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Abstract: The recent growth of the Internet of Things’ services and applications has increased data
processing and storage requirements. The Edge computing concept aims to leverage the processing
capabilities of the IoT and other devices placed at the edge of the network. One embodiment of
this paradigm is Fog computing, which provides an intermediate and often hierarchical processing
tier between the data sources and the remote Cloud. Among the major benefits of this concept, the
end-to-end latency can be decreased, thus favoring time-sensitive applications. Moreover, the data
traffic at the network core and the Cloud computing workload can be reduced. Combining the Fog
computing paradigm with Complex Event Processing (CEP) and data fusion techniques has excellent
potential for generating valuable knowledge and aiding decision-making processes in the Internet of
Things’ systems. In this context, we propose a multi-tier complex event processing approach (sensor
node, Fog, and Cloud) that promotes fast decision making and is based on information with 98%
accuracy. The experiments show a reduction of 77% in the average time of sending messages in the
network. In addition, we achieved a reduction of 82% in data traffic.

Keywords: Internet of Things; Fog computing; complex event processing

1. Introduction

According to [1], the Internet of Things (IoT) environment is composed of physical
and virtual entities where physical entities turn into virtual things inside a cyber-world.
These things are embedded with different abilities such as sensing, analyzing, processing,
and self-management capacities. By adopting interoperable communication protocols,
these smart things should have unique identities and virtual personalities. The recent
growth of Internet services and applications has contributed to increasing data processing
and storage requirements. Such requirements are diverse in terms of the required resources
by different applications, thus calling for customized solutions.

Edge computing recently emerged to overcome some drawbacks of using Cloud
computing as a back-end platform for IoT. Such drawbacks include its unpredictable
latency, lack of location awareness and user mobility [2]. The Edge computing concept
aims to leverage the processing capabilities of IoT devices by using gateways, base stations,
and other Edge devices, providing an intermediate tier between the end-devices (data
producers/consumers) and the remote Cloud. The presence of Edge devices enables the
local processing of requests, reducing the Cloud computing workload and application
response time.

The Edge computing paradigm has been applied to several emerging scenarios and
adopted by IoT applications that are time-critical and have sensitive data (in terms of
privacy). One embodiment of this paradigm is Fog computing. Fog computing denotes a
decentralized computing infrastructure consisting of processing nodes placed anywhere on
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the continuum between the end-devices and the Cloud. According to [3], Fog is a “cloud
closest to the ground”. It extends the traditional Cloud computing architecture to the edge
of the network, enabling the processing and analyzing of some data at that tier. The Fog
architecture is generally composed of at least three tiers. The low tier consists of IoT devices
that collect, pre-process and forward data to the Fog nodes. The middle tier comprises Fog
nodes (with a higher processing power than the IoT devices) that perform data processing,
decision making, and actuation. The Cloud stores information and processes data that Fog
nodes did not have enough computing resources to process in the upper tier.

Fog computing bridges the gap between the Cloud and end-devices (e.g., IoT nodes)
by enabling computing, storage, networking, and data management on network nodes
within the close vicinity of IoT devices. Consequently, computation, storage, networking,
decision making, and data management occur not only in the Cloud but also along the
IoT-to-Cloud path as data traverses to the Cloud (preferably close to the IoT devices) [4].
One of the main differences between Cloud and Fog computing concerns the scale of
hardware components associated with these computing paradigms. Cloud computing
provides highly available computing resources at relatively high power consumption,
whereas Fog computing provides moderate availability of computing resources at lower
power consumption [5].

To perform raw data processing in the Fog and Cloud tier some techniques can be
applied aiming to extract meaningful information, thus generating knowledge. In addition,
other techniques are often used to perform pre-processing functions, with different goals,
such as spurious data filtering and dimensional reduction. Data pre-processing techniques
can help improve the quality of the data produced while reducing the use of resources
in processing tasks. A widely adopted technique in both the steps of sensor data pre-
processing and processing is data fusion. Data fusion [6] can be understood as a process of
aggregating and combining data from multiple sources to prevent redundancy and reduce
the response time. It can also improve data accuracy by using data from various sources to
compose complete information. In addition to data fusion, complex event processing (CEP)
techniques also contribute to improving the information generated by sensors. CEP goes
beyond simple data query and transformation and aims to detect patterns in the data using
filtering techniques, correlation, and creating new, composite events from simple ones.

In this context, this work proposes a multi-tier approach for complex event processing
in Fog-based IoT systems. Our approach aims to process events based on sensing data
with low response time and high accuracy. One of the goals of our proposal is to reduce
the number of messages exchanged between the sensed area and the Cloud. The main idea
is to identify a simple event that triggers the complex event processing, aiming to identify
the nodes related to the event and extract the characteristics of the sensed location. In this
way, information is processed in different tiers, according to the capacity of each device,
optimizing the use of computational resources and decreasing the average response time,
both between the sensor and the Fog tier and between the Fog tier and the Cloud. The data
are collected, managed, and processed according to the application requirements and in
a decentralized way. Different tiers are responsible for the collection, analysis, decision
making, and support of IoT systems. Aiming to harness the intrinsic capabilities of the Fog
computing environment, this approach also explores the typical concept of the geolocation
Fog enhanced with an information context to consolidate the data in the Fog nodes. Sensor
nodes are selected and orchestrated using their distance to the Fog node and the type of
sensed data. So, our geographical distributed and context-aware approach can help to
improve low latency and consistent data access.

The main contribution of this work is the proposal of a hierarchical approach of
a complex event processing (CEP) mechanism aiming to (i) reduce data exchange and
response time and (ii) increase information accuracy to make timely decisions and support
a complete data processing workflow for smart agriculture applications.

Thus, among the advantages of our CEP approach in three tiers, we can cite:
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• The CEP mechanisms distributed in the network are capable of load balancing with
less processing power, generating complex events, and processing them in tiers with
greater processing power;

• A new CEP mechanism can be implemented in the event of an increase in data volume,
changing only the tier of the hierarchy in question;

• Network traffic to transfer information between tiers can be significantly reduced,
sending only the data necessary for processing events at the appropriate tiers.

We simulated scenarios in precision agriculture to evaluate the proposed approach. It
was tailored to the requirements of IoT applications from the smart agriculture domain.
The experiments show a reduction of 77% in the average time of sending messages in
the network and 82% of improvement in the throughput using the proposed approach
compared to systems without our proposal. Additionally, tests were conducted to validate
the proposed complex event processing engine.

This paper is organized as follows. Section 2 presents and discusses the related work.
The proposed approach is presented in Section 3, and Section 4 covers the materials and
methods. The results are discussed in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Managing data acquired by a vast array of heterogeneous sensors remains as complex
as the knowledge needed to make a decision on the practices of an agricultural process.
This is mainly due to the fact that processing is required in the various temporal and spatial
dimensions of the acquired data. This task implies that data should become available in
a suitable time window and format to be viewed and stored, but also to feed decision-
making support systems. Managing data and extracting timely information is also quickly
becoming a key issue. In this context, the authors in [7] proposed a universal CEP mech-
anism for IoT monitoring using Edge computing. In addition, a formalized hierarchical
complex event model is created, including raw, simple, and complex events, to reduce the
complexity of event modeling. The model uses complex time and space semantics to define
flexible events through algorithms. The authors in [8] use a hybrid approach, in which
two data processing tiers, the Edge-tier and Cloud-tier, work together to provide effective
IoT data analysis. Specifically, raw data are locally collected at IoT devices. Features are
extracted by performing data fusion techniques in devices with greater processing power
and then sending the result to the Cloud.

The work described in [9] addresses the hierarchical data fusion in IoT networks that
contain Edge devices, network and communication units, and Cloud platforms. Different
data sources are combined at each tier to produce timely and accurate results. The work
presented in [10] proposes utilizing complex event processing and a hierarchical distributed
architecture for enabling data fusion at various levels. To this purpose, their paper intro-
duces complex event processing (CEP) as a potential way of implementing sensor data
fusion in distributed IoT systems. Aiming to leverage local processing capabilities wher-
ever possible, or off-load tasks to Edge/Cloud computing otherwise—thereby paving the
way for a multi-layered, hierarchical data fusion approach, aiming to reduce the network’s
response time and amounts of transferred data. Another work dealing with a large amount
of data is [11], where a new computing paradigm was proposed, designed to process
Big Data in a collaborative Edge (CEE) environment. The work proposed the fusion of
geographically distributed data, creating shared virtual visualizations of the data exposed
to the end-users through interfaces predefined by the data owners.

In [12], the authors proposed and analyzed a CEP-based Fog architecture for real-time
IoT applications that uses a publish–subscribe protocol. A testbed was developed with
low-cost and local resources to verify the suitability of CEP-engines to low-cost comput-
ing resources. To assess the performance, they analyzed the effectiveness and cost of
the proposal in terms of latency and resource usage, respectively. In [13], a weighted
cost model is proposed to minimize IoT applications’ execution time and energy con-
sumption in a computing environment with multiple IoT devices, multiple Fog/Edge
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servers, and Cloud servers. In addition, a new application placement technique based
on the Memetic Algorithm is proposed to make batch application placement decisions
for concurrent IoT applications. Due to the heterogeneity of IoT applications, they also
proposed a lightweight pre-scheduling algorithm to maximize the number of parallel tasks
for concurrent execution.

In [14], the authors proposed a scalable network architecture for monitoring and
controlling agriculture in rural areas. Compared to the existing IoT-based farming solutions,
the proposed solution reduces network latency up to a certain extent. In that paper,
a cross-layer-based channel access and routing solution for sensing and actuating were
proposed. The work of [15] used innovative platform technology to be applied to the Cloud
agriculture platform. Cloud integration can be applied to large-area data collection and
analysis, allowing farmland with limited network information resources to be integrated
and automated. Those improvements, including agricultural monitoring automation, pest
management image analysis, and monitoring can also be used to solve the predicament of
large-area automation construction.

More specifically on precision agriculture, the authors of [16] proposed a framework
designed to provide a complete farming ecosystem. The framework facilitates the sim-
ulation of custom farming scenarios for users, specifically to identify sensor placement,
coverage area, line-of-sight deployment, data gathering through a relay mechanism or
airborne systems, mobility models for mobile nodes, energy models for on-ground sensors
and airborne vehicles, and back-end computing support using Fog computing paradigm.
In [17], the authors proposed a multi-criterion-based resource allocation policy with re-
source reservation to minimize overall delay, processing time, and service level agreement
(SLA) violations. This process considers Fog computing-related characteristics, such as
device heterogeneity, resource constraints, and mobility, as well as dynamic changes in
user requirements. The authors employed multiple objective functions to find appropriate
resources for executing time-sensitive tasks in the Fog environment.

The work of [18] was a review to identify all relevant research on new computing
paradigms with smart agriculture. They also proposed a new architecture model with the
combinations of Cloud–Fog–Edge. Furthermore, the authors analyzed the agricultural
application domains, research approaches, and the applications. Moreover, the survey
discussed the components used in the architecture models and briefly explores the commu-
nication protocols used to interact from one layer to another.

All the studies mentioned above have contributed to improving Fog computing and
CEP performance in different ways. However, their event model has been abstractly
defined, some without hierarchical or specific description mechanisms. Therefore, focusing
on the event model, data fusion, and information quality remain the unsolved technical
issues our CEP approach currently addresses. Furthermore, some experiments were
performed to evaluate our approach performance regarding data traffic, decision quality,
and response time.

In our work, the fusion classification, as described in [19], based on the data type
(redundant, cooperative, and complementary) is used in conjunction with the classification
based on abstraction tiers (low, medium, and high). In addition, the proposal includes the
integration of the CEP technique in the hierarchy of tiers. The CEP technique detects a
significant number of events with low latency [20]. Our approach is described in Section 3.
Advantages of the proposed CEP approach on three tiers can be outlined as follows:

• The CEP mechanisms distributed in the network can improve the information quality
by adding information to the observed data;

• A new CEP mechanism can be implemented in the event of an increase in the volume
of data, changing only the hierarchy tier in question;

• The response time of transferring information between tiers can be significantly reduced.

Table 1 lists the main contributions and differences between the works discussed in
this section.
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Table 1. Related work.

Article Tiers Organization CEP Data Fusion Implementation,
Simulation or None

Cloud, Fog or
None

Our approach 3 Hierarchical Yes Yes Simulated Fog
[7] 2 Hierarchical Yes No Implemented Fog
[8] 2 Hierarchical No Yes Implemented Fog
[9] 3 Hierarchical No Yes Implemented Fog

[10] 2 Distributed Yes Yes Implemented Fog
[11] 2 Collaborative Yes No Implemented Fog
[12] 1 Distributed Yes No Simulated Fog
[13] 1 Distributed Yes No Simulated Fog
[14] 3 Hierarchical No No Implemented Fog
[15] 3 Distributed No No Implemented Fog
[16] 3 Distributed No No Simulated Fog/Edge
[17] 3 Hierarchical No No None Fog
[18] 3 Distributed No No Simulated Fog

3. Multi-Tier Complex Event Processing Approach

Modern IoT systems tend to go beyond the notion of “bottom–up” monitoring. Thus,
sensing devices are not only in charge of collecting raw data and transferring it over
the network. They also implemented a “descendant” feedback communication between
the network tiers (e.g., for decision making based on data). The proposed approach
uses coordination functionality as part of this two-way communication responsible for
communication between the tiers described. More specifically, coordination is a two-way
functionality. On the one hand, the Fog device receives data from lower-tier devices,
collecting and dispatching to processors and data fusion engines at the upper tier if
necessary. On the other hand, the Fog device sends the new processing rules to the lower
tiers according to the changes observed in the data behavior. Thus, the proposed conceptual
approach comprises the implementation and execution tiers of complex event processing
in devices. Figure 1 describes the separation conceptual of tasks at all three tiers. These
tasks have dedicated instances of data fusion (DF) mechanisms: low tier (LDF), medium
tier (MDF), and high tier (HDF) data fusion [9]. The two top tiers include coordination
components (LDF and MDF coordinators), responsible for bidirectional communication
between the lower and upper-tier nodes and managing requests from the lower-tier nodes.

The architecture of our proposal (Figure 1) is composed of three different tiers which
process simple and complex events from several different sources. The low-tier devices
(IoT devices) collect data from the real world (for example, soil moisture and temperature).
A relatively limited fusion technique (a simple aggregation such as simple or weighted
arithmetic averages) was performed at this tier. Then, the result was sent to the medium
tier (Fog node). This aspect reduces the data flow in the sensor tier, the network segment
with less transmission capacity. The Fog node is located close to the IoT devices or along the
communication path to the Cloud nodes. Fog node performs a complementary fusion of all
data received by the sensor nodes using event processing techniques, thus allowing local
decision making regarding the sensed area with low latency. It is essential to highlight that
a Fog node has fewer resources than a Cloud node and just local knowledge, unlike Cloud
nodes. Therefore, a Fog node can apply less sophisticated data fusion algorithms than
those of a Cloud node. However, a Fog node can use more complex algorithms than an IoT
device because it has a broader computational capacity to process and fuse information
and receives a higher amount of data from different sources. Furthermore, if necessary,
the Fog node can also directly act on the sensed area, aiming to reduce latency. Finally,
the Fog node sends the data transformed by the data fusion and CEP methods to the high
tier (Cloud node), which, according to the application, may be responsible for persistently
storing the data and creating global inferences.
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Figure 1. Conceptual architecture for multi-tier hierarchical CEP approach.

Our approach is also composed of geolocation and context-aware sensor nodes. In this
way, when a new sensor node connects to the network, it is associated with a specific Fog
based on its location and context information. For this purpose, the nodes start sending a
broadcast message to the Fog nodes which includes its coordinates (latitude and longitude)
and the type of data collected. If the Fog node is compatible with a datum type, it calculates
the Euclidean distance between them and sends the data to the Cloud node. For better
comprehension, we exemplify a sensor that sends temperature data to only connect to
a Fog node that processes temperature data. The Cloud node checks the Fog with the
lowest distance calculated and returns this information to the corresponding Fog node.
In turn, the Fog node forwards the information to the sensor node. Then, the sensor node
only sends the collected data to the corresponding Fog, so it is processed according to the
approach requests.

Our proposal uses the CEP model of rules presented in [20] and according to the
following mechanisms:

1. A simple event is extracted from the result of the simple fusion of the collected raw
data; the aggregation was performed on a number N of sensor readings;

2. In the Fog tier, a rule mechanism describes the events generated from the received
value. The aggregation performed at the IoT device tier can trigger other different
events based on the obtained result. An example in the agriculture domain would
be a temperature change. If the value has not changed since the last data were sent,
then an event that results in a message being sent should be triggered; if changed,
the calculation of a daily irrigation event should be triggered;

3. The set of simple events is aggregated, generating more complex events, and the Fog
processes the event according to the defined rules;

4. Depending on the event complexity, whenever an event requires a global view, a new
event sends the data to be processed in the Cloud.

According to [21], these four mechanisms can be denominated: data receiver, rule
mechanism, event executor, and event forwarder. We highlight that the processing of
several simple events is complex event processing. Figure 2 exemplifies the multi-tier
CEP mechanism.
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Figure 2. Example of the multi-tier CEP mechanism.

Sensor nodes are associated with a specific Fog node according to their characteristics,
such as location and context. For this connection, when a sensor node is added to the
network, it sends a broadcast message to the Fog nodes, including coordinates’ parameters
(latitude and longitude values) and the type of data collected. If the Fog node is compatible
(same type), it calculates the Euclidean distance between them and sends its calculated
value to the Cloud node. This is necessary because the Cloud is the only tier with a
global knowledge of the network since the Fog nodes do not communicate with each other.
The data compatibility is related to the data type that the Fog can process. For example,
an IoT device sending temperature data will only connect to a Fog node that processes
temperature data. The Cloud node verifies the nearest Fog based on the lowest calculated
distance value and returns this information to the corresponding Fog node. The Fog node,
in turn, forwards this information to the IoT device.

Using the CEP mechanism, we can separate the process of knowledge generation into
partial processing and decision making. Thus, not only processing but network latency was
also reduced. For example, when detecting an “abnormal” temperature, the sensor only
sends the data to the decision-making part, which handles tasks of semantic reasoning,
such as correlating the data received. In general, the CEP technique can be seen as a
method that receives and correlates a set of simple events generating complex events.
Thus, it is responsible for detecting simple events, using a cycle of filtering, correlation,
contextualization, and data analysis from different sources.

3.1. Description of Application Rules and Events: Precision Agriculture

In the agricultural sector, achieving maximum crop yield at minimum cost is a produc-
tion goal. In this context, decision-making is complex, as several factors affect the entire
process, aiming to save water resources, mainly on irrigation.

The study of water in the soil is of great interest to agriculture because it affects the
development and production of crops. A developing plant must supply the atmosphere’s
demand for water through the amount it can extract from the soil. Soil water storage
is reduced by evapotranspiration and replaced by precipitation or irrigation. Thus, soil
water storage and availability in crop production are valuable, and characterizing the
soil properties responsible for water retention is crucial. The soil moisture is estimated
using three tensiometers at different soil depths in each monitoring point, which is used to
estimate the soil matric potential. The matric potential is directly linked to moisture; the
more humid the soil, the greater its potential [22].

Irrigation helps reserve enough water for the crop in its development stage. Its matric
potential is used in irrigation management to determine when to irrigate, the amount of
water, and the type of irrigation. The water distribution is on-demand, i.e., when water
is always available by the irrigation project or pumped by the user and used when the
crop needs.

The irrigation management determines irrigation timing by monitoring the soil ma-
tric potential (ψ) containing the highest concentration of crop roots (usually in the most
superficial soil tier, monitored by the tensiometer). Another way to determine the time to
irrigate is through the critical moisture θcr , also called ideal moisture for irrigation. This
parameter is the soil water content from which the crop yield starts to be reduced, also
having the possibility of evapotranspiration reduction (water consumption by cultivation).
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θcr is only needed for the most superficial soil tier. The evapotranspiration measures the
water consumption by crops, according to the developmental stage of the crop and weather
conditions [22].

Another important variable to be considered in view of the plant’s needs is the
irrigation water need (IWN). The IWN consists of the water provided entirely by irrigation
to compensate for the water loss due to evaporation. It is obtained through a calculation
considering the rainfall, water consumption, soil moisture at the crop root zone and the
efficiency of the irrigation system placed in the field [22].

Similarly to the works in [23,24], we can also detect anomalies in sensor measures
by comparing with measures from nearby sensors, in order to verify whether there was a
sensor error, whether there is any water leakage, or whether, for some reason, the soil is
too dry.

Based on these concepts, we define the rules and events of the case study presented in
the following sections.

3.2. Rules and Events

The rules defined to manage the events are divided into two sets: monitoring rules
and critical state rules. Each rule consists of a set of events that are executed according to
its pattern and transformation primitives. These events are allocated to the tiers according
to the capacity of the devices so that the approach performance is not affected. Thus,
they directly influence the process of decision making by the user and also automatically
according to the system’s behavior.

3.2.1. Monitoring Rules

The first set of events of the monitoring rule are based on the primitives of filtration,
aggregation, and projection. They are performed at the sensor tier. The projection is
responsible for creating complex events (processed in the Fog tier) using a subset of its
attributes, generated by aggregation (average of values obtained by the sensors) and by
filtering (obtaining the maximum and minimum values). The rule of this first set was
composed of the following events:

• EV1 (Simple): low matric potential alert;
• EV2 (Simple): high matric potential alert;
• EV3 (Simple): daily matric potential sending alert + sensor ID.

The second set is formed by simple and compound events based on the primitives of
aggregation, enrichment, and composition performed in the Fog tier. Enrichment is the
conference of the data necessary for calculations. Composition is the computations made
from the data consulted. The events that compose this rule are:

• EV4 (Complex): matric potential variation ;
• EV5 (Complex): daily irrigation water needed (IWN);
• EV6 (Complex): daily irrigation frequency verification.

The outputs of these events are messages displayed and sent to the user.

3.2.2. Critical State Rules

The critical state rule is composed of events based on the primitives of enrichment,
composition, negation and sequence performed at the Fog tier. For the use of the sequence
primitive, an input control is necessary, which can be done through a time window, using a
timestamp, or context, using an event identifier. This rule consists of the following events:

• EV7 (Complex): critical soil moisture (ideal for irrigation);
• EV8 (Complex): maximum water deficit.

These events result in automatic actions in the monitored area.
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3.3. CEP Architecture

The proposed complex events processing (CEP) model is part of the data fusion
mechanism to treat, analyze, and react to data flows as events. Event flows are the primary
sources of input of the CEP model. The events are created through producers (sensors,
users) that provide the data. The flow of events is processed through the CEP event
processing agent, known as EPA. Specifically, the EPA follows the subsequent steps: reacts
to events, analyzes, and manipulates them according to defined rules, and, if necessary,
generates derivative (complex) events for the consumers. The EPA acts according to the
primitives defined in each example, as illustrated in Figures 3 and 4.

Figure 3. CEP architecture and primitives.

Figure 4. CEP primitives CEP according with tiers.

A CEP inference engine allows instantiating the presented concepts. In addition, it
provides operations to define the types of events (schema and payload) and primitives
in real-time to express continuous queries (PAEs) and interconnect them. The inference
engines of the events are shown in Section 3.3.1.

3.3.1. Description of CEP Rules and Events

We show the event inference engine applied to precision agriculture below.
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EV1: Low Matric Potential (ψ)
R1: Matric Potential ≤ 55 kPa

- Send ψ, ID and sensor zone to the Fog tier
- Trigger EV4

EV2: High Matric Potential (ψ)
R2: Matric Potential ≥ 100 kPa

- Send ψ, ID and sensor zone to the Fog tier
- Trigger EV4

EV3: Daily Matric Potential (ψ)
R3: Number of readings (n) = 12

- Average the ψ
- Send the average ψ value and sensor ID to the Fog tier
- In the Fog tier, consult the daily precipitation value
- Store in variable p
- Consult Evapotranspiration value in the Database
- Store in variable Et0
- Trigger EV5

EV4: Matric Potential (ψ) Boundary
R4:If Matric Potential ≤ 55 kPa OR Matric Potential ≥ 100 kPa

R4.1: If Matric Potential ≤ 55 kPa

- See the (ψ) of sensors with different IDs from the one that generated the event in the
same zone

R4.1.1: If 60 kPa < ψ ≤ 100 kPa

- Send message to user to check possible sensor malfunction

R4.1.2: If ψ ≤ 55 kPa

- Trigger EV8

R4.2: If Matric Potential ≥ 100 kPa

- See the (ψ) of sensors with different IDs from the one that generated the event in the
same zone

R4.2.1: If 60 kPa < ψ ≤ 100 kPa

- Send message to user to check possible sensor malfunction

R4.2.2: If ψ ≥ 100 kPa

- Verify the precipitation

R4.2.3: If p = null

- Send message to user to check water leak

EV5: Daily Irrigation Water Needed (IWN)
R5: If R3 was activated

- Calculate IWN
- Send message with IWN to the user
- Trigger EV6

EV6: Irrigation Frequency Definition
R6: If R4 was activated

- Calculate and schedule irrigation time
- Send message with irrigation time to the user

EV7: Critical Soil Moisture Alert
R7: IWN ≤ Critical soil moisture (60kPa)

- Activate zone irrigation
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- Send message to the user

EV8: Maximum Water Deficit
R8: If R4.1.2 was activated

- Activate zone irrigation
- Send message to the user

We performed the auditing as a data processing and decision-making tool to comple-
ment this set of rules and events. The event-processing programming differs from regular
programming and thus needs its own auditing tool. Auditing is the ability to investigate
whether processes have been properly applied. The investigation may refer to whether a
process complies with external regulations or internal policies or whether a decision has
been appropriately made.

3.3.2. Auditing

Given the rules and events presented in Section 3.3.1, we performed the auditing of
the CEP model using a static analysis of the network. The auditing process for a CEP model
is based on the event log, a list that retains the raw and derived events performed in the
given processing. The audit was made based on consultations in this event log. The query
is similar to the dynamic analysis process of the validation process, as it depends on the
amount of information from the execution of a given event.

For the auditing of the CEP model, two primary consultations were performed based
on the concept presented in [25]: (i) consult all antecedents of a given event or activation of
an EPA instance (rule); and (ii) consult all the consequences of a given event or activation
of an EPA instance (rule).

We can observe from these two main consultations that the objective of the audit is
to check the background and consequences of a given processed event, i.e., to check the
background of the finalizing events and the consequences of the initial events. Thus, for the
model applied to the approach proposed in this article, it is necessary to audit the following
events:

• Consult 1: EV4, EV6, EV7, and EV8.
• Consult 2: EV1, EV2, and EV3.

Figures 5–7 present the logs of the consulted events. From the logs, we can verify
that event processing is meeting the application’s needs. Exemplifying the Event 1 log
(Figure 5), the expected performance according to the low matric potential is irrigation
unless a sensor malfunction has occurred. Then, following the processing of event 1, it
ends by triggering event 4 in case the rule is activated. Now, observing the log presented
in Figure 6, we verified that this event ends by exactly meeting the need to trigger event 1:
or ends by sending a message to the user informing of the sensor malfunction, or sending
a message to trigger manual irrigation, or, finally, triggering event 8. Event 10 checks
the activation of the EPA instance, testing the rule, and ends with the triggering of the
automatic irrigation or requesting that the same be done manually, as we can see in the log
of Figure 7.

Figure 5. Log of events 1, 2, and 3.
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Figure 6. Log of event 4.

Figure 7. Logs of events 6, 7, and 8.

Thus, based on any consult executed in the logs presented, the application’s need is
satisfied at the end of the processing—starting from event 2 (Figure 5) and ending at event
4 (Figure 6), etc. In this way, the audit of the CEP model used in the proposed approach
was successfully satisfied.

4. Materials and Methods

This section presents the performed experiments. We divided them into two experi-
mental groups, with different goals. The first group refers to the experiments performed to
analyze the proposal’s performance using the metrics of accuracy, precision, recall, F1-Score,
data traffic, and time to send packages. The second group refers to the implementation
of the rules responsible for controlling the irrigation process, the validation of the soil
moisture management, and the reaction time of the actuators to verify the response time
and the CEP efficiency. Table 2 summarizes the experiments, objectives, and metrics.

Table 2. Experiments.

Experiment Objectives Metrics

I Performance Evaluation Accuracy, Precision, Recall,
F1-Score e Data Traffic

II Implementation Validation
and

CEP Efficiency and Response
Time

Reaction Time
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4.1. Experiment I: Performance Evaluation

This section presents the first performance evaluation, executed to verify the quality
of the decision generated and the performance in terms of data traffic and average sending
time with the application of the CEP approach. Both aspects are critical to assess the
performance of the large-scale deployment of wireless sensors. To create a proof of concept
(PoC) of our proposal, we used a real coconut field of Embrapa Agroindustrial [26] as a
model to simulate an environment for our experiments. The experimental field is located
in Paraipaba-Ce.

Experiment I: Design

Our simulated field consists of 25 coconut trees, in which temperature sensors monitor
fifteen trees, and soil moisture sensors monitor ten trees. In addition, five Fog nodes
communicating with the Cloud were implemented. Furthermore, we simulated two other
scenarios to verify the approach’s scalability by varying the number of nodes as follows:
(i) 50 sensor nodes (25 temperature, 25 soil moisture) and 10 Fog nodes; and (ii) 100 sensor
nodes (50 temperature, 50 soil moisture) and 20 Fog nodes.

We used a discrete event simulator focused on, but not restricted to, Fog environments,
called Yet Another Fog Simulator (YAFS) to run the simulations. YAFS was built to ana-
lyze the application’s design and it incorporates strategies for positioning, programming,
and routing. YAFS has similar characteristics to the iFogSim simulator and uses it as a
reference [27]. According to [28], iFogSim is one of the most widely used Fog simulators for
scenario simulations using Fog and Cloud computing. YAFS includes more functionality
than current simulators for modeling IoT scenarios and is easier to add extensions. We
highlight the following points of YAFS:

• It provides a network vision that allows the modeling of the communication links
among machines, users and end-devices;

• Each workload source represents the connection of a user or an IoT sensor or actuator
that demands a service and can be created, changed or dynamically removed, enabling
the modeling of the user movements in an ecosystem;

• Custom processes can be invoked at runtime to provide flexible implementations of
real events;

• It provides post-simulation data analysis based on two types of events: workload
generation and computation, and link transmissions.

The sensor readings were carried out over a 20-min time frame so that we capture
the hourly average. Every twelve hours, the sensor node performs a simple aggregation
function, calculating the arithmetic mean. Then, each sensor sends the value to its respective
Fog node. Then, the Fog node transforms the received data into information using data
fusion and CEP techniques such as filtering and composing complex events. CEP works
as an inference engine, filtering, correlating, and composing new events based on the
information obtained through the fusion of the data. For example, after consecutive
readings of temperature values greater than 29 ºC, an event is created that exhibits a
temperature alert message on display. Likewise, a new event is created to send an urgent
message to prevent the soil from becoming too dry after displaying five messages without
change in the monitored area (without action).

The sensor nodes have 16 MB RAM, while Fog nodes have 4 GB and Cloud nodes
have 8 GB. These values were chosen to be realistic, closer to the device’s configuration
often used. Thus, each sensor node is connected to a Fog node, while each Fog node is
connected to the Cloud node. For simulation purposes, only one Cloud node was used in
all scenarios. The parameters configured in the experiments performed are summarized in
Table 3.
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Table 3. Experiments.

Experiment Scenario Evaluation

1 25 Sensor Nodes Accuracy, Precision, Recall,
5 Fog Nodes F1-Score and Data Traffic

2 50 Sensor Nodes Scalability
10 Fog Nodes

3 100 Sensor Nodes Scalability
20 Fog Nodes

To better understanding the metrics of quality decisions, the basic knowledge of
each concept is necessary. False positives and false negatives are illustrated utilizing
the confusion matrix, a table indicating the errors and successes of the evaluated model,
comparing them with the expected result. In this matrix, the following values are shown:

• True positive (TP): values that correspond to the positive of the value read; in the case
of the architecture presented, the value must be within the normal temperature range
(up to 29 ºC) and acceptable humidity (greater than or equal to 60 KPa);

• False negative (FN): error in which the model predicted a negative result (that is,
outside the normal temperature range or acceptable soil moisture) when the real value
was within the positive range (described above);

• False positive (FP): error in which the model predicted a positive result when the real
value was within the negative range (that is, temperature > 29 ◦C or soil moisture
< 60 KPa);

• True negative (TN): correct classification of values within the high temperature range
(greater than 29 ◦C) or dry soil (less than 60 KPa) before and after the data fusion
is applied.

When all the terms (TP, FN, FP, and TN) are computed, resulting in the confusion
matrices, it is possible to calculate the following metrics for assessing the quality of the
data: accuracy (Ac); precision (P); recall (R); and F1-Score (F1) using the Equations (1)–(4):

Ac =
TP + TN

TP + FP + TN + FN
(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 = 2 × P × R
P + R

(4)

Regarding these metrics, accuracy provides a general analysis of the model considering
all the data collected; this metric indicates the percentage of data that were correctly
classified. The precision metric provides a percentage of how many positive instances were
correctly ranked, while the Recall metric was used to indicate the relationship between
positive predictions performed correctly and all data that are actually positive. The F1-score
metric indicates the overall behavior of accuracy and recall. If the F1-score is low, it is
understood that one of the two metrics is low. Regarding this last metric, it is important to
highlight the harmonic mean of accuracy and recall. When the values are close, the result
is similar to the arithmetic mean [29].

4.2. Experiment 2: Validation of CEP Model Implementation and Reaction Time

This section presents the implementation of rules directly linked to irrigation control
and the validation of its effectiveness using a program that simulates the sensors and the
soil matric potential values in real time.
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Experiment 2: Design

Figure 8 shows the components implemented for Experiment 2, where sensors and
actuators nodes exchange information with the Fog tier. We used three soil moisture
sensors and an actuator that controls irrigation in the zone in the field. We used Python to
simulate both components, with soil conditions and moisture progression according to the
irrigation state (on or off). The Fog tier comprises two components: a Rabbitmq messaging
server containing two queues (data input and output) and a module dedicated to the data
stream and complex event processing (CEP), which was implemented using Apache Flink
the FlinkCEP library. Communication between the Fog tier and the IoT nodes in the field
was through the MQTT protocol. Rabbitmq was chosen as the messaging service because
the tool provides a native plugin that supports MQTT messages.

Figure 8. Experiment 2: implementation of Fog tier components.

In order to validate the effectiveness of the rules implemented in Apache Flink in
controlling irrigation, we programmed the sensors to send the matric potential values
every minute to the Fog tier. Upon detecting event 9 or 10, the irrigation was turned on. We
used the value of 20 kPa as a reference for the ideal value of matric potential as a trigger to
turn off the irrigation. We obtained this information from experts in the agricultural area.

5. Results
5.1. Experiment I: Results and Discussion

This section presents the results of the performance evaluation experiment concerning
the following metrics: false positives, false negatives, accuracy, precision, recall, F1-Score,
and data traffic. We use three scenarios as described below.

5.1.1. Scenario A: 25 Sensor Nodes, 5 Fog Nodes

From the simulation of scenario A, we generate the confusion matrix, presented in
Table 4. The matrix presents the results regarding VP, FP, FN, and VN from the comparison
of the raw soil moisture data (generated in the sensors) to the final information provided
by our fusion proposal. In total, during the simulations performed, soil moisture sensors
generate 360 readings.

Table 4. Confusion matrix—soil moisture.

Acceptable Moisture Dry Soil

Acceptable Moisture 291 0
True Positive False Positive

Dry Soil 0 69
False Negative True Negative

Table 5 refers to the confusion matrix generated from the 540 temperature data orig-
inated in the sensor nodes. Similar to the soil moisture data, we compared the raw
temperature data to the information generated after applying the techniques. Based on the
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values found in the confusion matrices (Tables 4 and 5), the other metrics were calculated
and shown in Table 6.

Table 5. Confusion matrix—temperature.

Normal Temperature High Temperature

Normal Temperature 429 0
True Positive False Positive

High Temperature 3 108
False Negative True Negative

Table 6. Evaluation metrics—scenario 1.

Soil Moisture Temperature

Accuracy 1 0.994
Precision 1 1

Recall 1 0.993
F1-Score 1 0.993

According to the results, our CEP approach presented 100% accuracy in the soil mois-
ture data and approximately 99% in the temperature data. Accuracy provides information
about how much the false positive influences the information generated: the percentage
of correctness when the soil has a moisture and temperature considered adequate for the
plant, thus preventing the plant from being without its proper irrigation and reducing its
productivity. Thus, the CEP approach presented a precision of 100% for the two observed
data sets. Recall informs how the false-negative has affected the results obtained. In our
scenario, the recall informs the amount of correctness regarding the need to use water.
The approach presented a recall above 99% for the observed data, which prevents the plant
from being unnecessarily irrigated, thus saving water. The F1-Score is a harmonic mean
that verifies the disparity between precision and recall, supplying greater credibility to
the observed values. This metric checks whether the accuracy or recall is well below the
expected value. The CEP approach obtained an F1-score of 99%, thus showing that in all
aspects, our CEP approach provided very coherent information when compared to the raw
values generated by the sensors.

Figure 9 shows the data traffic with and without the Fog tier and the processing
of complex events. It can be seen that the traffic data decreases with the complex data
processing in the Fog tier.

Figure 9. Data traffic—scenario A.
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In the subsequent scenarios, the scalability of the CEP approach is checked for scenar-
ios with a higher density of nodes.

5.1.2. Scenario B: 50 Sensor Nodes, 10 Fog Nodes

In scenario B, 1800 raw data were generated, with 900 for soil moisture and 900 for
temperature. The confusion matrices presented in Tables 7 and 8 were obtained from
comparing the raw data with the final information generated using the proposed approach.

Table 7. Confusion matrix—soil moisture.

Acceptable Soil Moisture Dry Soil

Acceptable Soil Moisture 767 4
True Positive False Positive

Dry Soil 3 126
False Negative True Negative

Table 8. Confusion matrix—temperature.

Normal Temperature High Temperature

Normal Temperature 750 3
True Positive False Positive

High Temperature 4 143
False Negative True Negative

Based on the data from the confusion matrices, we calculated accuracy, precision,
recall, and F1-Score. As shown in Table 9, all parameters remain above 99% when the
network has an average density of nodes. Thus, we can say that the CEP approach remains
reliable when applied to a network with average node density.

Table 9. Evaluation metrics—scenario B.

Soil Moisture Temperature

Accuracy 0.992 0.992
Precision 0.995 0.996

Recall 0.996 0.995
F1-Score 0.995 0.995

Figure 10 shows the data traffic with and without the Fog tier and the processing
of complex events in a higher density scenario. It can be seen that the traffic data also
decreases with the complex data processing in the Fog tier.
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Figure 10. Data traffic—scenario B.

5.1.3. Scenario C: 100 Sensor Nodes, 20 Fog Nodes

The experiment in scenario C verifies the approach’s behavior in a network with a
more significant number of nodes. Thus, to validate the scalability of the proposal, 3600 raw
data were generated: 1800 soil moisture and 1800 temperatures. The confusion matrix
(Table 10) was obtained by collecting the soil moisture on the field using the proposed
approach. The matrix (Table 11) shows the true and false positives and negatives of the
measured temperature collected on the field using CEP and fusion techniques.

Table 10. Confusion matrix—soil moisture.

Acceptable Moisture Dry Soil

Acceptable Moisture 1616 7
True Positive False Positive

Dry Soil 6 171
False Negative True Negative

Table 11. Confusion matrix—temperature.

Normal Temperature High Temperature

Normal Temperature 1604 4
True Positive False Positive

High Temperature 8 184
False Negative True Negative

Based on the data from the confusion matrices (Table 10 and 11), we calculated the
accuracy, precision, recall, and F1-Score. As shown in Table 12, all parameters remain above
99% when the network has a high node density. Thus, we can conclude that the approach
remains reliable when applied to a network with high node density.

Table 12. Evaluation metrics—scenario C.

Soil Moisture Temperature

Accuracy 0.992 0.993
Precision 0.996 0.997

Recall 0.995 0.995
F1-Score 0.995 0.996
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Observing the data traffic in the simulated scenario (Figure 11), it is possible to verify
an average reduction of 82% when compared the use of CEP and fusion techniques to the
flow of the network without the use of the techniques.

Figure 11. Data traffic—scenario C.

Another metric to be analyzed is the average time to send a message to its final
destination. By processing data obtained by the fusion and the processing of events, some
data that would be initially sent to the Cloud are treated and resolved in the previous tiers.
Our results (Figure 12) show that the average message sending time is 77% shorter when
processing is performed in the Fog tier without sending all data to the Cloud.

Figure 12. Average message sending time in the 3 scenarios.

5.2. Experiment 2: Results and Discussion

Figure 13 shows the behavior of the matric potential values during approximately
sixty minutes of simulation. According to Figure 13, we can conclude that the objective of
control in a simulated environment was achieved since the value of the matric potential
remained within the defined limits.



Sensors 2021, 21, 7226 20 of 22

Figure 13. Matric potential (soil moisture) control.

The second part of the experiment evaluated the response time of the irrigation
activation in the actuator node by identifying the event in the CEP engine. The response
time of thirty events was analyzed. Figure 14 shows the test results. The average response
time obtained was approximately 7.15 ms on a local network.

Figure 14. Actuator response time.

6. Conclusions

We presented a multi-tier hierarchical CEP approach in Fog focused on the smart
agriculture domain. Our approach is geolocation and context-aware, in which the new
sensor nodes in a network connect to a Fog node based on the data type and the Euclidean
distance between them. To evaluate the proposal, we performed simulations in different
scenarios with different network densities and configurations. The experiments achieved
promising results, such as accuracy, precision, recall, and F1-Score which were consistently
above 99%. Thus, we can claim that the information obtained using the proposed approach
is reliable and consistent with the reality of the monitored environment. In order to
validate the effectiveness of the CEP engine (rules and events), we conducted tests using
an irrigation scenario and it was successfully completed.

Our results show that the objective of control in a simulated environment was achieved
since the value of the matric potential remains within the defined limits. The second part
of the experiment evaluated the response time of the irrigation activation in the actuator
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node by identifying the event in the CEP engine. The average response time obtained was
approximately 7.15 milliseconds on a local network, showing that the CEP engine meets
the application’s needs.

In future work, we intend to investigate the self-configuration of the nodes regard-
ing the best characteristics to be considered for the choice of the Fog node, such as the
processing power. Another point to be explored in future work is the use of the data stream-
oriented CEP mechanism, which is similar to SQL, instead of rule-oriented modeling.
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