.35 97.87 89.12 8.66 88.23
9 81.88 93.59 83.33 19.25 81.70 83.93 97.30 84.82 8.18 83.85

Mean 78.88 90.56 80.32 21.80 78.82 77.73 96.97 78.31 6.84 77.69
* indicates optimal value.

The SCNN-MCD approach provided different results of certainty in both datasets
2a and 2b, as shown in Table 8. Although for both datasets, the Uncertainty Accuracy
(UA) reached approximately an optimum value in which around 10% of the predictions
were labeled as uncertain on dataset 2a. The highest predictions rejection was observed
on subjects A02 (18.38%) and A06 (19.69%). On dataset 2b, it only rejected 3% of its
predictions, which was influenced greatly by subjects B02 (5.6%) and B03 (6.66%). Notice
that for datasets 2a and 2b, around 21% and 7% of the misclassified predictions were
labeled as uncertain, respectively.

A better idea—analyzing two uncertainty metrics—is given in Figure 8. It shows
the bivariate distribution of the mutual information and the margin of confidence over
predictions obtained on subjects A04 and B01, as well as the marginal distributions. The
average of margin of confidence was similar on both subjects; however, we found a large
variation in the mutual information. The average mutual information for subject B01 was
four times lower than for subject A04. Although only these subjects have been considered
here, it is worth mentioning that the average for both datasets 2a and 2b had similar
behavior. Given that mutual information captures the model’s confidence in its output, it
demonstrates that the SCNN-MCD approach provided more reliable outputs on dataset 2b
over dataset 2a.
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The achieved ACC for certain predictions (Rcc) when using dataset 2a was 80.32%
with an improvement of 2.89% with respect to SCNN-MCD, whereas for dataset 2b, it
reached 78.31% with a marginal improvement of 0.59%.

For non-subject-specific classification, Table 9 shows the results achieved for both
datasets, using confidence level (1− α) at 0.95.

Table 9. The uncertainty metrics (%) obtained by using the SCNN-MCD scheme for non-subject-
specific session to session classification.

Dataset 2a Dataset 2b

Subject UA * Rc Rcc Riu UA UA * Rc Rcc Riu UA

1 80.70 91.59 83.25 21.77 80.52 73.50 94.94 74.72 9.45 73.44
2 60.08 81.25 49.05 22.95 52.18 56.99 92.71 57.49 8.48 56.95
3 83.54 92.67 85.82 23.13 83.48 53.32 92.29 53.55 8.10 53.20
4 65.58 83.68 66.62 25.21 65.16 94.42 99.18 94.77 7.11 94.39
5 63.98 81.13 63.34 27.83 62.86 78.45 95.31 79.74 10.36 78.23
6 57.91 80.97 52.71 23.78 54.62 81.28 95.39 82.71 11.89 81.12
7 72.52 85.12 75.75 27.55 72.32 76.16 96.41 77.09 7.35 76.08
8 81.19 90.85 83.51 25.95 81.12 92.73 98.31 93.43 11.10 92.65
9 79.84 92.01 81.84 21.33 79.83 84.17 96.91 85.17 9.27 84.00

Mean 70.54 86.59 71.32 24.39 70.23 76.77 95.72 77.63 9.24 76.68
* indicates optimal value.

Table 9 shows that the SCNN-MCD approach also presented the highest uncertainty
for dataset 2a, rejecting approximately 14% of its predictions, with a big influence from
subjects A02 (18.75%), A05 (18.87%), and A06 (19.03%). For dataset 2b, it also rejected
approximately 5% of its predictions, which was mainly influenced by subjects B02 (7.29%)
and B03 (7.71%). For dataset 2a, more than 24% of misclassified predictions were considered
as uncertain, and it was lower than 10% on dataset 2b. The accuracy achieved using certain
predictions (Rcc) of dataset 2a was 71.32% with an enhancement of 3.45% compared to
SCNN, while it reached 77.63% with a marginal improvement of 0.86% for dataset 2b. As a
highlight, the subject A03 in dataset 2a presented the best Rcc (above 85%), whereas the
subjects B04 and B08 in dataset 2b achieved Rcc higher than 93%.

The previous analysis was extended to the ensemble model (E-SCNN-MCD), and
the results are shown in Tables 10 and 11 (for subject-specific and non-subject-specific
classification, respectively), using both datasets and confidence level (1− α) at 0.95.
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Table 10. The uncertainty metrics (%) obtained by using the E-SCNN-MCD scheme for subject-
specific session to session classification.

Dataset 2a Dataset 2b

Subjects UA * Rc Rcc Riu UA UA * Rc Rcc Riu UA

1 87.68 98.80 87.96 5.06 87.54 75.19 98.86 75.25 2.43 75.00
2 65.28 95.34 62.25 7.95 62.46 54.61 98.29 54.38 1.89 54.31
3 93.75 99.62 93.80 3.61 93.68 53.32 98.16 53.29 1.76 53.13
4 81.33 97.42 81.94 7.75 81.30 96.25 99.80 96.29 2.23 96.18
5 78.97 97.76 79.23 5.85 78.72 88.17 99.57 88.23 2.15 88.11
6 64.86 95.61 63.79 6.55 63.41 84.16 99.07 84.39 2.81 84.05
7 94.32 99.37 94.51 5.71 94.25 81.04 99.09 80.87 2.33 80.59
8 85.29 98.50 85.33 6.02 84.98 90.00 99.45 89.62 2.85 89.42
9 84.03 98.60 81.54 4.32 81.22 86.40 99.18 86.66 2.98 86.36

Mean 81.36 97.89 81.15 5.87 80.84 78.64 99.05 78.78 2.38 78.57
* indicates optimal value.

Table 11. The uncertainty metrics (%) obtained by using the E-SCNN-MCD scheme for non-subject-
specific session to session classification.

Dataset 2a Dataset 2b

Subjects UA * Rc Rcc Riu UA UA * Rc Rcc Riu UA

1 82.34 98.04 81.71 5.74 81.20 75.54 98.74 75.16 2.62 74.87
2 52.08 95.74 48.02 5.45 48.84 58.68 97.62 58.81 2.69 58.52
3 85.15 98.84 84.45 4.75 84.24 54.55 98.01 54.39 2.09 54.26
4 69.04 96.16 66.11 7.19 66.09 95.11 99.76 95.05 2.16 94.93
5 65.94 96.67 62.85 5.37 62.80 80.91 98.81 81.25 2.94 80.84
6 56.72 96.33 52.68 4.73 53.01 84.21 98.90 84.52 3.62 84.17
7 75.33 97.59 75.91 4.99 75.31 77.30 98.98 77.43 2.38 77.18
8 81.57 98.14 81.71 6.19 81.38 93.91 99.67 94.04 2.84 93.90
9 82.09 98.53 81.07 4.62 80.78 85.32 99.24 85.25 2.58 84.99

Mean 72.16 97.34 70.50 5.45 70.41 78.27 98.86 78.43 2.66 78.19
* indicates optimal value.

As expected, E-SCNN-MCD obtained predictions of highest certainty, being 97.89%
and 99.05% on datasets 2a and 2b, respectively, when applying subject-specific classification.
When comparing the results in Tables 8 and 10, we observed that UA values improved by
using the E-SCNN-MCD approach compared to SCNN-MCD. This improvement occurred
despite the fact that there was a decrease in the number of uncertain incorrect predictions as
is reflected in a decrease in Riu. However, this decrease was compensated by a substantial
increase in the number of correct certain predictions, which were expressed in the Rcc
indicator.

Figure 9 shows the bivariate distribution of predictions by applying both mutual
information and margin of confidence for Subject A05, using the SCNN-MCD and E-SCNN-
MCD approaches. The mutual information decreased using E-SCNN-MCD, compared
with respect to SCNN-MCD, although it was without substantial changes for the margin
of confidence. It is worth mentioning that this effect also occurred for all subjects in both
datasets.
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Similar behavior can be observed in Table 11 when applying non-subject-specific
classification.

4. Conclusions

The advantages of applying the MCD method to enhance the performance of MI-based
BCI schemes using deep neural network models have been proved in this study. Here,
this approach was applied with the Shallow Convolutional Neural Network architecture,
and an ensemble model, in order to validate its potential to improve subject-specific and
non-subject specific MI classification and provide uncertainty estimation and consequently
increase the reliability of BCIs. A threshold approach using uncertainty measures was also
introduced here and applied on both SCNN-MCD and E-SCNN-MCD models to refuse
automatically EEG trials that produce predictions of high uncertainty, obtaining lower error
rates during MI classification. This proposed threshold does not require prior knowledge
of the data, as it depends exclusively on the predictive distribution. In addition, it reaches
its value near the expected optimum value for different MI datasets, using a confidence
level at 0.95. Then, due to its statistical base, the selected threshold can be extended to other
datasets. In future work, the proposed threshold including other uncertainty metrics can
be explored to reject better EEG data that produce bad classified predictions. For clinical
translation, this research has enormous potential due to the EEG variability, mainly in
people with severe motor impairments, who increase the uncertainty of BCI predictions.
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