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Abstract: Positron emission tomography (PET) can provide functional images and identify abnormal
metabolic regions of the whole-body to effectively detect tumor presence and distribution. The
filtered back-projection (FBP) algorithm is one of the most common images reconstruction methods.
However, it will generate strike artifacts on the reconstructed image and affect the clinical diagnosis of
lesions. Past studies have shown reduction in strike artifacts and improvement in quality of images by
two-dimensional morphological structure operators (2D-MSO). The morphological structure method
merely processes the noise distribution of 2D space and never considers the noise distribution of 3D
space. This study was designed to develop three-dimensional-morphological structure operators
(3D MSO) for nuclear medicine imaging and effectively eliminating strike artifacts without reducing
image quality. A parallel operation was also used to calculate the minimum background standard
deviation of the images for three-dimensional morphological structure operators with the optimal
response curve (3D-MSO/ORC). As a result of Jaszczak phantom and rat verification, 3D-MSO/ORC
showed better denoising performance and image quality than the 2D-MSO method. Thus, 3D
MSO/ORC with a 3 × 3 × 3 mask can reduce noise efficiently and provide stability in FBP images.

Keywords: PET; FBP; strike artifacts; MSO; ORC

1. Introduction

Positron emission tomography (PET) can provide functional images and identify
abnormal metabolic regions of the whole body that effectively detect the presence and
distribution of tumors. Because of the use of different radioactive tracers, factors associated
with nuclear medicine imaging, including the physical characteristics of photons, data
acquisition settings, or reconstruction algorithms that generate artifact noise in images, can
easily interfere with the image quality [1–7]. Common noise models in PET scans include
Gaussian, Poisson, and mixed noise. The generation of these noises will affect image
capture, scan time, correction methods, and image reconstruction methods, thus affecting
image quality. The filtered back-projection (FBP) algorithm is one of the most common
methods for image reconstruction [8–10] and is characterized by the rapid collection
of high-contrast reconstructed PET images with fewer photon counts and in a shorter

Sensors 2021, 21, 7228. https://doi.org/10.3390/s21217228 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3808-9998
https://orcid.org/0000-0002-3348-4422
https://doi.org/10.3390/s21217228
https://doi.org/10.3390/s21217228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217228
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217228?type=check_update&version=1


Sensors 2021, 21, 7228 2 of 16

time [11–15]. However, due to the limited number of projections in the algorithm, strike
artifacts are easily produced [16], which affects the results of nuclear medical examinations
and diagnoses.

Shih et al., who used 99mTC-TRODAT-1 to examine Parkinson disease (PD) in 1999,
demonstrated the importance of effectively reducing background noise for clinical diag-
nosis [17]. Previous studies have shown that it is possible to remove strike artifacts using
interpolation of projections by contouring, but it is challenging to select an interpolated
value. For instance, methods such as the Brushlet, Wavelet, and Curvelet transformation
can be used to remove strike artifacts from PET images; however, caution should be applied
when selecting a threshold [18–21].

In 2014, Chen et al. used a morphological structure operation to effectively reduce
strike artifacts in the FBP nuclear medicine image of the Deluxe Jaszczak phantom and
employed the median Gaussian filter and various morphological structure operators (MSO;
2 × 2, 3× 3, and 4× 4) to reduce imaging noise [22]. Their findings clearly showed that the
3× 3 MSO could produce images with a lower standard deviation of the image background,
i.e., reducing image noise in the image background. According to the study by Chen et al.,
the use of MSO can provide noise removal of different angles and effectively remove back-
ground noise in each nuclear medicine image. However, during denoising, only a single
image can be processed each time, and this process is quite time-consuming. Consequently,
further investigations are needed to evaluate the feasibility of three-dimensional MSO.

Zhang et al. had published research about patch-based regularization and dictionary
learning (DL) with computer simulation in 2019. The AD-based method was designed to
balance between noise and quality of images. However, it is difficult to reduce noise and
keep or improve quality of images due to encounter the low SNR of images or low count
rates [23,24]. Meanwhile, Seo et al. proposed a new method, block sequential regularized
expectation maximization (BSREM), to enhance the quality of images and accuracy of
qualification as per occurred in low-count rates of PET scanning. In particular, the main
arduous task is adjusting regularization parameter [25]. Moreover, Tatsumi et al. was
mentioned regarding a Bayesian penalized likelihood method (BPL) to promote the gray
levels of image as per low count rates condition. However, the small lesions usually affected
the quantitative examination of PET images [26]. Moreover, the convolutional neural
network (CNN) methods were incorporated with quantitative study under the conditions
between low dose and sparse matrix on CT images. The experimental results were shown
and were demonstrated to be able to improve the quality of noise images [27]. Regardless
of the successfulness obtained by CNNs on CT images, the accuracy of quantitation in PET
images is still to be confirmed [28,29].

This study was designed to use 2D/3D-MSO to eliminate strike artifacts in FBP-
reconstructed PET images. Previous studies have shown that FBP can reconstruct images
with higher contrast and a lower photon count in a shorter time. However, noise such
as strike artifacts can be easily introduced into the images during reconstruction due
to inadequate projection angles. These artifacts may affect the accuracy of the clinical
diagnosis. Therefore, this work was anticipated to establish a complete 2D/3D-MSO
denoising method that effectively reduces noise while maintaining better image quality.

2. Materials and Methods
2.1. Materials

In this study, the Deluxe Jaszczak phantom and rats were used for tomography,
and the reconstructed images were obtained using the FBP algorithm. Additionally, the
reconstructed images of the Deluxe Jaszczak phantom and rats were used to evaluate the
background denoising, image resolution, and image quality merits after noise processing.

After the Deluxe Jaszczak phantom was injected with 74 MBq of 18F-Fluorine, it
was scanned continuously for 20 min using a Siemens Biograph 6 PET-CT with a field of
700 mm (Figure 1). The Deluxe Jaszczak phantom image sizes were 168 × 168 and 65 slices
that the total pixel sizes were 168 × 168 × 65.
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Figure 2. FBP images of the rats that were scanned using MicroPET R4 on the 1st (a) and 32nd (b) 
slices. 

2.2. Tomography Equipment and Settings 
The Siemens Biograph 6 PET-CT was used to scan the Deluxe Jaszczak phantom with 

the following settings: field of view (FOV) 700 mm, span size 11, maximum ring difference 

Figure 1. FBP images of the Deluxe Jaszczak phantom that was scanned continuously for 20 min
with 74 MBq of 18F-Fluorine on the 1st (a) and 32nd (b) slices.

The rats (Figure 2) were scanned using MicroPET R4 with a field of 63 mm. The images
of the Deluxe Jaszczak phantom and rats were reconstructed using the FBP algorithm. The
rat image sizes were 256 × 256 and 63 slices, and the total pixel sizes were 256 × 256 × 63.
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Figure 2. FBP images of the rats that were scanned using MicroPET R4 on the 1st (a) and 32nd
(b) slices.

2.2. Tomography Equipment and Settings

The Siemens Biograph 6 PET-CT was used to scan the Deluxe Jaszczak phantom with
the following settings: field of view (FOV) 700 mm, span size 11, maximum ring difference
27, attenuation correction by computed tomography (CT), single-scatter simulation algo-
rithm in Siemens software, delayed time window count for random correction, and FBP
combined with Gaussian filters for image reconstruction.

The settings used for MicroPET R4 for rat tomography were as follows: FOV 63 mm,
span size 3, maximum ring difference 31, attenuation correction by point source, no scatter
correction, random correction by delayed time window count, image reconstruction using
FBP, the number of projections 84, and the number of transaxial angles 96.

2.3. Research Flowchart and Experimental Design

The flowchart of this study is shown in Figure 3. The two-dimensional axial imaging
method was used to run the two-dimensional MSO in each FBP nuclear medicine image
of the Deluxe Jaszczak phantom and to identify the operator combined with the lowest
background standard deviation. After identifying five combinations with the lowest
background standard deviations, we used these five MSO combinations to perform noise
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processing on two-dimensional FBP images, and the output data were averaged. Finally,
the standard deviation (STD), full width at half maximum (FWHM), and signal-to-noise
ratio (SNR) were used to evaluate denoising and image quality after noise processing.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16 
 

 

27, attenuation correction by computed tomography (CT), single-scatter simulation algo-
rithm in Siemens software, delayed time window count for random correction, and FBP 
combined with Gaussian filters for image reconstruction. 

The settings used for MicroPET R4 for rat tomography were as follows: FOV 63 mm, 
span size 3, maximum ring difference 31, attenuation correction by point source, no scatter 
correction, random correction by delayed time window count, image reconstruction using 
FBP, the number of projections 84, and the number of transaxial angles 96. 

2.3. Research Flowchart and Experimental Design 
The flowchart of this study is shown in Figure 3. The two-dimensional axial imaging 

method was used to run the two-dimensional MSO in each FBP nuclear medicine image 
of the Deluxe Jaszczak phantom and to identify the operator combined with the lowest 
background standard deviation. After identifying five combinations with the lowest back-
ground standard deviations, we used these five MSO combinations to perform noise pro-
cessing on two-dimensional FBP images, and the output data were averaged. Finally, the 
standard deviation (STD), full width at half maximum (FWHM), and signal-to-noise ratio 
(SNR) were used to evaluate denoising and image quality after noise processing. 

In addition, when 3D-MSO was used to process the FBP nuclear medicine images 
with the Deluxe Jaszczak phantom, a large number of operator combinations (for instance, 
morphological structural operator combinations of 3 × 3 × 3 had 227, i.e., 134,217,728, com-
binations) required an extremely long duration when the operation was performed for 
each image. Therefore, the optimal response curve (ORC) was used to reduce the number of 
large datasets to 200 or less, and then 3D-MSO was used to identify the operator combinations 
with the lowest background noise for the images. After distinguishing five combinations with 
the lowest background standard deviations, we used the five MSO combinations to perform 
noise processing, and the output data were averaged. Finally, STD, FWHM, and SNR were 
used to evaluate denoising and image quality after noise processing. 

 
Figure 3. Study flow chart. The two-dimensional axial imaging method was used to run. 2D-MSO was used to process the 
FBP Deluxe Jaszczak phantom images with ORC. The two-dimensional axial nuclear medicine images (a). The images that were 
processed by 2D-MSO (b). The images that were processed by 3D-MSO (c). The operator data were defined and optimized by 
the principle of ORC (d). The post-processing images were quantified after three-dimensional MSO with ORC (e). 

Figure 3. Study flow chart. The two-dimensional axial imaging method was used to run. 2D-MSO was used to process
the FBP Deluxe Jaszczak phantom images with ORC. The two-dimensional axial nuclear medicine images (a). The images
that were processed by 2D-MSO (b). The images that were processed by 3D-MSO (c). The operator data were defined and
optimized by the principle of ORC (d). The post-processing images were quantified after three-dimensional MSO with
ORC (e).

In addition, when 3D-MSO was used to process the FBP nuclear medicine images
with the Deluxe Jaszczak phantom, a large number of operator combinations (for instance,
morphological structural operator combinations of 3 × 3 × 3 had 227, i.e., 134,217,728,
combinations) required an extremely long duration when the operation was performed
for each image. Therefore, the optimal response curve (ORC) was used to reduce the
number of large datasets to 200 or less, and then 3D-MSO was used to identify the operator
combinations with the lowest background noise for the images. After distinguishing five
combinations with the lowest background standard deviations, we used the five MSO
combinations to perform noise processing, and the output data were averaged. Finally,
STD, FWHM, and SNR were used to evaluate denoising and image quality after noise
processing.

2.4. Morphological Structure Operation

The purpose of applying the morphological structure operation to nuclear medicine
images reconstructed by the FBP algorithm was to remove strike artifacts. Simultaneously,
a parallel operation was used to identify the best MSO combinations quickly. The formula
is provided in Equations (1) and (2).

A2D =
(
aij
)
=


(

a11 a12

a21 a22

)
or


a11 a12

a21 a22

a31 a32

 or

(
a11 a12 a13

a21 a22 a23

)
or


a11 a12 a13

a21 a22 a23

a31 a32 a33


 (1)
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A3D =
(
aij
)
=

 a11 a12

a21 a22

,

 a11 a12

a21 a22

 or . . . or


a11 a12 a13

a21 a22 a23

a31 a32 a33

,


a11 a12 a13

a21 a22 a23

a31 a32 a33

,


a11 a12 a13

a21 a22 a23

a31 a32 a33




(2)

where aij is a value between 0 or 1 in column i at row j, where 0 represents the denoising
structure, and 1 represents the structure of the reserved signals. The sizes of the two-
dimensional morphological structures used in this study were 2 × 2, 2 × 3, 3 × 2, and
3 × 3, and the number of operator combinations were 24 (16), 26 (64), 26 (64), and 29 (512).
The sizes of the three-dimensional MSOs used were 2 × 2 × 2, 2 × 3 × 2, 3 × 2 × 2, 3 × 3
× 2, 2 × 2 × 3, 2 × 3 × 3, 3 × 2 × 3, and 3 × 3 × 3. The number of operator combinations
were 28 (256), 212 (4096), 212 (4096), 218 (262,144), 212 (4096), 218 (262,144), 218 (262,144), and
227 (134,217,728). The principle of matrix convolution was used to perform the operation in
the morphological structure matrix. Convolution is a mathematical operation that produces
a third function by using two functions, f (t) and g(t), i.e., it represents the product of the
function f (t) and the flipping and translating function g(t). The area enclosed by the curve
is defined as Equation (3).

( f × g)(t) def
=
∫

Rn
f (x) g(t− x)dx (3)

Functions f (t) and g(t) can be measured on Rn, t ∈ (−∞, ∞). When f (t) is convoluted
with g(t), it is denoted as f × g, which represents the integral of the product of a flipping
and translating function with another function. Therefore, Xinput is an input of the FBP
nuclear medicine image and Bm is an image obtained by an Am morphological structure
matrix operation, as shown in Equation (4), where m is the number of combinations.

Bm = Xinput·Am, m = 1, 2, . . . , 2L (4)

The two-dimensional and three-dimensional morphological matrix operations on FBP
nuclear medicine images were performed, and the image background denoising merits,
image quality, and operation time were compared. The three-dimensional MSO with more
de-structured phases was expected to provide a quality image with reduced background
noise (i.e., strike artifacts) compared with the two-dimensional MSO.

2.5. Optimal Response Curve

This method is based on the concept of an optimal smooth response function. Several
functions are similar and correspond to the best response curves (Figure 4). Many functions
of the smooth best response curve can be calculated by the interpolation method to obtain
the best standard response curve. The definition of response curve is shown as Equation (5).

Response Curve =
e

E(xi)
γ

e
E(xi)

γ + e
E(xi−1)

γ

, i = 1, 2, 3, 4. (5)

where E(x) is the predicted response behavior of x, and γ is a parameter value of the
function that deviates from the parameter value of the true best response function. A larger
γ value also indicates a larger deviation from the actual best response function.
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Therefore, peaks exist in the curve of the exponential function and quadratic function,
and the definition can be used to calculate the best result. The number of MSO combinations
is an exponential function (such as 29 and 227), and therefore, the optimal response curve
is used to reduce the number of combinations during the operation and identify the
contributing operator combination. As shown in Figure 4, the data for a curve are assumed
to be large and ranges from X1 to X4. The sequential calculation is time-consuming.
Therefore, the best response curve can be used to reduce the amount of and effectively
screen the data. One hundred data points were selected between X1 and X4, with each
point corresponding to a functional value representing the image background standard
deviation. The background standard deviation was calculated for each of the 100 data
points to determine the two data points with the lowest values, namely, X2 and X3. By
repeating this method, the background standard deviation was calculated for each of the
100 data points between X2 and X3 to identify another two data points with the lowest
values. After the method was repeated several times, the amount of data was reduced
to 200 pairs, which is the minimum value required for the study, and the morphological
structure operation was then performed.

The morphological structure operation and optimal response curve can effectively
identify contributing data and reduce the computation time during the process. Thus,
the time-consuming 3D-MSO can remove the background noise on FBP nuclear medicine
images over a shorter processing time and simultaneously improve the image quality.

2.6. Image Background Value

The noise assessment was performed by using the region of interest (ROI) to select
images of the Deluxe Jaszczak phantom and rat (Figure 5) and calculate their background
standard deviation to assess image background denoising merits after MSO noise process-
ing. A smaller standard deviation of the background in operation was associated with less
background noise, indicating a better MSO denoising effect. The standard deviation of the
image background was calculated as shown in Figure 5 (yellow region).

NB = ∑x ∑y δ(x, y), δ(x, y) =
{

1, i f (x, y) outside o f ROI
0, elsewhere

(6)

µm_B =
1

NB
∑
x

∑
y

∑
i

∑
j

Am(i, j)I(x− i, y− j) (7)

STDm_B =

√
1

NB
∑x ∑y ∑i ∑j[Am(i, j)I(x− i, y− j)− µm_BV]2 (8)
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Mean STDm_B =
1
S ∑S

1

√
1

NB
∑x ∑y ∑i ∑j[Am(i, j)I(x− i, y− j)− µm_B]

2 (9)

where NB is the total number of background pixels outside the ROI in the NxN image, as
shown in Equation (6); δ(x, y) is the position of the pixel in the image; I(x − i, y − j) is an im-
age background pixel value; Am(i, j) is the average pixel value of the MSO-processed image
background in the nxn morphological structure matrix and µm_B, as shown in Equation (7);
STDm_B is the image background standard deviation after MSO processing, as shown in
Equation (8); Mean STDm_B is the mean standard deviation of the image background after
MSO processing; and S is the number of scan slices, as shown in Equation (9).
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Figure 5. ROI method to determine the background of Deluxe Jaszczak phantom (a) and rat image
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after MSO noise processing.

2.7. Signal-to-Noise Ratio (SNR)

The ROI was used to select the Deluxe Jaszczak phantom and Harrington glands,
sublingual glands, and brain of rats (Figure 6), and the SNRs of the ROIs were calculated to
evaluate the image quality merits after MSO processing. A more substantial SNR value dur-
ing the calculation was associated with a larger signal-noise-ratio, indicating better signals
and less noise after MSO processing. The SNR formula is as follows (Equations (10)–(13)):

NR = ∑x ∑y δ(x, y), δ(x, y) =
{

1, i f (x, y) inside o f ROI
0, elsewhere

(10)

µm_R =
1

NR
∑x ∑y ∑i ∑j Am(i, j)I(x− i, y− j) (11)

STDm_R =

√
1

NR
∑x ∑y ∑i ∑j[Am(i, j)I(x− i, y− j)− µm_R]

2 (12)

SNRR =
µm_R

STDm_R
(13)

where NR is the total number of ROI pixels in the N × N image, as shown in Equation (10);
δ(x, y) is the position of the pixel in the image; I(x − i, y − j) is the pixel value of the image
ROI; Am(i, j) is the average pixel value of the MSO-processed image background in the
N × N morphological structure matrix and µm_R, as shown in Equation (11); STDm_R is
the standard deviation of the ROI image after MSO processing, as shown in Equation (12);
and SNRR is the signal-to-noise ratio of the ROI image after MSO processing, as shown in
Equation (13).
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Figure 6. ROI selection of the (a) Deluxe Jaszczak phantom and (b) Harrington gland, sublingual gland, and (c) brain of
rats; the SNRs of the ROIs were calculated to evaluate the image quality after MSO processing.

2.8. Image Resolution

Image resolution refers to the ability of a display system or measurement method to
distinguish details. This concept applies to time and spatial fields. The commonly used
resolution is used for image clarity, and a higher resolution indicates that more detail can
be visualized, i.e., better image quality can be obtained. The FWHM (full width at half
maximum) is often used to assess the degree of image resolution.

This study used this method to calculate the FWHM of the Deluxe Jaszczak phantom
image (Figure 7a–d). Total aperture of line-profiles was obtained individually and the
FWHM was calculated. The purpose of this method was to delineate a line profile for
the largest diameter aperture, i.e., the line profile located close to the maximum aperture
diameter of the original object, in order to evaluate the image resolution merits after MSO
processing.

Six line-profiles in the Deluxe Jaszczak phantom image were selected to estimate the
FWHM in comparison with the designed diameter (Figure 7e–j), which were defined from
Line1, Line2, Line3, Line4, Line5, and Line6. The FWHM was evaluated to evaluate and
indicate the resolution after processing by MSO. Meanwhile, the intensities between raw
and after processing by MSO showed similarity.

2.9. Computation Time Calculation

In this study, a unified and specific computer was used for computation time calcula-
tion of MSO processing, as shown in Table 1. In addition, the optimal response curve of
the 3 × 3 MSO was used to reduce the number of combinations before performing MSO
processing. In addition to comparing the differences in MSO computation time when ORC
was not used, the ORC application’s feasibility is also discussed.

Table 1. The computing configurations for calculating MSO operation.

Item Contents

Operating system Windows 64-bit operating system
Central processing unit Intel Core 2 Quad CPU Q6600

Computer memory 2.00 GB
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3. Results

In this study, 2D-and 3D-MSO were used to denoise FBP images of the Deluxe Jaszczak
phantom and rats. The lowest background standard deviations were obtained from 3 × 3
ORC (2D) and 3 × 3 × 3 (3D) MSO, suggesting optimal background denoising merits.

All background standard deviation results were obtained by 2D- and 3D-MSO and
are shown in Table 2. Simultaneously, compared with background noise of raw data,
the Deluxe Jaszczak phantom and rat of the two-dimensional 3 × 3 MSO background
noise were reduced by approximately 85.3% and 33.2%, respectively; the Deluxe Jaszczak
phantom and rats of the three-dimensional 3 × 3 × 3 MSO background noise were re-
duced by approximately 87.1% and 55.3%, respectively. The results showed that both
two-dimensional and three-dimensional MSO processing were effective in removing image
background noise as per measurement by background standard deviations.

Table 2. The Deluxe Jaszczak phantom and a rat of background standard deviations were obtained by 2D- and 3D-MSO
with percentage of reducing noise. The percentage of reducing noise is defined as (Background STD in Raw − Background
STD after MSO)/(Background STD in Raw) × 100%.

MSO Matrix Size Background STD in
Phantom

Background STD in
Rat

Reducing Noise in
Phantom Reducing Noise in Rat

Raw 1 750.59 6.27 - -
2 × 2 238.94 4.91 68.2% 21.7%
2 × 3 174.48 4.64 76.8% 26.0%
3 × 2 171.67 4.65 77.1% 25.8%
3 × 3 110.64 4.19 85.3% 33.2%

3 × 3 ORC 2 110.64 4.19 85.3% 33.2%
2 × 2 × 2 ORC 141.15 3.65 81.2% 41.8%
2 × 3 × 2 ORC 112.15 3.48 85.1% 44.5%
3 × 2 × 2 ORC 104.50 3.50 86.1% 44.2%
3 × 3 × 2 ORC 102.98 3.25 86.3% 48.2%
2 × 2 × 3 ORC 112.53 3.29 85.0% 47.5%
2 × 3 × 3 ORC 98.14 3.03 86.9% 51.7%
3 × 2 × 3 ORC 98.20 3.24 86.9% 48.3%
3 × 3 × 3 ORC 96.69 2.80 87.1% 55.3%

1 Raw data of FBP image without 2D- and 3D-MSO; 2 FBP image with 2D-MSO and ORC.

The SNR (signal to noise ratio) and CR (contrast ratio) were used to evaluate the image
quality and contrast after MSO processing. Compared to the SNR of raw data without MSO
processing, the SNR of the Deluxe Jaszczak phantom and the sublingual gland of the rat
increased by approximately 27.2% and 8.2%, respectively, after two-dimensional 3× 3 MSO
processing, and approximately 28.00% and 12.00%, after three-dimensional 3 × 3 × 3 MSO
processing. All SNR results were obtained by 2D- and 3D-MSO and are shown in Table 3.
Moreover, compared to the CR of raw data without MSO processing, the SNR of the Deluxe
Jaszczak phantom and the sublingual gland of the rat increased by approximately 30.02%
and 4.62%, respectively, after two-dimensional 3 × 3 MSO processing, and approximately
121.93% and 87.94%, respectively, after three-dimensional 3 × 3 × 3 MSO processing. All
SNR results were obtained by 2D- and 3D-MSO and are shown in Table 3.

The FWHM of the six cold spots in Deluxe Jaszczak phantom was used to evaluate
the image resolution (Figure 7). The estimated FWHM of six spots are listed in Table 4.
After 2D MSO processing, the FWHM were 33.33, 25.00, 16.67, 12.50, 12.50, and 8.33 mm.
Simultaneously, after 3D MSO processing, the FWHM were 29.17, 25.00, 18.75, 12.50, 12.50,
and 10.42. The estimated FWHM generated by 2D or 3D MSO was close to the designed
diameters in the Deluxe Jaszczak phantom.
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Table 3. The contrast ratio and signal-to-noise ratio were calculated for Deluxe Jaszczak phantom and rat images and were
processed by 2D- and 3D-MSO. The percentage of increasing quality is defined as (SNR after MSO − SNR in Raw)/(SNR in
Raw) × 100%. The CR is defined as (Mean intensity of Region in Phantom or rat)/(Mean intensity of background in Phantom
or rat). The percentage of increasing contrast is defined as (CR in Region − CR in Background)/(CR in Background) × 100%.

MSO Matrix Size CR/SNR in Phantom CR/SNR in Rat
Increasing

Contrast/Quality in
Phantom

Increasing
Contrast/Quality in

Rat

Raw 1 263.44/4.53 174.64/14.21 - -
2 × 2 66.94/5.19 157.81/14.53 −74.59%/14.6% −9.64%/2.3%
2 × 3 110.81/5.41 165.53/15.00 −57.94%/19.4% −5.22%/5.6%
3 × 2 113.30/5.41 165.25/14.81 −56.99%/19.4% −5.38%/4.2%
3 × 3 342.52/5.76 182.70/15.38 30.02%/27.2% 4.62%/8.2%

3 × 3 ORC 2 342.52/5.76 182.70/15.38 30.02%/27.2% 4.62%/8.2%
2 × 2 × 2 ORC 179.32/5.51 209.00/15.39 −31.93%/21.6% 19.67%/8.3%
2 × 3 × 2 ORC 320.34/5.68 221.07/15.84 21.60%/25.4% 26.59%/11.5%
3 × 2 × 2 ORC 378.69/5.73 218.28/15.89 43.75%/26.5% 24.99%/11.8%
3 × 3 × 2 ORC 429.41/5.78 240.26/16.51 63.00%/27.6% 37.57%/16.2%
2 × 2 × 3 ORC 284.67/5.55 254.07/15.85 8.06%/22.5% 45.48%/11.5%
2 × 3 × 3 ORC 448.64/5.69 286.22/16.08 70.30%/25.6% 63.89%/13.2%
3 × 2 × 3 ORC 455.88/5.66 251.22/15.67 73.05%/24.9% 43.85%/10.3%
3 × 3 × 3 ORC 584.64/5.80 328.22/15.91 121.93%/28.0% 87.94%/12.0%

1 Raw data of FBP image without 2D- and 3D-MSO; 2 FBP image with 2D-MSO and ORC.

Table 4. The estimated FWHM was compared with reality.

FWHM of
Line#

Aperture Size with/without MSO (mm)

Reality Raw 3 × 3 3 × 3 ORC 3 × 3 × 3 ORC

Line1 31.80 29.17 33.33 33.33 29.17
Line2 25.40 20.83 25.00 25.00 25.00
Line3 19.10 14.58 16.67 16.67 18.75
Line4 15.90 12.50 12.50 12.50 12.50
Line5 12.70 10.42 12.50 12.50 12.50
Line6 9.50 10.42 8.33 8.33 10.42

When 3D-MSO was used for the denoising process, numerous operator combinations
required an extremely long duration and robust computing equipment when the operation
was performed for each image. The 3D-MSO with ORC was used to effectively decrease
computing time and load for general computing machine. The computing configurations
for calculating MSO noise processing time is shown in Table 1, and use of MSO denoising
processing of operation time is shown Table 5. The computational time of MSO processing
was calculated to evaluate the overall benefits. The computational times for the two-
dimensional MSO processing of the Deluxe Jaszczak phantom and rat images were 1925.38
and 3445.90 s, respectively, while those for three-dimensional MSO processing with ORC
were 219.09 and 100.08 s, respectively. The results revealed a shorter computational time for
the three-dimensional MSO. This difference can be explained by using the ORC first to re-
duce the number of combinations followed by MSO processing. Moreover, 29 combinations
and one-by-one noise processing resulted in more prolonged time consumption with the
two-dimensional MSO. Moreover, after the ORC was used to reduce the number of operator
combinations in the two-dimensional MSO, the computational time was clearly reduced
from 1925.38 and 3445.90 s to 603.81 and 953.08 s, respectively. However, the duration was
still longer than that observed for the three-dimensional MSO. This difference is embedded
in the slice-by-slice processing required for the two-dimensional MSO (Figure 8).
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Table 5. The computational time in seconds by 2D- and 3D-MSO operation.

MSO Matrix Size
Processing Time(s)

Deluxe Jaszczak Phantom Rat

2 × 2 37.86 53.73
2 × 3 184.08 288.88
3 × 2 184.29 287.39
3 × 3 1925.38 3445.9

3 × 3 ORC 1 603.81 953.08
2 × 2 × 2 ORC 26.38 25.83
2 × 3 × 2 ORC 33.57 36.95
3 × 2 × 2 ORC 64.36 36.89
3 × 3 × 2 ORC 40.47 172.97
2 × 2 × 3 ORC 34.26 80.10
2 × 3 × 3 ORC 70.87 91.28
3 × 2 × 3 ORC 36.66 91.24
3 × 3 × 3 ORC 219.09 100.08

1 FBP image with 2D-MSO and ORC.
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The results showed that FBP images of the Deluxe Jaszczak phantom and rats pro-
cessed with the three-dimensional MSO had lower image background noise in the vi-
sualization (Figure 9). Meanwhile, the rat images were confirmed without loss medical
information by three senior independent radiologists in hospital.
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Figure 9. Demonstration the input images by MSO ORC operation on the FBP images for the Deluxe
Jaszczak phantom (a) and a rat (e). A post-processing image by a 2D 3 × 3 MSO (b,f) and a 2D MSO
with ORC (c,g). A post-processing image by a 3D 3 × 3 × 3 MSO with ORC (d,h). Notice that (f,g)
were almost the same after 2D MSO with or without ORC in this study.

4. Discussion

The most significant advantage of 3D-MSO is to preserve most diagnostic imaging
information and effectively remove noise from nuclear medicine images. Although MSO
has provided structural operators to remove image noise, such as linear, diamond, circular,
square, and custom geometry, the strike artifacts on FBP images exhibit a 360◦ radiated
shape in the 2D image and a 3D radiated shape in the 3D image. The strike artifacts’
density is related to the center; therefore, a single MSO geometric structure operator cannot
adequately perform denoising. A variety of MSO geometric structure operators are required
to achieve denoising. A significant challenge is the time-consuming process of identifying
a reasonable and practical geometric structure operator (i.e., the evaluation may require
days to weeks of CPU operation time). A possible solution may be to combine the ORC
and parallel arithmetic processing modes and use limited sampling to identify reasonable
operator combinations, quickly determining a reasonable and adequate geometric structure
operator and reducing the CPU operation time.

Table 6 shows the comparisons among published literatures with the presented meth-
ods. Recently, the deep learning methods have been popularly applied to medical and
molecular images to reduce noise [24,25] and enhance quality of images [26–32] including
deep learning methods and generative adversarial networks algorithms (GAN). Mean-
while, the classical methods include patch-based regularization algorithms (PBRA) [24,25]
and Bayesian penalized likelihood reconstruction algorithm (BSREMA) [26], and 2D and
3D MSO with ORC are applied to perform noise reduction with acceptable results.

This study strived to combine the advantages of 2D/3D MSO and ORC to develop a
new algorithm that can effectively process FBP strike artifacts to improve the quality and
resolution of FBP PET images and maintain image contrast. After noise processing, the
image exhibits low noise in the iterative image and further preserves the high contrast
advantage of the FBP image. In the future, PET imaging with a low count rate can be used
to provide a better quality of the reconstructed image. The 2D and 3D MSO operation
might be useful in the reduction of strike artifact in the FBP images.
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Table 6. The comparisons among published literature with the presented methods.

Authors Year Modality Task Method Finding

Gao et al. [23,24] 2020 PET Reduce noise PBRA

It is difficult to reduce noise and
keep or improve quality of

images due to encounter the low
SNR of images or low count rates

Seo et al. [25] 2020 PET Improvement
quality BSREMA

To enhances the quality of images
and accuracy of qualification as

per occurred in low-count rates of
PET scanning

Tatsumi et al. [26] 2021 PET/CT Improvement
quality of image BPLRA

To promote the gray levels of
image as per low count rates

condition

Leuschner et al.
[27] 2021 CT Improvement

quality of image
Deep learning

methods

The experimental results were
shown and demonstrated to be
able to improve the quality of

noise images

Yu et al. [28] 2020 Medical image
synthesis

Reduce noise,
enhance quality

Deep learning
methods, 3D GAN

To promote the quality of image
under low count rates or low dose

Soren et al. [29] 2020
CT, MRI,

PET/MRI,
PET/CT,

Reduce noise,
enhance quality GAN (GANs)

These novel models made a great
impact on the computer vision

field

Podgorsak et al.
[30] 2021 CT CT artifact

correction GANs Improvement of reconstructed
image quality under sparse angles

Koshino et al. [31] 2021
Medical and

molecular
imaging

Reduce noise,
enhance quality GANs

GANs are promising tools for
medical and molecular imaging
for promoted quality of images

Wang et al. [32] 2018 PET Reduce noise,
enhance quality 3D GANs

GANs are promising tools for
improvement quality of image

under low count rates

Presented
Methods 2021 PET Reduce noise,

enhance quality
2D and 3D MSO

with ORC

Demonstrated efficiently perform
denoising processing and

obtained acceptable quality of
images

Notice: PBRA = patch-based regularization algorithm; BSREMA = block sequential regularized expectation maximization algorithm;
BPLRA = Bayesian penalized likelihood reconstruction algorithm; GAN = generative adversarial networks.

5. Conclusions

In this study, 3D-MSO was used to perform noise processing on FBP nuclear medicine
images to effectively reduce background noise and improve image quality. Moreover, com-
bined with the ORC, 3D-MSO could effectively select contributing data and significantly
reduce the computational time without compromising image quality. The contrast and
quality of images were improvement by evaluated the SNR and CR. Meanwhile, according
to the investigation of FWHM of cold spots in the phantom, the geometrical properties
were preserved after processing by MSO.
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