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Abstract: Underwater vision-based detection plays an increasingly important role in underwater
security, ocean exploration and other fields. Due to the absorption and scattering effects of water on
light, as well as the movement of the carrier, underwater images generally have problems such as
noise pollution, color cast and motion blur, which seriously affect the performance of underwater
vision-based detection. To address these problems, this study proposes an end-to-end marine
organism detection framework that can jointly optimize the image enhancement and object detection.
The framework uses a two-stage detection network with dynamic intersection over union (IoU)
threshold as the backbone and adds an underwater image enhancement module (UIEM) composed
of denoising, color correction and deblurring sub-modules to greatly improve the framework’s ability
to deal with severely degraded underwater images. Meanwhile, a self-built dataset is introduced to
pre-train the UIEM, so that the training of the entire framework can be performed end-to-end. The
experimental results show that compared with the existing end-to-end models applied to marine
organism detection, the detection precision of the proposed framework can improve by at least 6%,
and the detection speed has not been significantly reduced, so that it can complete the high-precision
real-time detection of marine organisms.

Keywords: marine organism detection; marine monitoring; underwater image enhancement;
underwater object detection; joint optimization; generative adversarial mechanism

1. Introduction

The rapid development of underwater observation technology provides underwater
optical vision with very broad application prospects. As a typical application of under-
water optical vision, underwater visual target detection plays an increasingly important
role in underwater security [1–4], marine exploration [5,6], fish farming [7] and marine
ecology [8,9]. Therefore, the achievement of underwater autonomous operation through
visual target detection completion by use of underwater optical images has become a
research hotspot in the field of computer vision [1].

Given the absorption and scattering effects of water on light, underwater images [10–18]
are characterized by low color contrast, bluish-green tones [12–15], noise pollution [16,17],
and therefore poor quality relative to ordinary images [19,20]. In addition, the carrier is
usually moving in actual underwater operation, and the collected images will inevitably
include motion blur which, in turn, results in a lack of clear contour structure and rich
texture information in underwater images [21]. Thus, the underwater background environ-
ment will affect the accuracy of underwater visual target detection and limit its practical
engineering applications.
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The current underwater visual target detection methods can be roughly divided into
two categories according to the underwater environment containing the visual imaging
equipment: underwater target detection on the basis of the ideal hypothesis [18,22–28] and
on a complex environment [29–33]. The underwater target detection method according to
the ideal assumption is suitable for the ideal underwater environment with good lighting
conditions and relatively static carrier and can complete simple engineering applications.
Those methods include traditional target detection and general target detection approaches
based on deep neural networks. For the traditional target detection technique, correspond-
ing features on the basis of the human analysis of specific underwater tasks are firstly
selected, such as color [22], texture [23], and geometric features [18]. Subsequently, models
based on the features are developed so as to achieve underwater target detection tasks.
However, these features depend on human experience and task characteristics to a large
extent, thereby generating poor environmental adaptability. Traditional detection models
are also relatively limited. To further improve the target detection performance of the
model, deep neural networks are introduced into underwater target detection. The more
popular methods include SSD [26], YOLO [27], and Faster RCNN [28]. Compared with the
traditional method in which modeling and detecting are performed after extracting features,
the general target detection technique based on the deep neural network can automatically
complete feature extraction (which improves environmental adaptability) and also greatly
improves the detection performance. Nevertheless, these methods overlook the actual
underwater operating environment. Once the actual environment deviates from the ideal
assumption, the detection performance of these methods will be considerably reduced.

Underwater target detection methods on the basis of a complex environment initiate
a typical two-step strategy specific to the defects of underwater imaging. First, the low
color contrast, bluish-green tone [12–15], and noise pollution [16,17] in the picture are
addressed through a series of image enhancement preprocessing steps, such as max-
RGB [29], shades of gray [30], and brightness mapping [31]. Afterwards, the detection and
classification of marine organisms are completed with the help of a detection model based
on the deep neural network. This approach enhances the model’s adaptability to complex
underwater environments. Nonetheless, inconsistencies in the image preprocessing and
the optimization goals of target detection models exist in the staged method, and both
features cannot be jointly tuned. Furthermore, the combination of multiple models is not
conducive to project implementation.

To solve the above problems, some researchers embed an image preprocessing algo-
rithm into the detection network framework [29,32,33] and complete the algorithm through
the neural network so that it can be unified in the deep learning framework and complete
the end-to-end training and recognition. For example, Huang et al. first embedded image
enhancement into a VGG16 feature extraction network on the basis of an extended data set
and completed the detection and recognition of underwater organisms in the URPC data
set in the extracted feature maps with the use of the Faster R-CNN network [33]. Some
scholars also proposed a novel sample weighted loss function invert multi-class Adaboost
to reduce the impact of noise on the detection network [29]. Fan et al. introduced a compos-
ite connection backbone to enhance feature representation to address the blur and texture
distortion in underwater data sets [32]. The main problems in the existing end-to-end ap-
proach are as follows: (1) Only certain image quality deterioration factors are considered in
the image enhancement algorithm. As the enhancement work is only partially completed,
more complex underwater operating environments cannot be explored. (2) As the marine
organisms in the underwater images usually vary in scales and size and are uneven in
terms of position distribution because of certain limitations of the underwater movement
of the camera’s carrier, the multi-scale problem of target recognition is inevitable. However,
multi-scale problems are not specially processed in the feature extraction network in the
existing framework. (3) The network model used is relatively old. A one-way multi-layer
convolutional neural network is only employed for feature extraction, and this approach is
shallow and cannot consider both global and local feature information.
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An end-to-end underwater target detection model is thus proposed to specifically
address the problem of marine organism detection in complex environments. Compared
with the existing staged model and end-to-end model, the target feature extraction network
structure is improved, able to consider multiple factors that lead to the degradation of
underwater imaging quality and can achieve high-precision marine organisms under the
premise of satisfying real-time detection. The advantages are as follows:

(1) An end-to-end underwater object detection framework is proposed, which can jointly
optimize the enhancement module and the detection module so as to improve the
problem of large information loss in the existing two-stage model with first enhance-
ment and then detection. In the enhancement module, the introduction of three
sub-modules as denoising, color correction, and deblurring can alleviate the effects of
the three main factors that lead to a significant drop in underwater imaging quality at
the same time.

(2) The feature pyramid network is introduced given the problem of difficult detection
caused by the uneven distribution of sizes and positions of different types of marine
organisms in underwater images. High-quality feature extraction of marine organisms
can be achieved by the use of the combination of deep semantic information and
shallow detail information at different levels.

(3) Dynamic label allocation, dynamic smoothing of L1 loss, and dynamical adjustment
of the IoU threshold are introduced because of the difficulty of generating enough
positive samples from the network arising from the clustering effect of marine organ-
isms. Thus, the contribution of positive samples in the training model is increased
and model training is accelerated.

2. Detection Framework
2.1. Overall Structure

An end-to-end marine organism detection framework suitable for complex underwater
environments is proposed in this work. The overall structure of the framework is shown in
Figure 1. The framework consists of the underwater image enhancement module (UIEM),
the feature extraction module, and the back-end detection module.

Figure 1. The overall structure of the proposed framework.

In the image enhancement module, three sub-modules are adopted to complete the
step-by-step denoising, color correction and deblurring of underwater images. In the
feature extraction module, multiple residual networks (ResNets) are employed to build a
feature pyramid to complete the high-level feature extraction of the enhanced underwater
image. Meanwhile, in the feature extraction process, a top-down path conveys high-
level strong semantic features and a bottom-up path supplements the low-level strong
positioning information. The two feature transmission methods are combined to better
cope with the problems of different scales and uneven location distribution of marine
organisms. In the detection module, a two-stage detection network is adopted to complete
target detection. To enable the prediction box in the two-stage network to be better
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matched for the marine organisms with different scales, an adaptive threshold method
is applied to dynamically adjust the classifier and regression on the basis of the sample
distribution. Furthermore, the pre-training of the module is completed by utilizing the
self-built data set for the most complex UIEM in the framework. Therefore, the training
of the entire framework can be completed end-to-end so that the enhancement and the
detection modules can be jointly tuned.

2.2. Underwater Image Enhancement Module

As mentioned, noise, color cast, and motion blur are the main factors for the deteriora-
tion of underwater image quality. Therefore, the image enhancement module proposed in
this work is focuses on these three factors, including the corresponding three sub-modules
for denoising, color correction, and deblurring. To enable joint tuning of the enhancement
module and subsequent detection modules, all three sub-modules of the enhancement
module must be pre-trained. The fact that the original image and the enhanced image
cannot be obtained in pairs in the actual acquisition process of underwater images should
be taken into consideration, that is, no paired data can be used for training. Correspond-
ingly, with the practice in [29] as a reference, underwater images with high imaging quality
are selected in this research from the existing data set, and various influencing factors are
manually added to obtain paired underwater images that can be used for pre-training of
the three sub-modules.

2.2.1. Denoising Sub-Module

A one-stage blind denoising sub-module based on the feature attention mechanism
is adopted to denoise and enhance the noisy underwater images. The detailed network
structure of the blind denoising sub-module is shown in Figure 2. The network consists of
eight convolutional layers. The kernel size of each convolutional layer is 3 × 3, the stripe
is 1, the two light blue convolutional layers are hollow convolutions and their dilations
are 2 and 4, respectively. The number below each layer represents the number of output
channels. Each convolutional layer is followed by a rectified linear unit (ReLU). First,
one convolution and two hollow convolutions are used to extract features from the input.
The hollow convolution can enlarge the receptive field so that each convolution output
contains a larger range of information. Then, a residual block containing two convolutions
is employed to learn the features. Finally, a residual network that utilizes convolution to
generate feature attention is adopted to reconstruct the image with an aim to explicitly
model the interdependence between feature channels. The residual network on the basis of
feature attention can automatically identify the importance of each feature channel through
learning. This degree of importance serves as a reference to improve useful features and
suppress features that are not very useful for the current task so as to achieve the removal
of the underwater complex noise.

Figure 2. The diagram of the blind denoising sub-module network.

2.2.2. Color Correction Sub-Module

In the color correction sub-module, the enhancement of the underwater color cast
image is completed with the help of a generative adversarial mechanism. The overall
structure is shown in Figure 3. The CNN network oriented by self-attention is adopted as
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a generator, and a self-regularized perceptual loss technique is introduced to constrain the
feature distance between the color cast input image and the enhanced image. There are eight
3 × 3 convolutional layers followed by leaky ReLU and batch normalization in the generator
part, so as to make the data distribution consistent and avoid the disappearance of gradient.
The pool layer adopts max pooling with a kernel size of 2. In Figure 3, the number above each
layer represents the number of output channels. Moreover, a dual discriminator structure
is included to balance global and local image color correction. Note that the convolutional
layers of the entire discriminator network are 4 × 4 small convolution kernels with a step
size of 1, and they are followed by leaky ReLU to obtain more features.

Figure 3. Overall structure of the color correction sub-module based on generative adversarial networks.

In the generator part, the normalized brightness channel value I of the input RGB im-
age is taken, and then the 1-I point-by-point difference is employed as our self-regularized
feature map and is multiplied with the feature map to constrain the generated image
content. An attention mechanism is also added to the generative network. The channels are
weighted through full connection so as to emphasize effective information and suppress
invalid information. Meanwhile, the generator combined with the jump connection can
better inhibit the channels that will increase the distance of the enhanced image feature.

In the discriminator part, adversarial loss is used to minimize the difference in light
distribution between the target image and the image output by the generator. As the pixel-
level discriminators usually do not show better performances on spatially changing images,
when some local areas of the input image need to be enhanced differently from other parts,
the global image discriminator alone usually cannot provide the required adaptability. For
example, in our actual project, the underwater lighting is only provided by artificial light
sources, and the illumination around the lighting point is sufficient. However, a place far
away from the lighting point is darker, the absorption of light at different distances is also
inconsistent, and the degree of color cast also varies. To improve the adaptability of the
local area, a local discriminator is introduced in the discriminator of the color correction
network on the basis of the global discriminator. The local discriminator obtains the input
by randomly cropping local color patches from the generator output and the real image and
learns to distinguish whether they are real (from a well-performing image) or fake (from
the output of the generator). Conversely, the global discriminator evaluates the probability
that the real image is more real than the generated image and then guides the generator to
restore a more credible fake image.
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2.2.3. Deblurring Sub-Module

Underwater images are blurred because the scene is changing during the camera ex-
posure. For example, motion blur will occur if the object is captured during the movement
of the underwater robot equipped with an underwater camera [21]. As for the reasons
for blurring, by drawing on a network structure that has been successfully applied in
image deblurring, a RNN network that gradually restores clear images with different
resolutions in the feature extraction layer of the pyramid structure is used in the deblurring
sub-module to achieve a blind image deblur. The network structure is shown as in Figure 4.
The network consists of three subnetworks. Each layer has the same structure and is
composed of six convolutional layers, two fully connected layers and one long short-term
memory (LSTM). Different layers correspond to different size inputs. The kernel size of
each convolutional layer is 5 and the stripe is 1. The “coarse to fine” scheme is adopted in
this network, that is, clear images are gradually recovered at different resolutions in the
pyramid. Moreover, the encoder–decoder network is employed to combine the output
of the network layers at different scales with the help of a top-down path. Accordingly,
the output of the low-resolution top layer will stack and input into the encoder along
the channel with the high-resolution input, and a CNN network is utilized to gradually
transform the input image into a feature map with a smaller size but more channels. In
the network, the connection of the encoder output into a LSTM network can enable the
feature map to obtain the hidden features of low-resolution input, and then deliver the
new hidden features to the LSTM in the higher-resolution subnetwork. The network also
enables the model to pay greater attention to features with substantial information when
restoring images by the use of the attention mechanism, thereby allowing the network to
make better use of global information.

Figure 4. The diagram of the multiscale-based deblurring network.

2.3. Feature Extraction Network

Network depth is essential for many visual recognition tasks. However, deeper neural
networks are more difficult to train. With the increase of the network depth, higher training
errors will occur in the training process, and the accuracy will reach saturation and drop
rapidly [34]. To address this problem, multiple residual blocks are used to construct a
feature pyramid so as to extract features from the input. These residual blocks can optimize
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the network more easily and can improve accuracy after a significant increase in depth.
Given that certain information loss will be generated by the previous image enhancement
module and some information helpful for detection will be lost after enhancement, feature
extraction can be performed by entering multiple residual modules after adding the input
and the enhanced output according to the adaptive weight overlap through a long-term
skip connection.

The overall structure of the feature extraction network is shown in Figure 5. Low-level
features contain less semantic information, but the target location is accurate. Conversely,
high-level features contain richer semantic information, but the target location is relatively
rough [35,36]. The marine organisms to be detected and recognized by the proposed
framework are mainly small creatures such as sea urchins, sea cucumbers, and scallops
whose individual sizes in the acquired images are very small. Thus, semantic information
and target location are both crucial in the detection process. Therefore, referring to the
method in [37], we use a combination of two feature transfer methods to pay attention to
the semantic information and target location information simultaneously. Specifically, the
top-down path is first adopted to transfer the strong semantic features in the high level,
and then a bottom-up path is added to supplement the feature map so that the strong
positioning features of the low-level are transferred up.

Figure 5. Residual feature extraction network with a combination of top-down and bottom-up paths.

2.4. Detecting Networks

A two-stage detection network integrates feature extraction, proposal extraction,
bounding box regression, and classification. In the network, the region proposal network
(RPN) is directly used to generate detection frames, and the extracted features are shared in
the RPN layer and subsequent network layers to determine target categories and position
predictions. This approach greatly improves the overall network performance. Given its
better overall performance, the two-stage network is selected as the detection network in
this study. In the two-stage detection network, the selection of intersection over union
(IoU) threshold is vital to the performance of the classifier. If the IoU threshold is set
low, guaranteeing the sample quality would be difficult. By contrast, if the IoU threshold
is set too high, an imbalance between positive and negative samples will occur, and a
higher IoU threshold will easily lead to the loss of the small-scale target frame that the
proposed framework emphasizes. To obtain a reasonable IoU threshold, especially for
discriminating IoU thresholds that are too high, the IoU thresholds of positive/negative
samples are gradually adjusted according to the proposal distribution in the training
process. Meanwhile, the β in the smooth L1 loss is adjusted through the regression label
distribution so as to change the regression loss function, with an aim to adapt to the
distribution change of the regression label and ensure the contribution of high-quality
samples to the training.
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3. Training Processes

As discussed in Section 2.2, all three sub-modules of the UIEM must be pre-trained to
enable the enhancement module and subsequent detection modules to be jointly tuned.
Therefore, the training process of the framework proposed in this work will be divided into
two parts: the pre-training of the UIEM and the end-to-end training of the target detection
module. Note that the paired data sets used for sub-modules pre-training are all obtained
by manually adding various influencing factors to high-quality images.

3.1. Pre-Training of the UIEM
3.1.1. Pre-Training of the Denoising Sub-Module

The data set used for the pre-training of the denoising sub-module is formed by
adding Gaussian, speckle, and salt-pepper noises to the selected high-quality underwater
images. During the pre-training of the denoising sub-module, L1 loss is used to represent
the deviation between the output image of the network and the noise-free image, and the
loss function that must be minimized is shown as in Equation (1):

LossDenoise =
1
N

N

∑
i=1
‖y(xi)− y∗i ‖1 (1)

where xi is the input image with noise; y(xi) is the output of the blind denoising network;
y∗i is the true value corresponding to xi, that is, the noise-free image; and N is the number
of pairs of noisy images and corresponding noiseless images in a batch during training.

3.1.2. Pre-Training of the Color Correct Sub-Module

The data set used for the pre-training of the color correct sub-module is formed
by the artificial color correction of the original underwater image. Considering that if
the commonly used cross entropy is employed as the loss, the generator will no longer
optimize those generated images recognized by the discriminator as real images, even
if these generated images are still far from the decision boundary of the discriminator.
Therefore, the least squares GAN loss (LSGAN) is used as the loss function of the color cast
correction sub-module, which is defined as follows:

LGlobal
D = Exr∼Preal

[(
D
(

xr, x f

)
− 1
)2
]
+ Ex f∼Pf ake

[
D
(
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)2
]
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− 1
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LLocal
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(
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)
− 0
)2
]

LLocal
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D
(

x f

)
− 1
)2
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LGlobal represents the loss of the global discriminator, LLocal represents the loss of the
local discriminator, D represents the discriminator network, and xr and x f are the sampled
values from the real distribution and the pseudo distribution, respectively. The local area
in the local discriminator is obtained by randomly cropping five color blocks of the same
size from the output image and the real image each time.

To reduce the instability of the generator network and improve performance, a self-
regularized perceptual loss is added to the loss function by learning from the practice of
Johnson et al. in [38]. The detailed method involves the input of the generated image
into the trained feature extraction network (the VGG network is used in this article) to
obtain the feature map and the subsequent comparison with the output of the real image
input into the feature extraction network in the same layer. The difference between the
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fake image created by the generator and the input image is measured by the feature space
distance as

LSRP

(
IL
)
=

1
Wi Hi

Wi

∑
x=1

Hi

∑
y=1

(
φi

(
IL
)
− φi

(
G
(

IL
)))2

(4)

where IL represents the color cast input, G
(

IL) represents the enhanced output, and φi
represents the feature map obtained from the feature extraction network. i represents its
ith pooled feature map. Wi, Hi is the dimension of the extracted feature map.

Combining Equations (2)–(4), the total loss function of the color correct sub-module is:

LossColor = LSRP + LGlobal
G + LLocal

G (5)

The pre-training result of the color correct sub-module is shown in Figure 6, where
the ground truth image is obtained by the artificial color correction of the original color
cast underwater image.

Figure 6. Color cast correction results of different methods: (a) original image, (b) histogram
equalization, (c) ground Truth and (d) proposed module.

3.1.3. Pre-Training of the Deblurring Sub-Module

For the pre-training data set of the deblurring sub-module, underwater images with
motion blur are generated by averaging the continuous short exposure frames in the video
taken by the high-speed camera with reference to the method in [39,40]. The resulting
images are vivid as they can simulate the complex camera shake and object movement
common in real photos. During deblurring network training, L2 norm loss is used to
measure the difference between the network output image and the real image as

LossDeblur =
n

∑
i=1

1
Ni
‖yi − yi

∗‖
2
2 (6)
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In the formula, yi and yi
∗ respectively represent the picture after blind deblurring and

the real picture; Ni represents the size of a batch.

3.2. Detection Network

The discussion in Section 2.4 indicates that training with different IoU thresholds
will result in classifiers with different qualities. To achieve high-quality object detection,
the classifier with the highest possible IoU threshold is needed for classifier training.
Considering the dynamic characteristics of training, that is, the distribution of the proposal
will be changed over time, the method we adopt is to automatically update the IoU
threshold according to the distribution of the proposal. As the training progresses, the
threshold for distinguishing the positive and negative samples will be gradually increased,
which reflects the improvement of the quality of the classifier. Specifically, the average
value of the K-th largest IoU of multiple iterations is taken as our threshold. Initially, a low
threshold is adopted as the RPN is incapable of generating enough high-quality proposals.
As the training proceeds, the RPN prediction quality is improved, enough high-quality
proposals are gradually obtained, and the threshold at this time will automatically become
higher. Therefore, a RPN with very high quality under high IoU will be obtained.

Multi-task objective loss function is adopted in the RPN network training. The network
can simultaneously complete the training of the classification and regression tasks. To
adapt to the changes in distribution and compensate for high-quality samples, dynamic
SmoothL1 (DSL) is adopted as our position regression loss function to gradually focus on
high-quality samples. DSL will dynamically adjust the position regression loss on the basis
of the statistical data of the regression label to reflect the accuracy of positioning:

L(pi, p∗i ) =
1

Ncls
∑ Lcls(pi, p∗i ) + λ

1
Nreg

∑ piLreg(ti, t∗i ) (7)

Lcls(pi, p∗i ) = − log[pi p∗i + (1− pi)(1− p∗i )] (8)

Lreg(ti, t∗i ) = DSL(ti, t∗i , βnow) =

 0.5|ti−t∗i |
2

βnow
, i f
∣∣ti − t∗i

∣∣ < βnow,∣∣ti − t∗i
∣∣− 0.5βnow, otherwise.

(9)

Lcls is the target classification loss, and Lreg is the position regression loss. pi is the
probability that the current i-th anchor may be an object after the network judgement, and
p∗i is the probability that the i-th anchor is marked as an object. ti is the offset parameter
of the i-th private anchor relative to the region proposal. t∗i is the offset parameter of the
i-th private anchor relative to the ground truth, and λ is the coefficient that weighs the
classification loss and the regression loss. Ncls is the network batch size, Nreg is the number
of Anchor positions, and βnow is the dynamically adjusted hyperparameter.

The candidate area obtained through the RPN network involves the input to the RoI
pooling layer so as to obtain a fixed-length feature vector. Finally, feature vector is input to
the fully connected layer to obtain the category and location of the candidate area.

4. Experiment Details
4.1. Evaluation Indicator

Recall, precision, average precision (AP), mean average precision (mAP), and mAP@
[0.5:0.05:0.95] are the currently popular evaluation indicators for target detection perfor-
mance. All these indicators can be calculated with the help of a confusion matrix. Their
definitions are as follows:

• Recall:

Recall =
TP

TP + FN
(10)
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In Equation (10), TP and FN are respectively the number of positive classes predicted
as positive classes in the confusion matrix and the actual number of negative classes
predicted as negative classes in the confusion matrix:

• Precision:

precision =
TP

TP + FP
(11)

In Equation (11), TP and FP correspond to the number of positive classes predicted as
positive classes in the confusion matrix and the number of negative classes predicted as
positive classes in the confusion matrix.

• Average precision (AP): With 0.05 as the interval, the average of all the accuracies of a
certain category with the IoU threshold value from 0.5 to 0.95.

• Mean Average Precision (mAP): The average value of APs in all detection categories
under a certain IoU threshold.

• mAP@ [0.5:0.05:0.95]: represents the average mAP at different IoU thresholds (from
0.5 to 0.95 in steps of 0.05).

4.2. Data Sets

Two data sets are involved in this work: the pre-training data set of each sub-module
in the UIEM and the marine organism data set used for framework performance testing. As
obtaining paired data sets is difficult in actual engineering, paired training sets are acquired
for pre-training through the manual addition of noise, color correction, and generation of
motion blur.

The marine organism data set used for the overall framework performance test is pro-
vided by the “Underwater Robot Picking Competition” organized by the Natural Science
Foundation of China [28]. Some of the images were obtained by underwater robots with
cameras. The robots are remote control robots designed for the fishing of marine organism.
The data set contains four different marine organisms with cultivation value, such as
sea urchin, sea cucumber, starfish, and scallop. The training set includes 4200 randomly
selected images, and the validation set has 800 images. The hyperparameters of the model
are finely adjusted through the validation set so that the fit of the training set is improved.
Afterwards, 1200 underwater images that participated in the training as a test set are used
to evaluate the generalization ability of the overall framework.

5. Experimental Results

In verifying the overall performance of the proposed framework, detection precision
is ascertained on the underwater data set with the help of the test set, and the performance
of the proposed framework is compared with the target detection network that has been
widely used on land or underwater. In addition, in order to verify the role of the three
sub-modules used for image enhancement in the proposed framework, we also conduct
ablation experiments on these three sub-modules.

5.1. Experimental Results Obtained with the Underwater Data Set

After completing the pre-training of each sub-module, the overall framework is
applied to the test set of the underwater data set. The partial measured results obtained are
shown in Figure 7.

A dynamic threshold two-stage network is used in the detection part in the proposed
framework, and the detection results of the four types of marine organisms in the data set
are closely related to the selection of the IoU threshold. Thus, the IoU threshold is constantly
changed in the course of the experiment so as to ascertain the detection precisions under
different IoU thresholds (Tables 1 and 2).
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Figure 7. Test results for the holothurian, echinus, scallop, and starfish.

Table 1. Recall and average precision of the underwater data set with an IoU threshold of 0.5 for the
proposed framework.

Class Ground Truths Detections Recall AP

Holothurian 626 1849 0.759 0.650
Echinus 3228 9997 0.900 0.777
Scallop 4206 8576 0.735 0.594
Starfish 1834 3367 0.827 0.755

Table 2. Mean average precision of the underwater data set at different IoU thresholds of the
proposed framework.

IoU
0.50 0.55 0.60 0.65 0.70 0.75 0.80

mAP@
[0.5:0.05:0.95]Class

Holothurian 0.650 0.635 0.622 0.566 0.514 0.429 0.296

0.408
Echinus 0.777 0.768 0.752 0.711 0.510 0.435 0.287
Scallop 0.594 0.585 0.537 0.514 0.446 0.346 0.239
Starfish 0.755 0.744 0.687 0.666 0.580 0.469 0.355

mAP 0.694 0.683 0.650 0.614 0.538 0.420 0.295

Table 1 shows the detection results when the IoU threshold is fixed at 0.5. Table 1
indicates that for different underwater environments, the detection recall rates of the four
marine organisms are 0.759, 0.900, 0.735, and 0.827. Therefore, the proposed framework
can detect and recognize most underwater targets to be detected. Table 2 shows the mean
average precision among different types of marine organisms when the IoU threshold varies.
When the IoU threshold is 0.5, the mAP of the entire model is 0.694, thereby indicating that
the detection precision of the proposed framework is high, and the probability that the
target can be correctly detected is also very high. Furthermore, when the threshold of IoU
is 0.7, mAP can still reach 0.538, and the mAP@ [0.5:0.05:0.95] of the entire underwater test
set can reach 0.408.

5.2. Ablation Experiment

To further verify the effectiveness of the UIEM, ablation experiments are also con-
ducted. The assistance of each sub-module in the UIEM to the final detection result is
shown by adding different sub-modules. Six groups of ablation experiments are conducted,
and the experimental results are shown in Table 3.
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Table 3. Ablation experiment results of the three sub-modules. The “
√

” indicates that the corre-
sponding sub-module has been added to the framework.

Denoising Deblurring Color Correction mAP@0.5 mAP@0.7

1© 0.634 0.477
2©

√
0.656 0.506

3©
√

0.655 0.501
4©

√
0.638 0.495

5©
√ √

0.662 0.515
6©

√ √
0.657 0.507

7©
√ √ √

0.694 0.538

During the ablation experiments for the six groups, the trend of the detection precision
of each category in the data set changed with the IoU threshold (Figure 8). The ablation
experiments confirm that any one of the three sub-modules for denoising, deblurring, and
color correction is helpful for the detection performance of the overall framework. The
highest detection precision of the overall framework is reached when all three sub-modules
are added. Therefore, each of the three sub-modules has its own role. After being added
to the overall framework, they complement one another and significantly improve the
performance of the proposed framework for underwater target detection.

Figure 8. Ablation experiments results: (a–d) corresponds to the trend of the detection precision of each organism category
in the data set changed with the IoU threshold during the ablation experiments in six groups.
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5.3. Comparative Test

In the comparative experiment, the proposed framework is evaluated against models
that have been practically applied in marine organism detection as regards detection
precision and detection speed under the same data set, including SSD [41], YOLO_v3 [42],
Faster RCNN [43], and Cascade RCNN [44]. In the comparative experiment, SSD uses
VGG16 as the backbone, Yolo_v3 uses darknet53 as the backbone, and Faster RCNN and
Cascade RCNN both use resnet50 as the backbone. For model training, we use SGD
optimizer with learning_rate = 0.01, momentum = 0.9 and weight_decay = 0.0001. The
comparative experimental results are shown in Figure 9 and Tables 4–6.

Figure 9 is a sample diagram of the detection results of different networks for the
same data set. Given the severe image degradation, the distinction between the foreground
and background is poor. Other models perform poor detection and recognition effects
for scallops partially buried in sand and holothurians with similar background colors.
Moreover, as the UIEM is introduced in the proposed framework, these severely degraded
images are enhanced, so that the ability of target detection in these images is greatly
enhanced, thereby improving detection precision.

Figure 9. Comparison results of different model detections: (a) SSD, (b) Yolo_v3, (c) Faster RCNN, (d) Cascade RCNN
(e) proposed framework.

Tables 4 and 5 show the comparison of the detection precisions and recalls of differ-
ent networks for various marine organism in the same data set. As all networks are in
accordance with region proposals, the detection precision will be varied under different
IoU thresholds. Therefore, in Table 4, a comparison of detection precision under two IoU
thresholds is respectively given. It can be seen from Table 4 that the mAP@ [0.5:0.05:0.95]
of the proposed framework has reached 0.408, which is a significant improvement com-
pared to other detection networks that have been applied to marine organism detection.
Meanwhile, due to the introduction of the UIEM, the mAP of the proposed framework can
still reach 0.538 even when the threshold of IoU is 0.7, which is 6 percentage higher than
the Cascade RCNN. The effectiveness of the UIEM is further verified.

In addition, to compare the detection speeds of different networks, the operating
frame rate of each network in the same experimental platform is tested. The test results are
shown in Table 6. The proposed framework can still meet the needs of real-time detection
even with the inclusion of the UIEM.
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Table 4. Detection precision of different models for various underwater targets with IoU thresholds of 0.5 and 0.7.

IoU = 0.5 IoU = 0.7 mAP@
[0.5,0.95]Holothurian Echinus Scallop Starfish mAP Holothurian Echinus Scallop Starfish mAP

SSD 0.487 0.682 0.421 0.676 0.567 0.352 0.442 0.253 0.462 0.377 0.309
Yolo_v3 0.577 0.691 0.442 0.599 0.577 0.368 0.442 0.297 0.392 0.375 0.305

Faster RCNN 0.587 0.767 0.489 0.688 0.633 0.433 0.543 0.358 0.526 0.465 0.358
Cascade RCNN 0.589 0.767 0.495 0.685 0.634 0.437 0.549 0.366 0.556 0.477 0.373

Proposed
framework 0.650 0.777 0.595 0.755 0.694 0.514 0.610 0.446 0.580 0.538 0.408

Table 5. Detection recall of different models for various underwater targets with IoU thresholds of 0.5 and 0.7.

IoU = 0.5 IoU = 0.7

Holothurian Echinus Scallop Starfish Holothurian Echinus Scallop Starfish

SSD 0.740 0.889 0.702 0.808 0.490 0.614 0.401 0.568
Yolo_v3 0.577 0.691 0.442 0.599 0.368 0.442 0.297 0.392

Faster RCNN 0.716 0. 859 0.621 0.774 0.564 0.681 0.483 0.619
Cascade RCNN 0.728 0.847 0.633 0.785 0.567 0.681 0.499 0.637

Proposed
framework 0.759 0.900 0.735 0.827 0.604 0.722 0.588 0.690

Table 6. Detection frame rate of different networks.

Model SSD Yolo_v3 Faster RCNN Cascade RCNN Proposed Framework

Fps 57 70 43 38 41

6. Conclusions and Future Work

This study proposes an end-to-end marine organism detection framework that can
jointly optimize the image enhancement and target detection. With a two-stage target
detection network as the backbone, an underwater image enhancement module consisting
of denoising, color correction, and deblurring sub-modules are added into the framework,
with an expectation of considerably improving the ability of the framework to deal with
severely degraded underwater images caused by poor underwater lighting conditions.
Meanwhile, the pre-training of the underwater image enhancement module is completed
with the help of self-built data sets so that end-to-end training of the entire framework can
be performed, and the joint optimization of the enhancement module and the subsequent
target detection module can be achieved. Given the difficulty of detection caused by
the uneven distribution of sizes and positions of different types of marine organisms
in underwater images, the feature pyramid network composed of multiple ResNets is
introduced in the target detection part of the proposed framework. High-quality feature
extraction of marine organisms can be achieved by combining deep semantic information
and shallow detail information at different levels. To enable the proposal region in the two-
stage network of the detection module to better match marine organisms of different scales,
dynamic label allocation and dynamic smoothing of L1 loss are introduced to achieve
dynamic adjustment of the IoU threshold, thereby greatly improving target detection
and model training precision. Compared with the existing end-to-end models applied
to marine organism detection, the framework proposed in this study can increase the
detection precision by at least 6% because of the introduction of the image enhancement
network. Meanwhile, the detection speed of the proposed framework dropped slightly,
taking into account both the detection performance and real-time performance, so that
the framework is applicable to the underwater mobile visual observation platforms for
high-precision real-time detection of marine organisms.

In order to improve the proposed framework’s ability to process images under harsh
underwater conditions, we have added UIEM composed of three sub-modules. To balance
the detection speed and the detection performance, we have to use a relatively simple
network structure to construct the three sub-modules in UIEM, which makes the enhance-
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ment effect unsatisfactory. Therefore, future work will mainly focus on how to use a single
network structure with better performance to build UIEM to achieve better underwater
image enhancement effects, so as to greatly improve the performance of marine organism
detection under the premise of real-time detection.
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