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Abstract: The Internet of Things (IoT) has become quite popular due to advancements in Information
and Communications technologies and has revolutionized the entire research area in Human Activity
Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better
data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to
the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly
persons has gained popularity in modern healthcare applications. Channel State Information (CSI)
as one of the characteristics of WiFi signals, can be utilized to recognize different human activities.
We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities,
and converted CSI data to images and then used these images as inputs of a 2D Convolutional
Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR
outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and
Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.

Keywords: activity recognition; Internet of Things; smart house; deep learning; channel state
information

1. Introduction

The Internet of Things (IoT) is a dynamic global information network consisting of
internet-connected devices [1]. Due to the recent advancements in communication systems
and wireless technology over the last decade, IoT has become a vibrant research field [2].
The concept is straightforward; things or objects are connected to the internet and exchange
data or information with each other over the network. Applications of IoT improve the
quality of life [3]. As one of the main IoT applications, smart houses allow homeowners to
monitor everything, including the health, especially for those with disabilities and elderly
people, by exerting Human Activity Recognition (HAR) techniques [4]. Additionally, the
joint task of HAR and indoor localization can be exerted in smart house automation [4].
A user’s location can change how the IoT devices respond to identical gesture commands.
For instance, users can use the “hand down” signal to reduce the temperature of the air
conditioner, but they can also use the same gesture to lower the television in front of
them [4]. HAR has emerged as one of the most prominent and influential research topics
in several fields, including context awareness [5], fall detection [6], elderly monitoring [7],
and age and gender estimation [8].

HAR techniques can be categorized into three groups: vision-based, sensor-based,
and WiFi-based [7]. Existing sensor-based and vision-based methods for HAR tasks have
achieved acceptable results. However, these methods still have limitations in terms of
environmental requirements. Strictly speaking, camera-based recognition algorithms are
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susceptible to environmental factors such as background, lighting, occlusion, and so-
cial constraints such as privacy issues. Additionally, in sensor-based methods, people
often object to these sensor modalities because they are bothersome or cumbersome. Al-
though the underlying technology employed in these sensors is frequently inexpensive,
IoT-connected versions of these sensors can be significantly more expensive due to added
wireless hardware and branding. WiFi devices, which are less expensive and power-
efficient than the aforementioned technologies, invariant to light, easier to implement, and
have fewer privacy concerns than cameras, have recently attracted much interest in various
applications [4].

The purpose of WiFi-based activity recognition is to distinguish the executed actions
by analyzing the specific effects of each activity on the surrounding WiFi signals. In other
words, the individual’s movement affects the propagated signal from WiFi access points
and can be used to recognize activities. WiFi signals can be described by two character-
istics: Received Signal Strength (RSS) and Channel State Information (CSI) [4]. RSS is
the estimated measure of received signals’ power which has been mainly used in indoor
positioning [9]. As RSS is not stable compared with CSI, it cannot properly capture dynamic
changes in the signal while the activity is performed [10]. As a more informative specifi-
cation of WiFi signals for HAR tasks, CSI has drawn more attention than RSS over recent
years [10]. CSI can save physical layer information from each sub-carrier of the channel.
When a person performs a particular activity between the transmitter and receiver, the re-
flected wireless signals from the body generate a unique pattern [11]. Furthermore, human
body shapes, speed of performing an activity, environmental obstacles, and the path of
performing an activity can cause different changes to received CSI signals. For instance, if a
person walks in a straight line this activity has a different effect on CSI signal, comparing
to the experiment that a person walks around a square path. Many WiFi devices use CSI
to assess the quality of their connection internally. The device collects the experimental
phase and strength of the signal at each antenna for each channel in the provided spectrum,
allowing signal disruptions to be identified. The WiFi-based method takes advantage of
the ubiquitous nature of radio frequency transmissions while also potentially allowing
for developing a system that takes advantage of the existing WiFi infrastructure in smart
houses [4].

Although business applications of HAR are in the beginning stages, many studies in
this field introduce the issues that must be addressed before any practical action. One of
the main issues is the specific hardware/software combination that is required to extract
CSI data. After choosing the proper hardware, the collected CSI data can be further used
as inputs of the Deep Learning (DL) algorithms for HAR task. The effects of each activity
in characteristics of the collected CSI can be used in different DL algorithms to distinguish
activities and finally classify them [11].

Since CSI is a time-series data with temporal dependency, Recurrent Neural Network
(RNN) and its subsets have been exerted more than other DL algorithms in the HAR task.
Long Short-Term Memory (LSTM) and RNN apply sequential processing to long-term
information, meaning that these data pass through all cells in the network before reaching
the present cell. RNNs structure cannot perform efficiently when we need to analyze
long sequences, resulting in vanishing gradients. The vanishing gradient problem persists
even when the switch gates and long memory in the LSTM network are maintained [11].
Furthermore, this module requires a significant amount of memory bandwidth due to the
complexity of the sequential path and Multi-Layer Perceptron (MLP) layers in each cell.
Despite the LSTMs proficiency for prediction and classification tasks in time series, they are
incapable of learning terms with greater than 100 terms [12]. Additionally, LSTMs analyze
the sequential data in one direction, meaning that only past CSI data will be considered [11].
Accordingly, they cannot distinguish between two similar activities, such as lie down and
sit down, which have the same start position but different final positions.
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In real-time activity monitoring, especially for elderly people, each activity’s period
and further information are essential. Therefore, we consider two approaches: 2D-CNN
and Attention-based Bi-directional LSTM. Unlike RNNs and LSTMs, where long-term
data is analyzed sequentially, convolutions analyze the data in parallel. Furthermore, the
training time of LSTMs is slightly longer than the CNNs, and as a result, they require a
greater memory bandwidth for processing. Less consumed time in training and lower
computational complexity, along with mentioned problems, encouraged us to use 2D-CNN.
Since 2D-CNN has high potential in image processing, we convert CSI data into RGB
images. In order to generate RGB images, we made a pseudocolor plot from CSI matrices.
Each element of the matrices is linearly mapped to the RGB colormap. Furthermore, we
applied BLSTM on raw CSI data. HAR’s performance can be improved by using attention-
based BLSTM, which concentrates on regions of greater relevance and assigns them higher
weights to improve performance. The main contributions of this research are as follows:

• We exploit Raspberry Pi for CSI data collection and offer a public CSI dataset for seven
different activities including sit down, stand up, lie down, run, walk, fall and bend in
an indoor environment using the Nexmon CSI tool [13]. Due to reflections induced by
human activity, each subcarrier contains critical information that will increase HAR
accuracy. The CSI matrices in our dataset are composed of 52 columns (available data
subcarriers) and 600 up to 1100 rows depending on the period of each activity. The
results demonstrate that this hardware is capable of providing tolerable data that is
comparable to traditional technologies.

• We propose a new concept in improving the precision of HAR by converting CSI data
into images using pseudocolor plots and feeding them into 2D-CNN. This method
overcomes the mentioned limitations of LSTM and also the training time and computa-
tional complexity are less than those of other existing methods. We also exert a BLSTM
network with an attention layer to address LSTM problems with future information.
The results demonstrate that the conversion idea with 2D-CNN outperforms BLSTM
in accuracy and consumed time.

• We also perform a deep evaluation by implementing two other algorithms, includ-
ing 1D-CNN and LSTM, and compare our results with four different models used
for HAR, including Random Forest (RF) [14], Hidden Markov Model (HMM) [14],
DenseLSTM [15], ConvLSTM [16] and Fully Connected (FC) network [17]. We analyze
the performance of our dataset and proposed DL algorithms.

The rest of this paper is organized as follows: Section 2 reviews HAR studies.
In Section 3, we provide a brief explanation about CSI, required information on hard-
ware, software and firmware. Furthermore, four used neural network’s structures are
discussed in this section. Additionally, we briefly discuss other datasets and their public
accessibility. The main contributions of this research are summarized in Section 4. We
discuss the device configuration to collect CSI, image generation from CSI, and feeding the
data to the neural networks. In Section 5, measurement setups and experimental results
are reported, and finally, conclusions are discussed in Section 6.

2. Related Works

HAR techniques can be divided into three groups: vision-based, sensor-based, and
WiFi-based. Several image-based methods for HAR have been published in recent years,
using datasets such as RGB (red, green, and blue [18]), depth [19], and skeleton images [20].
The RGB dataset may not be qualified and robust enough in this method when the video
contains considerable sudden camera movements and cluttered background. To this end,
Anitha et al. [21] propose a shot boundary detection method. In their proposed method,
the features and edges of videos are extracted. The features were then extracted as images
and subsequently merged with the video feature and fed into the classifier. The Kernel
Principal Component Analysis (KCPA) technique is applied to locate image features and
joint features. The preparation process is thus gradually proficient, making the independent
vector analysis increasingly realistic for real-life applications. The human activity videos are
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classified by K-Nearest Neighbor, obtaining better results than other cutting edge activity
methods. While capturing an image or video of an activity in RGB format, it generates
many pixel values, making it more difficult to distinguish the subject from the surrounding
background and resulting in computational complexity. The aforementioned obstacles
and the view dependency, background, and light sensitivity impair RGB video-based
HAR performance and persuade researchers to exert depth images and other formats of
images or videos to improve HAR performance. Most of the methods introduced for HAR
utilizing skeleton datasets are confined in various ways, including feature representation,
complexity, and performance [22]. In [22], authors propose a 3D skeleton joint mapping
technique that maps the skeleton joints into a spatio-temporal image by joining a line
across the same joints in two adjacent frames, which is then used to recognize the person’s
activities. The 3D skeleton joint coordinates were mapped along the XY, YZ, and ZX planes
to address the view dependency problem. They exploit transfer learning models including
MobileNetV2, DenseNet121, and ResNet18 to extract features from images [22].

In sensor-based methods, wearable sensors capture activities, causing inconvenience
and long-time monitoring unavailability [23]. In the past decade, smartphones have
become more powerful with many built-in sensors, including the accelerator, gyroscope.
The main impediments in using smartphones for HAR tasks are their higher noise ratio
than wearable sensors and fast battery drain [23]. Several researchers have exerted Radio
Frequency Identification (RFID) tags to recognize human activities [24]. Authors in [24]
present a framework for HAR and activity prediction by using RFID tags. They utilize RFID
tags to detect a high-level activity and object usage. Additionally, they employ weighted
usage data and gain activity logs. Since human activities are time series data and the
next activity is related to the current activity and previous ones, they use LSTM to predict
activities with an accuracy of 78.3%. Although RFID tags are cheaper, RFID-based systems
cannot achieve high accuracy in crowded environments. Additionally, as mentioned above,
vision-based HAR needs cameras installation in the environment, which highly depends
on the light source’s consistency and is unable to pass through physical obstacles such as
walls. Since indoor spaces such as smart houses, malls, and nursing homes are filled with
wireless signals, WiFi-based systems have been exploited more than other approaches in
recent years [25].

Due to the growing interest in sensor-less activity detection, the research and indus-
try communities have joined on CSI analytics with the help of neural networks. Com-
mon CSI-based applications include a wide range of activity detection scenarios such as
WiTraffic [26] to delicate activity recognition systems like Wifinger [27], breathtrack [28].
In [29], authors utilize CSI to sense distinct hand movements. They use predefined win-
dows to monitor activity continuously. This method is time-consuming and yields lower
accuracy. To overcome this problem, Wi-Chase [30] does not apply predetermined time
windows. Due to detailed correlated information in different subcarriers, Wi-Chase also
employs all available subcarriers, unlike Wi-Sleep [31] that uses only a subset of them. The
extracted features were trained using machine learning algorithms, including KNN and
Support Vector Machine (SVM) [30]. Although different WiFi-based HAR systems have
been proposed, one of the major challenges has not been addressed properly. That is, WiFi
signal changes are due to the various movement speeds and body types of people. Human
activity is made up of many limb movements, such as lifting an arm or leg. The speed
and scale of activity can naturally alter according to the scenario or period. Furthermore,
physical traits such as body form and height are unique for each person. Therefore, human
activity patterns can vary greatly amongst people. To address this problem, a WiFi-based
HAR proposed in [15] incorporates synthesized activity data that reduces the influence
of activity inconsistency such as varied motion speed. They collect CSI for 10 different
activities including make phone calls, jumps, check wristwatch, lie down, walk, play gui-
tar, fast walk, play piano, run, play basketball with Atheros AR9590 WiFi chipset. The
combination of CSI spectrogram of overall subcarriers is fed into the network as image
inputs. Then, four Dense layers are used to extract spatial features of activities. These
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features are entered to a convolutional layer. Then, a BLSTM is used to extract tempo
features and a linear layer is applied to predict the activities. Three data synthesis methods
are combined with eight types of transformation methods, including dropout, Gaussian
noise, time-stretching, spectrum shifting, spectrum scaling, frequency filtering, sample
mixture, and principal component coefficient. Dense LSTM with consistent accuracy of
90% is applied to efficiently optimize the system for the small-size dataset while keeping
the model compact to minimize overfitting.

For multi-class classification based on extracted features such as HAR, a variety of
machine learning algorithms such as RF, SVM, and HMM and also DL algorithms such as
CNN, RNN, and LSTM can be applied. In [14], they apply RF, HMM, LSTM on their public
dataset which have been collected with NIC 5300 with three antennas for six different
activities including sit down, stand up, fall, walk, run, and bed. A 90-dimensional vector
of CSI amplitude (3 antennas and 30 subcarriers) has been used as the input feature vector.
They apply the PCA on the CSI amplitude for denoising, and Short-Time Fourier Transform
(STFT) for feature extraction. First, they use RF with 100 trees for classification, which
has unacceptable accuracy for bed, sit down and stand up activities. They also apply
HMM on the extracted features obtained by STFT and DWT techniques. The accuracy is
improved compared to RF, but with higher training time. Although HMM has obtained
good results for walk and run activities, it cannot distinguish between stand up, sit down,
and bed activities. They also apply LSTM on activities [14]. The LSTM extracts the features
automatically and directly from raw CSI without any pre-processing. In other words in
contrast to other methods, the LSTM approach does not need PCA and STFT, but it has
more training time [14]. The accuracy of LSTM is reported over 75% for all activities in [15].

Since the static objects in an environment can also affect wireless signals and, respec-
tively, HAR model, authors in [17] propose a deep neural network as baseline classifier
based on the features for four simple activities, including standing up, sitting down, push-
ing and picking, performed in two different complex environments. More precisely, they
propose a network with shared weight to make a similarity network for two different
complex environments. They used one transmit antenna and two receive antennas and
make four grayscale images from CSI amplitude and phase. In feature extraction stage,
Gabor filter is applied on grayscale images to extract features. Gabor filter extracts spatial
information of an image by convoluting the transformed image with a filter at specific
wavelength λ and orientation θ [17]. For each gray-scale image, the final output is 5 (the
number of λ) × 8 (number of θ) × 2 (mean and standard deviation) = 80, and a vector of
dimensions 320 = 4 (number of grayscale images) × 80 are fed into the neural network as
the input. They exert three FC hidden layers as the baseline network and two identical
branches that share the same weight values as the similarity network. A pair of two random
data are selected and fed into the two identical networks simultaneously and each one of
them enters the fully connected network. If the two data belonged to the same category
of activity, they are labeled as “similar”, otherwise “non-similar”. Their model obtains an
accuracy of around 84% overall for the two different environment scenarios.

One of the main issues in Wifi-based HAR is the specific hardware/software combina-
tion for CSI data collection. In other words, Linux 802.11n CSI Tool is limited to older linux
kernels versions and the required hardware cannot be found easily in market. Following
the release of Nexmon CSI Tool [13], it is now possible to extract CSI from a BCM43455C0
wireless chipset, which is used in the Raspberry Pi 3B+ and 4B. As this is a recent release,
Ref. [16] examines the performance of the Raspberry Pi 4 in CSI-based HAR. They collect
CSI signals for different activities performed in normal life as listed: stand up, sit down,
go-to-bed, cook, washing-dishes, brush-teeth, drink, pet a cat, sleeping, walk. They do
not apply any denoising filter, as their results are acceptable comparing to other available
datasets and also additional filtering may affect important information in data. They
pack CSI vectors, collected by Raspberry Pi 4, into windows to train their classification
model. As LSTMs and their extensions have been well-suited in HAR task, they use a deep
convolutional variant of the LSTM model. They apply two 1D-convolutional layers along
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with four BLSTM, which have more training time and computational complexity. Their
model achieves 92% accuracy which demonstrated the Raspberry Pi 4 capabilities for HAR
in smart houses and it can be superseded the Linux 802.11 CSI Tool.

3. System Model
3.1. Preliminary

Transmitting a signal from the transmitter to the receiver, it is deflected, reflected, and
scattered when it comes into contact with obstacles and objects. This results in multipath
overlaid signals at the receiver when the signal encounters obstacles and objects [7]. Fine-
grained CSI can be used to characterize this procedure. The Orthogonal Frequency-Division
Multiplexing (OFDM) modulation is utilized in IEEE 802.11, and it distributes the available
bandwidth across several orthogonal subcarriers [14]. Due to the limited bandwidth
available, the fading that each subcarrier experiences are represented as flat fading [31].
Therefore, the small-scale fading aspect of the channel can be minimized by employing
OFDM techniques. Narrow-band fading per subcarrier causes a considerable variation in
the measured channel dynamics. The greatest advantage of employing CSI is that it can
catch changes occurring at a single frequency and avoid averaging out changes across all
WiFi bandwidth, unlike RSS.

Several subcarriers can be present in the physical link between each pair of transmitter
and receiver antennas. As each subcarrier might serve many data streams, the CSI obtained
from each subcarrier will be unique [14]. CSI can be represented as a channel matrix for t
transmit and r receiving antennas, a given packet transmission n:

CSIn =

H1,1 · · · H1,r
...

. . .
...

Ht,1 · · · Ht,r

 (1)

Ht,r represents a vector that includes complex pairs for each subcarrier. Depending
on the hardware we use and channel bandwidth, the number of available subcarriers is
different [16]. Raspberry Pi 4 and Tp-link archer c20 paired over 5 GHz in 20 MHz band-
width can access 56 data subcarriers. Ht,r can be expressed as below for m data subcarrier in
which hm is a complex number, containing both amplitude and phase of the CSI:

Ht,r = [ht,r,1, . . . , ht,r,m] (2)

3.2. Hardware and Firmware

To the best of our knowledge, the specialized hardware/software combinations that
is required to extract CSI data, are intel 5300 WiFi Network Interface Card (NIC) (Linux
802.11n CSI Tool) [32], Atheros AR9580, AR9590, AR9344, and QCA9558 (Atheros CSI
tool) [33], Raspberry Pi (Nexmon CSI Tool) [13]. The intel 5300 NIC has been used for CSI
collection since 2011 [32]. Although many researchers used 5300 NIC, such as [14], this
hardware configuration has become less important over time since most laptops with this
wireless card are not currently available in the market and third-party tools are required
to collect CSI. More precisely, some type of Mini PCIe to PCI-Express Adapter with three
antennas is required. Atheros CSI tool, as another 802.11n open-source experimental tool
for CSI collection, allows extractions of physical layer wireless communication information,
including CSI, RSS, the received payload packet, the timestamp, the data rate, etc. [33].
The ath9k open-source kernel driver supports Atheros 802.11n PCI or PCI-E chips; thus,
this tool supports any sort of Atheros 802.11n WiFi chipsets. This tool was released in 2015
and there is more hardware with built-in Atheros 802.11n PCI or PCI-E chips rather than
5300 intel NIC, but more expensive.

The release of Nexmon CSI Tool [13] has enabled CSI extraction from Raspberry Pi
3B+ and 4B, Google Nexus 5, and some routers. One of the Nexmon tool benefits is that it
permits several transmit-receive antenna configurations (up to 4 × 4 MIMO). Additionally,
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it includes customizable CSI collection filters that can extract relevant CSI from selected
transmitters and the complete CSI data does not need to be suppressed. Although the
Raspberry Pi utilizes a single transmit/receive antenna pairing, its price and prospective
capabilities make it a suitable tool in WiFi-based healthcare monitoring in smart houses.
Nexmon [13] provided a configuration option to assign a different interface to only the
monitored frames after being configured on the host for monitoring on Raspberry Pi.
This tool can use up to 80MHz bandwidth and 242 subcarriers. There are three types
of subcarriers in OFDM technology, including null subcarriers, pilot subcarriers, and
data subcarriers. Null subcarriers (also called zero) are the unused subcarriers mainly
employed as a guard against interference from adjacent channels. The pilot subcarriers
do not convey modulated data; nevertheless, they are utilized for channel measurements
and synchronization between the transmitter and receiver. Furthermore, pilot subcarriers
broadcast using a predetermined data sequence and demonstrate an overhead for the
channel. The remaining subcarriers from total subcarriers are called data subcarriers. These
subcarriers will exploit the same modulation format as 802.11ac [34]. As mentioned in
Table 1, we may have different numbers of subcarriers depending on the PHY standard
and bandwidth.

Table 1. Subcarrier description for each PHY standard.

PHY Standards Subcarriers Range Pilot Subcarriers Total/Data Subcarriers

802.11a/g −26 to −1, +1 to +26 −21, −7, +7, +21 52/48
802.11n
802.11ac
20 MHz

−28 to −1, +1 to +28 −21, −7, +7, +21 56/52

802.11n
802.11ac
40 MHz

−58 to −2, +2 to +58 −53, −25, −11,
+11, +25, +53 114/108

802.11ac
80MHz

−122 to −2,
+2 to +122

−103, −75, −39, −11,
+11, +39, +75, +103 242/234

3.3. Neural Network

Once an activity is performed between transmitter and receiver, it will affect CSI char-
acteristics. When a person performs a particular activity, the received CSI signals generates
a unique pattern [7]. Recently, DL algorithms have been widely used to automatically learn
features from the effects of activities on CSI. While having many layers in these algorithms
offers improved classification skills, overfitting and performance deterioration become
significant when implementing the neural network on a limited amount of dataset. Using
traditional strategies such as weight decay, small batch size, and learning rate might not be
enough to help avoid this problem. Accordingly, all of the pre-existed WiFi-based systems,
such as those in Section 2, would require the implementation of dedicated numbers of
particular neural layers to provide the desired performance. In this research, we present
custom deep learning models that is best suited for situations with a small size dataset and
has less computational complexity and consumed time compared to other methods.

3.3.1. CNN

CNN is a feed-forward neural network that excavates features from data with con-
volution operations. It contains several layers, including Convolution, Pooling, Dense
and Flatten. This classification network requires less pre-processing rather than other
classification techniques. Additionally, CNN can learn required filters or characteristics
without the assistance of the user. CNNs use filters (also known as the kernel, feature
detector) to extract features which are performed using the convolution function [35]. The
initial Convolution Layer (ConvLayer) is designed to handle lower-level features, such
as edges and color. When we employ several ConvLayers in the network topology, the
network can achieve high recognition accuracy since it can also capture high-level features.
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After each two 2D-ConLayer, we use the LeakyReLU activation function, an upgraded
variant of ReLU (Rectified Linear Unit). According to the gradient in the negative direction,
every value of inputs less than zero causes the gradient to be zero. Therefore, the neurons
located in that region are deactivated and may suffer from the dying ReLU problem. In
order to address this problem, instead of claiming that negative inputs values should be
considered zero, a small linear component of S is defined. LeakyReLU can be formulated
as f(S) = max (0.01 × S,S), meaning that if the input is positive, the function returns S
and if the input is negative, it returns 0.01 × S. This minor alteration causes a non-zero
gradient for negative values; thus, we would not find any dead neurons in that location.
Since the feature map output of ConvLayer specifies the specific position of features in
the input, a slight movement in the location of the feature in the input data will create
a significant difference in the feature map. To address this problem, we use the down-
sampling strategy. A better and more widespread strategy is to utilize a pooling layer.
After feature detection in ConvLayer, the Max pooling layer is applied to down-sampled
feature maps and helps in extracting low-level features. After the first ConvLayer with
Leaky ReLU activation function and max pooling, Batch Normalization (B.N.) is applied
to stabilize the network during training and speed up training. B.N. makes the variable
mean and standard deviation estimations more stable across mini-batches and, respectively,
closer to 0 and 1. Dropout layers are applied between convolutional layers, decreasing
overfitting while improving the network’s generalization capability. The pooled features
(the max pooling’s output) should be flattened. Flattening involves concatenating the
feature map matrix to create a single-column matrix. This matrix is passed through a dense
layer where we get our predicted classes. The proposed 2D-CNN structure is depicted in
Figure 1.

Figure 1. 2D-CNN structure used in this paper.

In addition to 2D-CNN exerted on converted RGB images, we also apply 1D-CNN to
CSI data as depicted in Figure 2, which will convolve with moving along one dimension.
Whether the input is 1D, 2D, or 3D, CNNs all have the same properties and use the same
process. The crucial distinction is the dimensionality of the input data and the method in
which the filter slides across it. The 1D-CNN has been trained to identify different activities
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based on sequential observations and map the internal features to different activities. It is
particularly good at learning time-series data such as CSI, as it can leverage raw time
series data and requires no domain expertise to hand-engineer input features. We use two
ConvLayers with ReLU as an activation function. Same as 2D-CNN, after each ConvLayer,
we apply max pooling layer, B.N., and dropout.

Figure 2. 1D-CNN structure used in this paper.

3.3.2. LSTM

RNN has been successfully applied to sequential modeling applications, such as
language understanding [36] and HAR [37]. Nevertheless, when the learning sequence
is long, the standard RNN frequently encounters the problem of the gradient vanishing
and exploding. In order to address this issue, Hochreiter and Schmidhuber [38] designed a
new RNN structure named the LSTM [38]. The LSTM network seeks to overcome gradient
vanishing and exploding by utilizing memory cells with a few gates to retain essential
information with long-term dependencies. The memory block comprises three gate sets.
Each decides the block’s state and produces an output, including forget gate, input gate,
and output gate. The information to be eliminated from the unit is determined by the
forget gate. The input gate handles which input values cause the memory state to be
updated. The output gate determines the output of the block according to the input and
the unit memory.

Since CSI signals are time-series and the LSTM can learn complicated and temporal
dynamics, this network has obtained a remarkable performance for CSI-based HAR. In
the HAR task, LSTM has two advantages. First, it can extract the features automatically
without pre-processing. On top of that, it can hold temporal state information of the
activity, resulting in better performance for similar activities such as lie down and sit down
comparing to 1D-CNN, RF, and HMM. In this paper, we apply a simple LSTM with one
hidden layer and 128 hidden units in which the feature vector is a 52-dimensional vector of
CSI amplitudes. The proposed LSTM structure is depicted in Figure 3.
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Figure 3. LSTM structure used in this paper.

The traditional LSTM network only analyze the CSI data in one direction, meaning
that the present hidden state only considers the past CSI information. Furthermore, future
CSI information is also important for HAR. In this paper, an attention-based BLSTM
is utilized to analyze past and future information and overcome long-term dependency.
It contains a forward and backward layer for extracting information from the two directions.
In other words, it’s a two-layer LSTM sequence processing paradigm: one in which the
input moves forward and the other in which the input moves backward. As the name
suggests, attention is a technique that can allow input sequences of arbitrary length to pay
attention to specified timesteps [11]. The concept is based on the studies about human
vision systems, which indicate that humans consistently focus on a certain region of an
image while identifying it and then altering their focus over time. It has been found
to be effective in image recognition to have the machine focus on the region of interest
while concealing the rest of the image at the same time for a recognition task. Due to the
sequential features learned by the BLSTM network for WiFi-based HAR known to have
high dimensions and feature contributions and time steps may vary from case to case, we
seek to exploit the attention model to automatically learn features’ significance and adjust
feature weights based on activity recognition performance. In this paper, as depicted in
Figure 4, a BLSTM with one attention layer with 400 units is used to learn the relative
importance of features and timesteps and more important characteristics are given higher
weights to obtain better performance.

The comparison between these four networks and five other networks in HAR re-
searches, i.e., RF [14], HMM [14], DenseLSTM [15], ConvLSTM [16] and FC network [17],
are discussed in Section 5. Note that, the proposed networks for our public dataset signifi-
cantly outperforms other techniques in terms of accuracy, computational and structural
complexity, and consumed time.
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Figure 4. BLSTM structure used in this paper.

3.4. Human Activity Recognition Datasets

The amount of data we need for the HAR task depends on the complexity of the task
and the chosen algorithm, hence there is no specific rule about the number of samples,
needed to train a neural network and it is just a process of trial and error. For vision-based
HAR task, [39] used 320 samples for 16 activities and [40] used 567 samples for 20 activities.
We investigated the quantity of samples utilized in some CSI-based HAR researches. In
ConvLSTM [16], they collected CSI data for 11 activities which were performed 100 times in
a home environment (1100 samples). In [41], they collected 600 samples from 3 volunteers
for 8 activities. In [30], they collected 720 samples of activities (12 volunteers × 20 samples ×
3 activities). The authors in [42] collected 50 up to 100 samples for 4 actions (approximately
200 up to 400 samples). In [43], they collected 1400 samples from 25 volunteers. Authors
in [44], collected 50 samples for 10 activities (500 samples). Siamak Yousefi et al. [14],
as one of the most cited articles in WiFi-based human activity recognition, provided a
public dataset for 6 different activities, performed by 6 users for 20 times (720 samples).
According to other researches results, we asked 3 volunteers to perform 7 different ac-
tivities 20 times, resulting in 420 samples. To the best of our knowledge, the WiFi-based
researches data accessibility and number of samples are listed in Table 2. Furthermore,
it should be mentioned that we plan to increase number of samples and perform activities
in different scenarios.
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Table 2. Number of samples and data accessibility in different CSI-based HAR researches.

Research Number of Samples Public Accessibility

[16] 1100 No
[41] 600 Yes
[30] 720 No
[42] 200–400 No
[43] 1400 No
[44] 500 No
[14] 720 Yes

Our Dataset 420 Yes

4. Proposed Method

Despite the numerous advantages that accessibility to CSI would provide to users,
chip manufacturers continue to treat CSI as a private feature. Only a few devices that are
still using the 802.11g and 802.11n technologies are capable of dumping CSI, and they
do so with a number of restrictions. Additionally, the Linux 802.11n CSI Tool is only
compatible with older Linux kernel versions, which can cause significant inconvenience.
In IoT, wireless connectivity is critical for monitoring and control purposes such as HAR.
When it comes to experimentation, the Raspberry Pi might be considered a cheap and
available WiFi-enabled platform. We employ Nexmon Tool [13] and collect CSI data for
seven daily human activities, including walk, run, fall, lie down, sit down, stand up,
and bend. We use Raspberry Pi 4 and a Tp-link archer c20 as an Access Point (AP) in
20 MHz bandwidth on channel 36 in IEEE 802.11ac standard. As depicted in Figure 5,
we use Personal Computer (PC) for traffic generation by pinging or watching a movie
on the internet. The AP will reply with pong packets to the sent pings from the PC.
The Pi is in monitor mode and will sniff through this connection and collect CSI for
each sent-out pong packet. CSI is saved as a pcap file which can be analyzed in many
software including MATLAB. CSI complex numbers are extracted and after removing
null and pilot subcarriers, we export activity rows according to the period of each activity
which has been detached depending on the video of activity performed by users and
stopwatch. Due to reflections induced by human activity, each subcarrier for any given link
experiences a variation [11]. Therefore, each subcarrier includes critical information that
will increase recognition accuracy. A higher proportion of subcarriers boosts precise feature
detection since it provides additional information and boosts identification of challenging
features to analyze a subset of subcarriers. The CSI matrices have 52 columns (available
data subcarriers) and 600 up to 1100 rows depending on the period of each activity. The
dataset is available in GitHub https://github.com/parisafm/CSI-HAR-Dataset (accessed
on 27 October 2021).

Figure 5. Configuration for CSI collection.

https://github.com/parisafm/CSI-HAR-Dataset
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No data pre-processing is applied on the CSI amplitude since any additional filtering
can result in losing important information and affect the system’s performance. If the
simulation results or generated images are disappointing, we can use a low pass filter for
high-frequency reduction, as mentioned in [16]. In order to make RGB images, the data
values must be normalized between 0 and 255 for all activities. We make a pseudocolor
plot from matrices representing them as an array of colored faces in the x-y plane. In a
pseudocolor plot, cells are arranged in a rectangular array with colors specified by the
values in C as normalized CSI input matrices. MATLAB creates this plot by using four
points near each corner of C to describe each cell. Each element of C is linearly mapped
to the RGB colormap. The generated RGB images are resized to the desired size (64x64).
Some of these images for each class of activities are depicted in Figure 6. Since the images
are not noisy, we do not need to apply denoising filters and additional denoising technique
may cause information lost.

These images and CSI data are then fed into neural networks. As CSI signals are
typical time-series with temporal dependency, the future information in each step is crucial
for HAR, and also LSTMs cannot effectively analyze more than 100s term, we consider two
methods. First, we convert CSI signals to RGB images using pseudocolor plot and feed
them into 2D-CNN. By converting CSI to RGB images, the signal pattern for each activity
can be seen in one look. Meaning that the pattern changes due to the human movements
are depicted in image.

Figure 6. Generated RGB images: (a) walk; (b) run; (c) fall; (d) lie down; (e) sit down; (f) stand up; (g) bend.

Therefore, in contrast to LSTM that does not have any information about future steps,
CNN can analyze the whole signals’ alteration. Additionally, CNN process information
parallelly, resulting in faster training than LSTMs with better accuracy. Another method to
address LSTMs mentioned problems is to apply BLSTM on CSI data. BLSTM contains a
forward and backward layer and can analyze both past and future information by extracting
information from the two directions. Since the sequential features learned by the BLSTM
network have high dimensions and feature contributions and timesteps may vary for each
activity, we exploit the attention layer to learn the relative importance of features. Although
BLSTM have high potential to recognize human activities, it needs a greater memory
bandwidth for processing and thus it has more training time than the proposed 2D-CNN.
Lower consumed time in training and less computational complexity, along with the ability
to observe the whole pattern alteration in one look, make the novel image conversion idea
and 2D-CNN implementation the best choice over other mentioned methods.

5. Evaluation
5.1. Measurement Setup

Buster lite 4.19.97 raspian and the main branch of nexmon-csi [45] were installed
on the Raspberry Pi 4. Nexmon tool was configured as follows: Channel 36, bandwidth
20 MHz, Core 1, NSS mask 1, 4000 samples, 20 s. The AP’s MAC address filter was
set to make sure the Raspberry Pi will not connect to another AP on channel 36. The
data collection was conducted from another device linked to the Pi over SSH to avoid
interference, communicating over another 2.4 GHz network. The AP used is a Tp-link
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archer c20 wireless router operating a 5 GHz WiFi network on channel 36 at 20 MHz. A PC
is paired with the AP to generate traffic by watching a video on the internet or pinging,
for which the Pi can capture CSI. We put the Raspberry Pi in monitor mode and with the
use of the sniffing method, we were able to collect CSI data. We collect 4000 samples at
around 20 s which results in 200 Hz sample rate. Ap and Pi were both 1m above the ground
to ensure an unobstructed signal path. They were 3 meters away from each other. The
experimental environment is depicted in Figure 7. Each activity performed in the dataset
was performed 20 times by three users of different ages. These activities are as listed: fall,
stand up, sit down, lie down, run, walk, bend. CSI data were captured in the 20 s, in which
an activity has been performed in the middle of this period. More precisely, users remain
mostly stable at the start and the end of the capture. As the experiment was managed
by the users, the length of time taken for the activity to begin and end may vary slightly,
around 3 to 6 s (around 600 to 1100 rows of 4000 total rows). The activity period is extracted
according to the video of the activity and stopwatch.

Figure 7. Experimental environment.

5.2. Simulations Results

The proposed deep learning architectures can discover more complex patterns in time
series data, compared to hand-crafted features techniques such as RF [14] and HMM [14].
As shown in Figure 8, the ConvLSTM [16] model slightly outperforms the FC network
in [17] and DenseLSTM [15]. Our proposed models have achieved better results compared
with all of them without any extra data augmentations [15] and complex structure like
ConvLSTM [16] and FC [17]. The detailed information about the mentioned methods are
available in Section 2. The dataset was split into train and test in a 75% to 25% ratio. We
implemented four neural networks on Keras for classification, which has been accelerated
by Geforce RTX 2060. The raw CSI amplitude data is a 52-dimensional vector fed into
1D-CNN, LSTM, and attention-based BLSTM. In 1D-CNN model, we have two Conv1D
with ReLU as an activation function and after each Conv1D layer, we added a MaxPooling
layer. The LSTM network contains one LSTM hidden layer and 128 hidden units. For the
BLSTM model, we used one BLSTM layer with 200 hidden nodes and one attention layer
with 400 units. The converted RGB images were fed into 2D-CNN with 2xConv2D layer
(with Leaky ReLU) and 2xMaxPooling layer (after each Conv2D). The structures of these
networks are depicted in Figure 1–4.
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Figure 8. Accuracy of different methods implemented on the dataset.

CNN can detect simple patterns in data, which are subsequently utilized to create
more complex patterns within higher layers. 1D-CNN is highly effective when features are
derived from fixed-length parts of the dataset and the feature’s position in the section is not
crucial, including the analysis of time sequences data (such as gyroscope or accelerometer
data or CSI). Since the LSTM network analyzes temporal dependencies in sequential data,
it outperforms the 1D-CNN technique. As mentioned in Sections 1 and 2, LSTMs suffer
from vanishing gradient and cannot access next step information. For activities like sit
down and lie down which are different at last body movements, it is necessary to have
knowledge about next step information. To address these problems, we converted CSI
data into RGB images for each activity and used them as inputs for 2D-CNN, thus we
can access all the information in past or next steps with one look at images. Additionally,
we used BLSTM with attention layer to consider both past and next step information
and automatically learn features’ significance to assign higher weights based on HAR
performance. The attention-based BLSTM approach and 2D-CNN have achieved the best
performance for the recognition of all activities with an accuracy of around 95%. All of
these comparisons are depicted in Figure 8.

Different activities have different CSI values, resulting in different recognition accuracy [7].
We use a confusion matrix (or error matrix) to describe the performance of our proposed
classifiers for each activity in which the rows represent anticipated classes and the columns
represent actual classes. The activities with more significant body movement, i.e., fall, walk,
and run, have higher recognition accuracy (see Figure 9) since they have more influence on
CSI characteristics. Furthermore, fall activity is crucial, particularly for elderly healthcare
services. Our proposed 2D-CNN and BLSTM network have 98% and 96% accuracy for
this activity, making these models efficient in elderly care systems. Another observation
is that the action “Lie down” has a recognition accuracy similar to “Sit down” for most
methods. The probable explanation is that these activities have a similar impact on CSI
values since the start position is the same and the final positions are different. By applying
attention-based BLSTM and 2D-CNN, the system is less confused between these two
activities. As shown in Figure 9, the model is confused with these two activities around 3%
in BLSTM and 2% in 2D-CNN which are acceptable when compared to LSTM with 8% and
1D-CNN with 9% confusion.
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Figure 9. Confusion matrices of proposed methods: (a) LSTM; (b) 1D-CNN; (c) BLSTM; (d) 2D-CNN.

Consumed time is another critical performance evaluation indicator representing how
much time the model spends training and testing. Table 3 compares the time consumption
(milliseconds per step) of six DL approaches: ConvLSTM [16], DenseLSTM [15], LSTM,
BLSTM, 1D-CNN, and 2D-CNN. We can observe that proposed 2D-CNN has the shortest
time and highest accuracy (Figure 8) compared to the others, making 2D-CNN a better
choice compared with BLSTM, ConvLSTM [16], and DenseLSTM [15] in a fraction of
the time. More precisely, a long-term input is processed sequentially in LSTMs’ gates,
making them not hardware-friendly, as they require greater memory bandwidth to compute
parameters, in addition to time-consuming simulations. In contrast, CNN extracts features
by utilizing convolution operation, which is easier to compute and faster in training.
Furthermore, the CNN accuracy rapidly improved while the BLSTM accuracy slowly
improved in a longer training time.

Table 3. Consumed-time (milliseconds per step) comparison for different models.

Time 1D-CNN LSTM 2D-CNN BLSTM ConvLSTM [16] DenseLSTM [15]

Train 9 13 15 28 36 60
Test 3 6 7 12 19 41
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6. Conclusions

Due to the ubiquity of WiFi devices, HAR based on wireless signals, including CSI,
has witnessed more interest in smart house health monitoring systems. A few CSI datasets
for the HAR task collected with 5300 NIC or Atheros PCI chips, are currently available.
This paper presented a CSI dataset for indoor HAR using a Raspberry Pi, which is one
of the most accessible embedded boards. In this work, we have designed four neural
networks to conduct WiFi-based HAR with more than 87% accuracy for our dataset. We
used a BLSTM network with an attention layer to address LSTM problems with future
information. We also convert CSI data to images using pseudocolor plots and feeding them
into 2D-CNN to overcome the mentioned limitations of LSTM. We showed that the idea of
CSI conversion to images can obtain high accuracy of 95%, close to BLSTM, which is one
of the most successful DL algorithms in time-sequential analysis. Additionally, as CNN
processes different features parallelly, it is faster than other methods and less complex in
computations. The strong performance of the proposed methods indicates that the data
collected by Raspberry Pi can effectively be employed in smart house HAR. The proposed
methods can boost elderly health monitoring systems since it meets the requirements for
acceptable recognition accuracy and recognition speed for the most commonly performed
actions in this task.

Nevertheless, we presented the first version of our public dataset and plan to improve
it by investigating different environments and scenarios. In the future, we will study
human-to-human interactions and the CSI changes in multiple user-multiple environments
scenarios. Since different ages may perform activities differently, according to their physical
ability, we collected CSI data from three different ages, including an adult, a middle-
aged person, and an elderly person and try to study other ages, including child and
teen. Additionally, we will investigate activities with different initial movements, such as
standing + walking and running + walking.

Author Contributions: Conceptualization, P.F.M. and S.A.G.; methodology, P.F.M. and S.A.G.; soft-
ware, P.F.M.; validation, P.F.M. and M.N.; formal analysis, P.F.M. and R.S.; investigation, P.F.M.;
resources, S.A.G. and P.F.M.; data curation, P.F.M.; writing—original draft preparation, P.F.M.;
writing—review and editing, S.A.G., R.S. and M.N.; visualization, P.F.M.; supervision, S.A.G. and
R.S.; project administration, S.A.G. and R.S.; funding acquisition, S.A.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in GitHub: https:
//github.com/parisafm/CSI-HAR-Dataset (accessed on 27 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassan, Q.F. Internet of Things A to Z: Technologies and Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2018; pp. 5–45; ISBN

978-1-119-45674-2.
2. Dey, N.; Hassanien, A.E.; Bhatt, C.; Ashour, A. S.; Satapathy, S. C. Internet of Things and Big Data Analytics toward Next-Generation

Intelligence, 1st ed.; Springer: New York, NY, USA, 2018; Volume 30, pp. 199–243; ISBN 978-3-319-86864-6.
3. Perera, C.; Liu, C.H.; Jayawardena, S. The Emerging Internet of Things Marketplace from an Industrial Perspective: A Survey.

IEEE Trans. Emerg. Top. Comput. 2015, 3, 585–598, doi:10.1109/TETC.2015.2390034.
4. Wang, F.; Feng, J.; Zhao, Y.; Zhang, X.; Zhang, S.; Han, J. Joint Activity Recognition and Indoor Localization with WiFi Fingerprints.

IEEE Access 2019, 7, 80058–80068, doi:10.1109/ACCESS.2019.2923743.
5. Vlachostergiou, A.; Stratogiannis, G.; Caridakis, G.; Siolas, G.; Mylonas, P. Smart Home Context Awareness Based on Smart and

Innovative Cities; Association for Computing Machinery: New York, NY, USA, 2015; ISBN 9781450335805.
6. Palipana, S.; Rojas, D.; Agrawal, P.; Pesch, D. FallDeFi: Ubiquitous Fall Detection using Commodity WiFi Devices. In Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Singapore, 8–12 October 2018; Volume 1, pp. 1–25,
doi:10.1145/3161183.

https://github.com/parisafm/CSI-HAR-Dataset
https://github.com/parisafm/CSI-HAR-Dataset


Sensors 2021, 21, 7225 18 of 19

7. Moshiri, P.F.; Navidan, H.; Shahbazian, R.; Ghorashi, S.A.; Windridge, D. Using GAN to Enhance the Accuracy of Indoor
Human Activity Recognition. In Proceedings of the 10th Conference on Information and Knowledge Technology, Tehran, Iran, 31
December 2019–2 January 2020.

8. Ahad, M.A.R.; Ngo, T.T.; Antar, A.D.; Ahmed, M.; Hossain, T.; Muramatsu, D.; Makihara, Y.; Inoue, S.; Yagi, Y. Wearable
Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors 2020, 20, 2424. https://doi.org/10.3390/s20082424.

9. Nabati, M.; Ghorashi, S.A; Shahbazian, R. Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning. IEEE Commun.
Lett. 2021, 25, 1192–1195.

10. Zhang, W.; Zhou, S.; Yang, L.; Ou, L.; Xiao, Z. WiFiMap+: High-Level Indoor Semantic Inference with WiFi Human Activity and
Environment. IEEE Trans. Veh. Technol. 2019, 68, 7890–7903, doi:10.1109/TVT.2019.2926844.

11. Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI based passive Human Activity Recognition Using Attention Based
BLSTM. IEEE Trans. Mob. Comput. 2019, 18, 2714–2724, doi:10.1109/TMC.2018.2878233.

12. Elbayad, M.; Besacier, L.; Verbeek, J. Pervasive attention: 2d Convolutional Neural Networks for Sequence-to-Sequence Prediction.
arXiv 2018, arXiv:1808.03867.

13. Gringoli, F.; Schulz, M.; Link, J.; Hollick, M. Free Your CSI: A Channel State Information Extraction Platform For Modern
Wi-Fi Chipsets. In Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization, New York, NY, USA, 4 Octobe 2019, pp. 21–28, doi:10.1145/3349623.3355477.

14. Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S. A survey on behavior recognition using WiFi channel state information,
IEEE Commun. Mag. 2017, 55, 98–104, doi:10.1109/MCOM.2017.1700082.

15. Zhang, J.; Fuxiang, W.; Wei, B.; Zhang, Q.; Huang, H.; Shah, S.W.; Cheng, J. Data Augmentation and Dense-LSTM for Human
Activity Recognition Using WiFi Signal. IEEE Internet Things J. 2021, 8, 4628–4641, doi:10.1109/JIOT.2020.3026732.

16. Forbes, G.; Massie, S.; Craw, S. Wifi-based human activity recognition using Raspberry Pi. In Proceedings of the IEEE
32nd International Conference on Tools with Artificial Intelligence, Baltimore, MD, USA, 9–11 November 2020; pp. 722–730,
doi:10.1109/ICTAI50040.2020.00115.

17. Zhou, N.; Sun, W.; Liang, M. Human Activity Recognition based on WiFi Signal Using Deep Neural Network. In Proceedings
of the IEEE 8th International Conference on Smart City and Informatization, Guangzhou, China, 11 February 2020; pp. 26–30,
doi:10.1109/iSCI50694.2020.00012.

18. Mahjoub, A.B.; Atri. M. Human action recognition using RGB data. In Proceedings of the 11th International Design & Test
Symposium, Hammamet, Tunisia, 18–20 December 2016, doi:10.1109/IDT.2016.7843019.

19. Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-Time Action Recognition with Deeply Transferred Motion Vector CNNs.
IEEE Trans. Image Process. 2018, 27, 2326–2339, doi:10.1109/TIP.2018.2791180.

20. Agahian, S.; Farhood, N.; Cemal, K. Improving bag-of-poses with semi-temporal pose descriptors for skeleton-based action
recognition. Vis. Comput. 2019, 35, 591–607, doi:10.1007/s00371-018-1489-7.

21. Anitha, U.; Narmadha, R.; Sumanth, D.; Kumar, D. Robust Human Action Recognition System via Image Processing. Procedia
Comput. Sci. 2020, 167, 870–877, doi:10.1016/j.procs.2020.03.426.

22. Tasnim, N.; Islam, M.K.; Baek, J.-H. Deep Learning Based Human Activity Recognition Using Spatio-Temporal Image Formation
of Skeleton Joints. Appl. Sci. 2021, 11, 2675, doi:10.3390/app11062675.

23. Rustam, F.; Reshi, A.A.; Ashraf, I.; Mehmood, A.; Ullah, S.; Khan, D.M.; Choi, G.S. Sensor-Based Human Activity Recognition
Using Deep Stacked Multilayered Perceptron Model. IEEE Access 2020, 8, 218898–218910.

24. Du, Y.; Lim, Y.; Tan, Y. A Novel Human Activity Recognition and Prediction in Smart Home Based on Interaction. Sensors 2019,
19, 4474. https://doi.org/10.3390/s19204474.

25. Nabati, M.; Navidan, H.; Shahbazian, R; Ghorashi, S.A.; Windridge, D. Using Synthetic Data to Enhance the Accuracy of
Fingerprint-Based Localization: A Deep Learning Approach. IEEE Sens. Lett. 2020, 4, 1–4, doi:10.1109/LSENS.2020.2971555.

26. Won, M.; Zhang, S.; Son, S.H. WiTraffic: Low-Cost and Non-Intrusive Traffic Monitoring System Using WiFi. In Proceedings of
the 26th International Conference on Computer Communication and Networks, Vancouver, BC, Canada, 18 September 2017; pp.
1–9, doi:10.1109/ICCCN.2017.8038380.

27. Tan, S.; Yang, J. WiFinger: Leveraging commodity WiFi for fine-grained finger gesture recognition. In Proceedings of the 17th
ACM International Symposium on Mobile Ad Hoc Networking and Computing, New York, NY, USA, 5 July 2016; pp. 201–210,
doi:10.1145/2942358.2942393.

28. Zhang, D.; Hu, Y.; Chen, Y.; Zeng, B. BreathTrack: Tracking indoor human breath status via commodity WiFi. IEEE Internet Things
J. 2019, 6, 3899–3911.

29. Zeng, Y.; Pathak, P.H.; Xu, C.; Mohapatra, P. Your AP knows how you move: fine-grained device motion recognition through
WiFi. In Proceedings of the 1st ACM Workshop on Hot Topics in Wireless, New York, NY, USA, 11 September 2014; pp. 49–54,
doi:10.1145/2643614.2643620.

30. Arshad, S.; Feng, C.; Liu, Y.; Hu, Y.; Yu, R.; Zhou, S.; Li, H. Wi-chase: A WiFi based human activity recognition system for
sensorless environments. In Proceedings of the IEEE 18th International Symposium on A World of Wireless, Mobile and
Multimedia Networks, Macau, China, 13 July 2017; pp. 1–6, doi:10.1109/WoWMoM.2017.7974315.

31. Liu, X.; Cao, J.; Tang, S.; Wen, J. Wi-sleep: Contactless sleep monitoring via WiFi signals. IEEE Real-Time Syst. Symp. 2014, 346–355,
doi:10.1109/RTSS.2014.30.



Sensors 2021, 21, 7225 19 of 19

32. Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Tool Release: Gathering 802.11n Traces with Channel State Information. ACM
SIGCOMM Comput. Commun. Rev. 2011, 41, 53, doi:10.1145/1925861.1925870.

33. Xie, Y.; Li, Z.; Li, M. Precise Power Delay Profiling with Commodity WiFi. IEEE Trans. Mob. Comput. 2015, 18, 53–64,
doi:10.1145/2789168.2790124.

34. Gast, M.S. 802.11ac: A Survival Guide; O’Reilly Media, Inc.: Sepastopol, CA, USA, 2013; pp. 11–20; ISBN 9781449343149.
35. Li, Z.; Yang, W.; Peng, S.; Liu, F. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans.

Neural. Netw. Learn. Syst. 2021, 1–21, doi:10.1109/tnnls.2021.3084827.
36. Peng, B.; Yao, K. Recurrent Neural Networks with External Memory for Language Understanding. arXiv 2015, arXiv:1506.00195.
37. Wang, L.; Liu, R. Human Activity Recognition Based on Wearable Sensor Using Hierarchical Deep LSTM Networks. Circuits Syst.

Signal Process. 2020, 39, 837–856, doi:10.1007/s00034-019-01116.
38. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780, doi:10.1162/neco.1997.9.8.1735.
39. Wu, Y. Mining action let ensemble for action recognition with depth cameras. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1290–1297.
40. Li, W.; Zhang, Z.; Liu, Z. Action recognition based on a bag of 3D points. In Proceedings of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition—Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 9–14.
41. Yang, J.; Liu, Y.; Liu, Z.; Wu, Y.; Li, T.; Yang, Y. A Framework for Human Activity Recognition Based on WiFi CSI Signal

Enhancement. Int. J. Antennas Propag. 2021, 2021, 6654752, doi.org/10.1155/2021/6654752.
42. Ding, X.; Jiang, T.; Zhong, Y.; Wu, S.; Yang J.; Xue, W. Improving WiFi-based Human Activity Recognition with Adaptive Initial

State via One-shot Learning. In Proceedings of the IEEE Wireless Communications and Networking Conference, Nanjing, China,
29 March–1 April 2021; pp. 1–6, doi:10.1109/WCNC49053.2021.9417590.

43. Wang W.; Liu A.X.; Shahzad M.; Ling K.; Lu S. Understanding and modeling of wifi signal based human activity recognition.
In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 7
September 2015; pp. 65–76.

44. Zhang, Y.; Wang, X.; Wang, Y.; Chen, H. Human Activity Recognition Across Scenes and Categories Based on CSI. IEEE Trans.
Mob. Comput. 2020, 1, doi:10.1109/TMC.2020.3041756.

45. Schulz, M.; Wegemer, D.; Hollick, M. Nexmon: The C-Based Firmware Patching Framework. 2017. Available online: https:
//nexmon.org (accessed on 27 October 2021).

https://nexmon.org
https://nexmon.org

	Introduction
	Related Works
	System Model
	Preliminary
	Hardware and Firmware
	Neural Network
	CNN
	LSTM

	Human Activity Recognition Datasets

	Proposed Method
	Evaluation
	Measurement Setup
	Simulations Results

	Conclusions
	References

