
sensors

Article

Differences in Physiological Signals Due to Age and Exercise
Habits of Subjects during Cycling Exercise

Szu-Yu Lin 1,†, Chi-Wen Jao 1,2,†, Po-Shan Wang 1,3, Michelle Liou 4 , Jun-Liang Wu 5, Hsiao Chun 1,
Ching-Ting Tseng 1 and Yu-Te Wu 1,6,*

����������
�������

Citation: Lin, S.-Y.; Jao, C.-W.; Wang,

P.-S.; Liou, M.; Wu, J.-L.; Chun, H.;

Tseng, C.-T.; Wu, Y.-T. Differences in

Physiological Signals Due to Age and

Exercise Habits of Subjects during

Cycling Exercise. Sensors 2021, 21,

7220. https://doi.org/10.3390/

s21217220

Academic Editors: Vahid Abolghasemi,

Hossein Anisi and Saideh Ferdowsi

Received: 30 September 2021

Accepted: 27 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institution of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
betty810720@nycu.edu.tw (S.-Y.L.); c3665810@ms24.hinet.net (C.-W.J.); b8001071@yahoo.com.tw (P.-S.W.);
apply91122@gmail.com (H.C.); shps961421@gmail.com (C.-T.T.)

2 Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
3 Department of Neurology, Municipal Gandau Hospital, Taipei 112, Taiwan
4 Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan; mliou@stat.sinica.edu.tw
5 Department of Health of Beitou District, Taipei City Government, Taipei 112, Taiwan;

wclwclwcl@health.gov.tw
6 Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
* Correspondence: ytwu@ym.edu.tw
† These authors contributed equally to this paper.

Abstract: Numerous studies indicated the physical benefits of regular exercise, but the neurophys-
iological mechanisms of regular exercise in elders were less investigated. We aimed to compare
changes in brain activity during exercise in elderly people and in young adults with and without
regular exercise habits. A total of 36 healthy young adults (M/F:18/18) and 35 healthy elderly
adults (M/F:20/15) participated in this study. According to exercise habits, each age group were
classified into regular and occasional exerciser groups. ECG, EEG, and EMG signals were recorded
using V-AMP with a 1-kHz sampling rate. The participants were instructed to perform three 5-min
bicycle rides with different exercise loads. The EEG spectral power of elders who exercised regularly
revealed the strongest positive correlation with their exercise intensity by using Pearson correlation
analysis. The results demonstrate that exercise-induced significant cortical activation in the elderly
participants who exercised regularly, and most of the p-values are less than 0.001. No significant
correlation was observed between spectral power and exercise intensity in the elders who exercised
occasionally. The young participants who exercised regularly had greater cardiac and neurobiological
efficiency. Our results may provide a new exercise therapy reference for adult groups with different
exercise habits, especially for the elders.

Keywords: exercise; EEG; EMG; ECG; brain activity; age; exercise habit

1. Introduction

Regular physical exercise is associated with health benefits and is a crucial element of
preventive strategies for promoting health. During exercise, moving the body requires a
substantial degree of brain activity, necessitating the activation of numerous neurons to
generate, receive, and interpret repeated, rapid-fire messages from the nervous system [1].
However, the neurophysiological mechanisms underlying the effects of exercise are poorly
understood and require further investigation. Cycling is a common exercise, and daily
cycling can enable a large proportion of the population to meet their recommended physical
activity levels [2]. Several studies have reported that cycle ergometers are suitable for
measuring physiological signals emitted during exercise. Studies on cycling exercise have
reported that such exercise can induce specific changes in cortical activity. These changes
are measured through various methods, including electroencephalography (EEG), the aim
of which is to study the modulation of brain activity associated with performing cycling
tasks [3–7].

Sensors 2021, 21, 7220. https://doi.org/10.3390/s21217220 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0590-7977
https://doi.org/10.3390/s21217220
https://doi.org/10.3390/s21217220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217220
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217220?type=check_update&version=2


Sensors 2021, 21, 7220 2 of 15

Hottenrott et al. reported that cortical brain activation could be measured during
cycling exercise; they suggested that higher cortical brain activation is necessary to increase
muscle strength at higher cadences [4]. Enders et al. recently revealed that EEG power
increased significantly in the frontal cortex and parietal cortex as fatigue accumulated
throughout high-intensity cycling exercise activities. Notably, they observed a broadband
increase in EEG power, in contrast to other studies that investigated various exercise
conditions and observed changes that were limited to the alpha and beta bands [5]. Brum-
mer et al. localized the exercise-induced changes in brain cortical activity by using the
active-EEG/low-resolution electromagnetic tomography analysis and demonstrated that
motor cortex activity increased with additional exercise intensity on a cycle ergometer [6].
Although Brummer et al. used different methodologies from other, earlier research, all
of the aforementioned studies have focused on the effects of exercise intensity on cortical
activity in young people or athletes [7]. Few studies have examined the activity of the
cerebral cortex during exercise in other segments of the population, especially in older
adults. Moreover, few studies have investigated the neurobiological differences between
regular and occasional exercisers during physical exercise.

Accordingly, the aim of the present study was to investigate the changes in brain
activity during exercise in elderly people and young adults. Previous studies have proposed
the use of heart rate as a measure of exercise intensity [8]. They have described a positive
linear correlation between increasing exercise intensity and changes in heart rate. However,
because of age-related factors, the heart rate should not be directly used as an index for
measuring exercise intensity. Santos reported that the aging process significantly alters
the mean heart rate, which decreases with advancing age [9]. Therefore, the mean heart
rates of young adults and elderly people at rest differ. In the present study, we used the
average maximum heart rate ratio (AMHRR) [10,11], which can reduce the effect of age on
the resting heart rate and maximum heart rate in response to exercise, and hypothesized
that the AMHRR would facilitate the comparison of EEG and electromyography (EMG)
readings between elderly people and young adults at the same exercise intensity.

We measured cardiac, cerebral, and muscular activity levels in elderly people and
young adults in response to cycling exercise and investigated the differences between
physiological signals obtained from four study groups: regularly exercising elderly people,
occasionally exercising elderly people, regularly exercising young people, and occasionally
exercising young people. In general, under a constant cycling period and intensity, regularly
exercising young adults could achieve higher exercise efficiency with lower brain activation
compared with the other participants. However, occasionally exercising young adults
and elderly people may need to recruit more muscle units and increase the activation of
the motor cortex during cycling compared with regularly exercising young adults. We
hypothesized that physiological signal patterns would be similar between the occasionally
exercising young adults and elderly people. We also anticipated that as age increases, the
significant differences of physiological signals between occasional and regular exercisers
may be more obvious in elderly adults than in young adults.

2. Materials and Methods
2.1. Participants and Data Acquisition

This study included 36 healthy young adults (18 men and 18 women aged 22.39± 3.56 years)
and 35 elderly people (20 men and 15 women aged 64.65 ± 2.21 years) as participants.
The elderly participants as well as the young participants were subdivided into 2 groups
according to the time spent on exercise per week; specifically, participants who exercised
for a total time of more than 3 h every week were considered as regularly exercising
individuals, and those exercised for a total time of less than 3 h every week were regarded
as occasionally exercising individuals [12]. All participants provided informed consent after
receiving a detailed explanation of the purpose and potential benefits, and risks involved
in the study. This study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Institutional Review Board of National Yang Ming Chiao
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Tung University (YM106115E-1, 7 March 2019). Moreover, all participants were confirmed
by physicians that their body mass index (BMI) was not overweight and without any
lower limb or pelvic injuries, and had no brain-related diseases such as stroke, epilepsy,
neurodegenerative diseases, orthopedic, or cardiovascular diseases. ECG, EMG, and EEG
signals were recorded using V-AMP (Brain Products GmbH, Munich, Germany) with a
1 kHz sampling rate. The EEG channels included 10 wired wet electrodes, namely F3, F4, Fz,
C3, C4, Cz, P3, P4, Pz, and A1, and were used according to the international 10/20 system
(Figure 1a) [13]. The ground electrode was positioned at FPz. The EEG impedance level
was maintained at <20 kΩ during the recording. The A1 channel was used as the reference
for all electrodes.
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Figure 1. Locations of electrodes for EMG, ECG, and EEG. (a) location of electrodes for EEG (b) loca-
tion of electrodes for ECG and EMG.

Electrocardiography (ECG) signals were recorded using 2 bipolar lead electrodes. The
lead 1 (negative) electrode was situated below the right clavicle, on the mid-clavicular
line within the rib cage frame; the lead 2 (positive) electrode was placed on the lower left
abdomen, also within the rib cage frame. The surface EMG (sEMG) electrodes were placed
on the quadriceps muscle (Figure 1b).

2.2. Experimental Protocol

We conducted an experiment to record EEG, ECG, and EMG signals while the par-
ticipants performed the cycling exercise. Each of the participants sat on an electronically
braked cycle ergometer in the upright position, with electrodes attached to their body. The
study involved a pretest session and an experimental session. The pretest session involved
10 40 s stages of increasing workload with 20 s of rest between stages. For every participant,
the workload ranged from 1 to 10. After the pretest session, the participants took a 5 min
rest. The root mean square (RMS) amplitudes of EMG signals recorded for each stage
were calculated, and the maximum RMS amplitude was considered the subject-specific
maximum workload. For a participant, a workload corresponding to 40% of the maximum
RMS amplitude was defined as the suitable workload for this participant. For safety,
we assigned lighter exercise loads to the elderly participants to avoid injury or muscle
damage due to over-load, considering the effects of declining physiological function with
aging. Hence, the pretest session was considered to be excessively strenuous for the elderly
participants, their suitable workload was set to 3.

In the experimental session, the participants were asked to ride the bicycle in 3 5-min
exercise stages, resting for 30 s between stages. These 3 stages corresponded to relatively
light, suitable, and relatively heavy workloads. EEG, ECG, and EMG signals were recorded
simultaneously while the participants performed the exercise. Signals were also recorded
for 5 min before the exercise (pre-exercise period) and for another 5 min after the exercise
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(post-exercise period). In this study, we required subjects to minimize their head and
upper body movement as much as possible during the experiment. The participants
were also asked not to move during the resting period. Figure 2 illustrates the overall
experimental protocol.
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2.3. Data Analysis
2.3.1. ECG Analysis

ECG signals were detrended to remove low-frequency shifts, and the peak-to-peak
R waves were identified to calculate RR intervals. The RR interval is the time elapsed
between 2 successive R waves of the QRS signal on the ECG. We further used the AMHRR
to monitor the status of each participant during the experiment [14]. The AMHRR can be
defined as follows:

AMHRR =
averaged heart rate in each stage− RHR

predicted maximal heart rate(220− age− RHR)
× 100% (1)

where RHR is the average heart rate during rest [10,11].

2.3.2. EEG Analysis

For each participant, EEG signals recorded during the 5 min rest and during the
exercise sessions were subjected to band-pass filtering between 1 and 45 Hz. Although
participants were advised not to blink their eyes, clench their teeth, tense their muscles, or
move their heads, these activities occasionally occurred and introduced artifacts into the
EEG data. All signals with these artifacts were discarded during offline data processing.
We further applied a moving average to the remaining signals for artifact suppression.
Subsequently, each signal was divided into non-overlapping 1 min segments and then
subjected to the wavelet transform [15].

The wavelet transform is based on small wavelets with a limited duration. The wavelet
transform of a continuous-time signal x(t) can be defined as follows:

WT(a, b) =
∫ ∞

−∞
x(t)ψ(a,b)(t)dt (2)

where

ψ(a,b)(t) =
1√
|a|

ψ

(
t− b

a

)
(3)

is called the mother wavelet. The notations a and b denote the dimensionless frequency scale
variable and time-like translation variable, respectively. The Wavelet transform enables the
achievement of excellent localization both in the time domain through translations of the
mother wavelet and in the scale (frequency) domain through dilations.

In this study, we used the Morlet wavelet [15] to transform each 1 min non-overlapping
segment of an EEG signal (Figure 3b) in the 9 channels into temporal-spectral maps
(Figure 3c). Each of these maps had 60,000 samples on the horizontal axis and 7 passbands—
namely 1–4 (delta), 4–8 (theta), 8–10 (low alpha), 10–12 (high alpha), 13–21 (low beta), 21–30
(high beta), and 31–45 Hz (gamma) Hz—on the vertical axis (Figure 3d). The spectral power
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levels in each frequency band were averaged to obtain a frequency-averaged temporal
power curve, which was again averaged across time to derive a frequency-time-averaged
value. Thus, the average power per minute per frequency band was calculated. Each
exercise stage was 5 min. Thus, the average power was calculated for 3 different workloads
(Figure 3e). Subsequently, to normalize the average power for each exercise stage, this
power was divided by the power at rest before exercise, thus yielding the normalized
power (Figure 3f).
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Figure 3. EEG signal analysis procedure. (a) Five-minute EEG signals during exercise. (b) Five-
minute signals divided into 1-min segments. (c) Temporal–spectral maps after the application of the
Morlet wavelet transform on 1-min segments. (d) Temporal–spectral map divided into seven bands:
delta, theta, low-alpha, high-alpha, low-beta, high-beta, and gamma bands. (e) Average power of
each frequency band in each exercise stage. (f) Normalized average power of each frequency band in
each exercise stage.

2.3.3. EMG Analysis

The EMG signals were detrended to remove low-frequency shifts caused by the
position fluctuations produced during the cycling exercise. The EMG signals were then
subjected to band-stop filtering between 55 and 65 Hz for the removal of noise effects.
After preprocessing, the signals were divided into 5 s segments (5000 sample points). RMS
is usually used to predict muscle activity. Generally, a higher RMS value means higher
muscle activity. RMS can be derived as follows:

RMS =

√√√√ 1
N

N

∑
n=1

x2
n (4)

where x2
n represents the EMG signal and N represents the length of the signal.
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2.3.4. Statistical Analysis

Pearson correlation analysis was used to evaluate the linear relationships between
normalized power of EEG and the AMHRR or RMS of EMG. The AMHRR was considered
an indicator of heart load for the various exercise stages. Thus, we could observe EEG
and EMG changes with different exercise loads. In addition, paired-sample t-tests were
used to examine for significant within-group changes before and after exercise (stage 3
and rest 2) to determine the post-exercise recovery status. In this study, MATLAB R2013b
software (Mathworks, Natick, MA, USA) was applied for data analysis. Figure 4 illustrates
a summary of the analysis procedures of EEG, ECG and EMG used in this study.
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3. Results
3.1. Changes in Heart Rate and AMHRR with Exercise Stages

The mean heart rate and the AMHRR of the young and elderly participants during
the different exercise stages are presented in Tables 1 and 2. Figure 5 illustrates the ECG
analysis results for mean heart rate and AMHRR.The results revealed that in all groups,
the heart rate and the AMHRR increased gradually with each exercise stage. The heart
rates of the elderly participants were lower than those of the young participants. However,
the AMHRR values of the elderly participants were not significantly different from those
of the young participants, indicating that the cardiac load conditions of both the young
and elderly participants were similar. The AMHRR was derived by normalizing the heart
rate and excluding the effects of basal heart rate and age. Therefore, the AMHRR was
suitable for observing the physiological state of the heart. We used Pearson correlation co-
efficient analysis to estimate the association between normalized EEG power and AMHRR
per minute.

Table 1. ANOVA results for heart rate in young and elderly participants during different exercise
stages. * Indicates p-value < 0.05.

Heart Rate (BPm)

Mean SD F Post Hoc Test (p < 0.05)

Rest 1

Youth Regular 87.26 10.39

14.97 *

Elderly Regular, Occasional
Youth Occasional 91.67 13.86 Elderly Regular, Occasional
Elderly Regular 72.57 8.18 Youth Regular, Occasional

Elderly Occasional 73.07 9.27 Youth Regular, Occasional

Stage 1

Youth Regular 127.33 16.11

11.65 *

Elderly Regular, Occasional
Youth Occasional 122.19 13.39 Elderly Regular, Occasional
Elderly Regular 103.95 16.63 Youth Regular, Occasional

Elderly Occasional 103.65 14.23 Youth Regular, Occasional
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Table 1. Cont.

Heart Rate (BPm)

Mean SD F Post Hoc Test (p < 0.05)

Stage 2

Youth Regular 140.34 19.90

9.35 *

Elderly Regular, Occasional
Youth Occasional 134.19 16.38 Elderly Regular, Occasional
Elderly Regular 115.43 19.18 Youth Regular, Occasional

Elderly Occasional 114.12 17.14 Youth Regular, Occasional

Stage 3

Youth Regular 152.12 21.66

10.81 *

Elderly Regular, Occasional
Youth Occasional 147.16 17.20 Elderly Regular, Occasional
Elderly Regular 124.22 20.69 Youth Regular, Occasional

Elderly Occasional 122.78 18.06 Youth Regular, Occasional

Rest 2

Youth Regular 110.19 16.87

5.65
Youth Occasional 109.42 18.10
Elderly Regular 94.03 15.45

Elderly Occasional 94.20 13.32

Table 2. ANOVA results for AMHRR in young and elderly participants during different exer-
cise stages.

AMHRR (%)

Mean SD F Post Hoc Test (p < 0.05)

Rest 1

Youth Regular
Youth Occasional
Elderly Regular

Elderly Occasional

Stage 1

Youth Regular 36.33 11.79

1.47
Youth Occasional 28.29 10.36
Elderly Regular 37.78 17.69

Elderly Occasional 36.89 16.17

Stage 2

Youth Regular 48.33 14.58

1.41
Youth Occasional 40.72 12.84
Elderly Regular 51.98 20.87

Elderly Occasional 49.79 20.29

Stage 3

Youth Regular 58.96 16.26

0.71
Youth Occasional 53.69 12.83
Elderly Regular 62.54 24.02

Elderly Occasional 60.56 21.28

Rest 2

Youth Regular 20.95 9.60

1.96
Youth Occasional 17.59 8.66
Elderly Regular 26.08 16.53

Elderly Occasional 25.86 13.06

3.2. Changes in EEG during Exercise in Young Participants with and without Exercise Habits

We used Pearson correlation analysis to estimate the correlation between normalized
EEG power and the AMHRR. Table 3 presents a summary of the regression coefficients of
normalized EEG power and the AMHRR for all frequency bands. According to this table, a
moderately strong correlation was observed, with the normalized coefficient ranging from
0.4 to 0.6. The results demonstrated that changes in EEG at the most frequency bands at
C3, C4, and Cz were significantly and positively correlated with the AMHRR in both the
young and elderly participants (p < 0.001). Moreover, the effect of exercise on EEG was
mainly observed in the alpha band.
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Table 3. Regression coefficients for the correlation between normalized EEG power and AMHRR during exercise.
Boldface values represent moderate positive correlation between normalized EEG power and the AMHRR (correlation
coefficient > 0.4).

Delta Theta L-Alpha H-Alpha L-Beta H-Beta Gamma

C3

Youth Occasional 0.1787
(0.1959)

0.2137
(0.1207)

0.4083
(0.0022)

0.4699
(0.0003)

0.3848
(0.0041)

0.2407
(0.0796)

0.1770
(0.2004)

Youth Regular 0.4426
(0.0008)

0.4215
(0.0015)

0.4679
(0.0004)

0.4493
(0.0007)

0.3831
(0.0042)

0.2130
(0.1220)

0.1404
(0.3113)

Elderly Occasional 0.3759
(0.0066)

0.2405
(0.0892)

0.2583
(0.0673)

0.2672
(0.0580)

0.2463
(0.0815)

0.2088
(0.1414)

0.2381
(0.0925)

Elderly Regular 0.7037
(<0.0001)

0.6519
(<0.0001)

0.6913
(<0.0001)

0.6441
(<0.0001)

0.5516
(<0.0001)

0.5376
(<0.0001)

0.5284
(<0.0001)

C4

Youth Occasional 0.2498
(0.0685)

0.2907
(0.0329)

0.4961
(0.0001)

0.5641
(<0.0001)

0.4637
(0.0004)

0.3110
(0.0221)

0.2288
(0.0961)

Youth Regular 0.2103
(0.1268)

0.2221
(0.1065)

0.3645
(0.0067)

0.3643
(0.0068)

0.2607
(0.0569)

0.0716
(0.6068)

−0.0280
(0.8406)

Elderly Occasional 0.3585
(0.0098)

0.2222
(0.1170)

0.2012
(0.1569)

0.2087
(0.1417)

0.2184
(0.1237)

0.1866
(0.1899)

0.2366
(0.0947)

Elderly Regular 0.6107
(<0.0001)

0.6164
(<0.0001)

0.6644
(<0.0001)

0.6070
(<0.0001)

0.3623
(0.0071)

0.2948
(0.0305)

0.2788
(0.0412)

Cz

Youth Occasional 0.1729
(0.2112)

0.2076
(0.1319)

0.3869
(0.0038)

0.4639
(0.0004)

0.3673
(0.0063)

0.2385
(0.0824)

0.1706
(0.2176)

Youth Regular 0.2310
(0.0929)

0.2845
(0.0371)

0.4181
(0.0017)

0.4113
(0.0020)

0.3397
(0.0120)

0.1716
(0.2146)

0.0650
(0.6404)

Elderly Occasional 0.3904
(0.0046)

0.2652
(0.0600)

0.2624
(0.0629)

0.2700
(0.0553)

0.2668
(0.0584)

0.2342
(0.0981)

0.2798
(0.0468)

Elderly Regular 0.4380
(0.0009)

0.4607
(0.0005)

0.5498
(<0.0001)

0.5505
(<0.0001)

0.4959
(0.0001)

0.5027
(0.0001)

0.4986
(0.0001)
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According to Table 3, we could also observe the effect of exercise habits on normalized
EEG power in the young participants. The correlation between normalized EEG power at
C3 and the AMHRR was higher in young participants who exercised regularly, and the
correlation between normalized EEG power at C4 and the AMHRR was higher in young
participants who exercised occasionally.

3.3. Changes in EEG during Exercise in Elderly Participants

As presented in Table 3, the regression coefficients revealed a moderate or high
correlation between normalized EEG power and the AMHRR in the elderly participants
who exercised regularly. However, the correlation observed for the elderly participants
who exercised occasionally was low and nonsignificant. Combining the results for elderly
participants and young participants revealed that maintaining adequate exercise habits was
more imperative for older adults than for younger adults. As illustrated in Figure 6, the
elderly participants who exercised regularly demonstrated consistent EEG power changes.
As the AMHRR increased, the normalized EEG power also increased. By contrast, no clear
trend was observed for the elderly participants who exercised occasionally. The changes
in EEG power were more dispersed. These results indicated that adequate exercise habits
may lead to more stable brain wave changes in elderly people during exercise.
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3.4. Paired t-Test Results Observed during and after Exercise

Figure 7 displays the normalized power values and statistical analysis results observed
at C3 (low beta) at stage 3 and during post-exercise rest. Accordingly, the normalized
power value during post-exercise rest would decrease to 1 if the power value during the
pre- and post-exercise rest periods were identical. According to the plots in Figure 7, we
observed the recovery speed of EEG power after exercise. The results revealed a significant
difference in the change in normalized power between the exercise stage and post-exercise
rest state in the young participants, regardless of their exercise habits. By contrast, in the
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elderly participants, the difference in the change in normalized power between stage 3
and post-exercise rest states was nonsignificant. Table 4 presents a summary of the results
of the paired t-test for normalized EEG power in stage 3 and in the post-exercise rest
state. In particular, the difference between the young and elderly participants was clearly
observed in the beta band. The young participants recovered faster after exercise; therefore,
a significant difference in the change in normalized power was observed. By contrast,
the elderly participants recovered more slowly after exercise; hence, the difference in the
change in normalized power was nonsignificant.
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Figure 7. Histogram of EEG normalized power in low-beta (C3) band during exercise stage 3 and post-exercise rest.

Table 4. p values for paired-sample t-tests of normalized EEG power during and after exercise.

Delta Theta L-Alpha H-Alpha L-Beta H-Beta Gamma

C3

Youth Occasional p = 0.0861 p = 0.0872 p = 0.1032 p = 0.0545 p = 0.0093 p = 0.0272 p = 0.0064

Youth Regular p < 0.001 p = 0.0011 p = 0.6801 p = 0.5305 p = 0.0023 p = 0.0011 p < 0.001

Elderly Occasional p = 0.0122 p = 0.0621 p = 0.9527 p = 0.9249 p = 0.6933 p = 0.1791 p = 0.0027

Elderly Regular p = 0.1019 p = 0.6662 p = 0.0180 p = 0.0324 p = 0.1596 p = 0.3657 p = 0.3446

C4

Youth Occasional p = 0.0658 p = 0.0499 p = 0.0738 p = 0.0348 p = 0.0049 p = 0.0151 p = 0.0034

Youth Regular p < 0.001 p = 0.0022 p = 0.4626 p = 0.4761 p = 0.0021 p < 0.001 p < 0.001

Elderly Occasional p = 0.0240 p = 0.0543 p = 0.7284 p = 0.8185 p = 0.5308 p = 0.1379 p = 0.0017

Elderly Regular p = 0.0122 p = 0.4295 p = 0.0197 p = 0.0569 p = 0.5484 p = 0.9590 p = 0.1634

Cz

Youth Occasional p = 0.0808 p = 0.0902 p = 0.1752 p = 0.0640 p = 0.0106 p = 0.0252 p = 0.0045

Youth Regular p = 0.0015 p = 0.0211 p = 0.9572 p = 0.8219 p = 0.0109 p = 0.0037 p < 0.001

Elderly Occasional p = 0.0254 p = 0.0952 p = 0.8433 p = 0.8706 p = 0.9117 p = 0.4567 p = 0.0040

Elderly Regular p = 0.1706 p = 0.3402 p = 0.6988 p = 0.6412 p = 0.7912 p = 0.6926 p = 0.0321

Overall, the alpha and beta bands could reflect changes in brain wave power during
and after exercise. The alpha band can be used to observe changes in brain wave power
during exercise, and the beta band can be used to observe recovery in rest states after
exercise. However, further understanding of the effect of age and exercise habits on EEG
changes is warranted.



Sensors 2021, 21, 7220 11 of 15

3.5. Relationship between EMG RMS and AMHRR for the Four Test Groups

Figure 8 displays the results of the linear regression on the differences in EMG RMS
between stages 2 and 1 (i.e., ∆EMG RMS) and the difference in AMHRR between stages 2
and 1 (i.e., ∆AMHRR). Because of the extensive individual differences in EMG RMS values
and the location of the EMG bipolar electrodes, we normalized the EMG RMS values;
that is, we divided the RMS values for stages 2 and 3 by those for stage 1. This can be
used to observe the increase in ∆EMG RMS with exercise load. The results revealed a
more significant trend of increasing ∆EMG RMS with ∆AMHRR in the young participants
than in the elderly participants. Additionally, the regression coefficients for the young
participants who exercised occasionally were higher than those for the young participants
who exercised regularly. However, for the elderly participants, a low correlation was
observed between the ∆EMG RMS values and ∆AMHRR, regardless of their exercise
habits, and their ∆EMG RMS values were more clustered. This low correlation may be
because in this study, the elderly participants were assigned a fixed cycling load that was
lower than those assigned to the young participants.
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4. Discussion

This study used ECG, EMG, and EEG to explore changes in physiological signals
transmitted during cycling exercise in young and elderly participants with different exercise
habits. We assigned lighter exercise loads to the elderly participants to avoid muscle
damage or injury from overload, considering the effects of declining physiological function
with aging. According to previous research, exercise intensity (workload) is reflected in the
response of many physiological processes, including heart rate [16]. Therefore, we defined
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the exercise load according to the AMHRR and further observed changes in EEG and EMG
with gradually increasing exercise loads.

4.1. Spectral Power of EEG Increases with AMHRR during Exercise

We observed that during exercise, the normalized power of each frequency band of the
EEG signal was positively and linearly correlated with the AMHRR. We also determined
that an increase in normalized EEG power was consistent with an increase in AMHRR.
This consistency was observed in most EEG frequency bands, including the delta, theta,
low-alpha, high-alpha, low-beta, and high-beta bands. Furthermore, these phenomena
were more evident in the low-alpha, high-alpha, low-beta, and high-beta frequency bands.
Earlier research reported that cortical activity increased with fatigue during exercise in
order to maintain a constant physical output [1]. Schillings et al. also reported that the
energy loss associated with fatigue during exercise may cause increased brain activation in
the motor cortex [17].

Previous studies determined that during exercise, EEG cortical activation was most
affected in the alpha and beta frequency bands [18–21]. Therefore, most experiments and
literature reviews on the effects of exercise on EEG cortical activity were limited to these
two frequency bands. Several previous studies involving ergometer cycling revealed that
incremental graded exercise tests resulted in increased alpha power in the central and
parietal regions as well as increased EEG current density in the primary motor region.
Bailey et al. showed an increase in alpha and beta power after sustained intensity bicycle
ergometer exercise with a progressively increasing workload [3]. Lin et al. reported
increased EEG power in the alpha and beta bands in the frontal and central areas during
high-resistance pedaling exercise [22]. They further proposed that the fatigue situation
would be accompanied by an increase in α and β power. However, increased EEG beta
activity may be associated with attentional demands and higher levels of arousal. Other
studies demonstrated that the effect of exercise on EEG cortical activity was not limited to
the alpha and beta bands [3,5]. Our results demonstrated that the alpha band was more
suitable for observing changes in brain activation during exercise. However, the beta band
was more appropriate for determining the differences between brain activation observed
during exercise and that observed during post-exercise rest.

4.2. Young People Who Exercise Regularly Have a More Coordinated Use of Their Dominant Leg

Our results reveal that the EEG differences between young participants who exercised
regularly and those who exercised occasionally were in the activation of motor cortical
areas in the left and right hemispheres (i.e., C3 and C4). A higher correlation was observed
between normalized power changes at C3 and exercise load in the young participants
who exercised regularly. However, the normalized power at C3 and that at C4 in the
young participants who exercised occasionally were moderately correlated. The concept
of limb dominance was based on the fact that the two hemispheres of the brain function
differently and tend toward activities that use one limb under voluntary control [23]. Bhise
et al. observed that when for an inherently manipulative task, most participants used the
dominant leg [24]. Young people who exercise regularly have greater coordination in the
use of the dominant leg, meaning that they require only the dominant leg to complete
the exercise. However, young people who exercise occasionally must use both legs to
compensate for the deficiency of the dominant leg [25–27]. The RMS of EMG signals is
often used as a concise quantitative indicator of muscle activity; we found that the young
participants who exercised occasionally had significantly higher EMG RMS values than did
those who exercised regularly. Our results indicate that the dominant legs of young people
who exercise occasionally require more force output to perform a given task. However,
that the young participants who exercised occasionally had lower EEG activation in the C3
region than did those who exercised regularly.
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4.3. Regular Exercise in Elderly People Induces Significant Cortical Activation during Exercise

We observed that the highest increase in EEG normalized power occurred when the
participants were at their highest AMHRR (exercise workload). This phenomenon was
particularly notable in the elderly participants who exercised regularly. The results reveal
that the normalized EEG power increased with the AMHRR in the elderly participants
who exercised regularly, with the corresponding correlation being moderate to high. The
heart rate increases with the delivery of oxygenated blood around the body and into
the brain. Muscles require relatively high energy during exercise. Similarly, the brain
consumes glucose or other carbohydrates when the body is in motion [28]. Therefore, the
brain becomes more active during exercise. This suggests that elderly people who exercise
regularly require relatively high exercise performance and muscle strength during exercise,
which may induce considerable activation of the cerebral cortex. However, the change
in normalized EEG power with respect to exercise load was less consistent in the elderly
participants who exercised occasionally. Accordingly, the results reveal no significant
correlation between normalized EEG power and the AMHRR. Although this phenomenon
could also be observed in the young participants, the results were less pronounced than
those observed in the elderly participants. Our results show that the difference in EEG
signal changes between the elderly participants who exercised occasionally and those
who exercised regularly was more significant than that between the young participants
who exercised occasionally and those who exercised regularly. For elderly people, regular
exercise can help reduce the functional decline associated with aging.

4.4. EEG Recovery after Exercise Is Slower in Elderly People

The paired t-test revealed significant beta band activation in the young participants
in stage 3 and during post-exercise rest. By contrast, this phenomenon was not observed
in the elderly participants. These results indicate that the young participants returned
to a resting state more quickly after exercise, whereas the elderly participants required a
longer time to recover. Aging affects the post-exercise recovery process. Several studies
have revealed a functional decrease in the replenishment of energy supply before and after
exercise. Research has presented evidence of differences in acute recovery of physiological
parameters after fatiguing exercise between younger and older participants. For similar
exercise stimuli, elderly people require a longer recovery period when returning to baseline
levels after exercise [29]. Although this study did not reveal a significant difference in
exercise recovery between the elderly participants with and without exercise habits, the
EEG results demonstrate that the elderly participants who exercised regularly had superior
brain regulation of exercise load than did those who exercised occasionally.

However, there are still some limitations in this study. First, the muscle artifacts
occurring in the head and neck musculature during cycling exercise may be recorded in
EEG signals. In this study, we asked subjects to minimize their head and upper body
movement as much as possible during the experiment. Unfortunately, experimental
protocols are still sensitive to physiological and non-physiological artifacts, including
motion artifacts that may contaminate the EEG recordings. Following the procedure of
artifact suppression, we applied a simple cleaning noise method, moving average, to
remove the noise caused from motion artifacts in EEG signals. Although these procedures
can eliminate motion artifacts but may also decrease the sensitivity in EEG signals. Second,
the strength of muscle will decrease with aging, and there exist an individual difference in
this aging effect. In this study, we did not take the muscle strength decay of elderly and
individual muscle ability into consideration in the experiment setup.

5. Conclusions

This study revealed the AMHRR to be a suitable indicator of exercise intensity and
that the physiological indicators of ECG and EEG in elderly people are different from those
in young people because of aging. We found that the EEG spectral power of elders who
exercised regularly revealed the strongest positive correlation with their exercise intensity.
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The results demonstrate that exercise-induced significant cortical activation in the elderly
participants who exercised regularly, and most of the p-values are less than 0.001. No
significant correlation was observed between spectral power and exercise intensity in the
elders who exercised occasionally. The young participants who exercised regularly had
greater cardiac and neurobiological efficiency. Therefore, appropriate exercise habits may
benefit brain responsiveness and improve the efficiency of cardiac and neurobiological
responses to exercise. Our results may provide a new exercise therapy reference for adult
groups with different exercise habits, especially for the elders.
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