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Abstract: The use of automated insulin delivery systems has become a reality for people with type
1 diabetes (T1D), with several hybrid systems already on the market. One of the particularities
of this technology is that the patient is in the loop. People with T1D are the plant to control and
also a plant operator, because they may have to provide information to the control loop. The
most immediate information provided by patients that affects performance and safety are the
announcement of meals and exercise. Therefore, to ensure safety and performance, the human factor
impact needs to be addressed by designing fault monitoring strategies. In this paper, a monitoring
system is developed to diagnose potential patient modes and faults. The monitoring system is
based on the residual generation of a bank of observers. To that aim, a linear parameter varying
(LPV) polytopic representation of the system is adopted and a bank of Kalman filters is designed
using linear matrix inequalities (LMI). The system uncertainty is propagated using a zonotopic-set
representation, which allows determining confidence bounds for each of the observer outputs and
residuals. For the detection of modes, a hybrid automaton model is generated and diagnosis is
performed by interpreting the events and transitions within the automaton. The developed system
is tested in simulation, showing the potential benefits of using the proposed approach for artificial
pancreas systems.

Keywords: artificial pancreas; hybrid automaton; Kalman filter; patient in the loop; type 1 diabetes

1. Introduction

Type 1 diabetes (T1D) is a serious metabolic disease characterized by an autoimmune
destruction of the insulin-producing β-cells in the pancreas and subsequent insulin defi-
ciency. Insulin is a hormone that allows glucose uptake from the blood into cells, either to
be used as fuel or stored for future use. Low levels of insulin inevitably lead to high blood
glucose (BG) concentrations, known as hyperglycemia, which can also lead to long-term
complications [1,2]. Current therapies are based on administering exogenous insulin using
devices such as insulin pumps or pens [3,4].

Artificial pancreas (AP) is a closed-loop (CL) system in which insulin is delivered
automatically by adjusting a pump’s insulin infusion rate depending on continuous glucose
monitor (CGM) readings [5]. CGM sensors measure glucose subcutaneously and provide
an estimate of current BG levels. Many different control strategies for AP are available in
the literature [5–7]. AP systems have been an important focus of research and discussion
over the last years, with a multitude of clinical trials being conducted world-wide [8].
There is clinical evidence that suggests that using an AP is safe, robust, and efficacious for
people with T1D when compared to traditional open-loop therapy [7,8].
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However, AP technology is not exempt of risks during operation [9]. It is especially
critical to take into account the concept of patient-in-the-loop in the design phase for this
kind of technology [10], because ultimately, patients will wear and operate APs. Patients
will have to provide inputs, maintain the system, and ideally undertake training before
using any AP. Therefore, the patient will play a significant role in any configuration—a
clear example is the Medtronic MiniMed 670G AP [11]. Undoubtedly, research is trying to
find solutions that reduce the impact of patient behaviors and decisions. Therefore, any
developed AP must implement fault tolerant control (FTC) strategies to mitigate faults and
ensure and maintain stability, performance, and safety for the patient.

In the context of FTC research for AP systems, most of the literature is focused on
fault detection (FD) and fault identification (FI) for either the CGM [12,13] or insulin
pumps [14–17]. Only few tackle the issue of how the patient-in-the-loop affects the system
and what potential faults may arise from it [9]. Developed strategies to detect specific
patient behaviors exist, however, they were not developed for safety but as ad-hoc ap-
proaches for control. Most of the approaches involving the patient estimate the glucose
rate of appearance to allow AP to operate without meal announcement [18–23]. Other
strategies try to detect when patients exercise and modify or adapt their control strategy
accordingly [24,25]. In any case, the roads being followed are either hybrid systems, which
rely on patient input, or fully CL systems. The patient-in-the-loop paradigm links both
approaches allowing fully CL systems to operate, but also to rely on contrasted patient
input information to enhance performance and safety. Hence, patient modes and inputs
should be monitored and potential faults must be uncovered for fully CL systems that may
from time to time may use patient information. Here, a patient operational mode is defined
by its significantly different system dynamics, for example the increased insulin sensitivity
during aerobic exercise. Additionally, patient inputs are considered as any action that the
patient can perform with direct implications to BG control.

The aim of this work is to provide robust and safe solutions to deal with the patient-
in-the-loop in AP systems. In the context of diabetes and AP systems, the patient should
be considered as part of the control loop [26]. Depending on the system configuration,
the patient may have to take the role of an actuator or a sensor, besides being the plant
to control. Specifically, the subjects will be considered actuators performing the control
action of eating the recommended carbohydrates (CHO) [27] or informing about meal
consumption or exercise. It is known that patient information can be erroneous, for example,
studies show that patients have significant estimation errors when counting CHO [28].
Therefore, the detection and monitoring of patient modes can be used to help the control
system in maintaining performance and safety despite patient faults. Considering the
patient-in-the-loop, the monitoring of system modes can be aided by the feed-forward
information provided by the patient. That information is inherently affected by uncertainty
and must be checked to exclude any possible fault.

The implemented approach is a model-based FD system and can work with any kind
of hybrid or fully CL control architecture that announces meals and/or uses insulin and/or
CHO as a control action. The physiology of a person with T1D is subjected to highly
nonlinear phenomena. A way of extending traditional linear system theory to nonlinear
systems is by means of the linear varying parameter (LPV) paradigm [29]. Here, this
approach will be used for modeling T1D subjects. Then, we design a bank of polytopic
Kalman filters by solving the dual of the linear quadratic control (LQC) problem and
imposing constraints on the system stability and performance by using linear matrix
inequalities (LMI). Dealing with system uncertainties in model-based approaches is known
to be an important factor. In this work, we use a deterministic approach using zonotopes
to build interval observers (IO). The resulting bank of IO will be used to generate a set
of residual signals online. A hybrid automaton (HA) is built based on a configuration of
normal and faulty patient modes. Transitions between modes are done by analyzing the
patient input events and checking the residuals consistency.
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This paper is organized as follows: Section 2 presents the problem formulation and
briefly describes the control system. Section 3 describes the patient monitoring system.
Section 4 describes the modeling process of a T1D patient. Section 5 is focused on the
residual generation by designing IO. In Section 6, in-silico benchmarks are proposed to
evaluate the monitoring system. Finally, Sections 7 and 8 include the discussion and
conclusions from this work.

2. Problem Statement

The Spanish consortium on artificial pancreas and diabetes technology (eSCAPE)
has developed a multivariable hybrid AP system for the regulation of glucose to cope
with the two disturbances that have the biggest effect on BG, meals, and exercise. The
system uses both insulin and CHO as control actions to maintain BG in the euglycemic
range 70–140 mg/dL. The insulin feedback loop is based on a proportional-derivative (PD)
controller with insulin feedback (IFB) that integrates a safety layer with insulin-on-board
(IOB) constraints and sliding mode reference conditioning (SMRC) [30,31]. The second
feedback loop uses a predictive PD controller with a quantization system that encourages
the patient to consume CHO if there is danger of hypoglycemia [27]. Both control loops
are coordinated by using coupled carbohydrates-on-board (COB) inhibition signals that
ensure that insulin and CHO control actions are effective and not mutually counteracted.

The system has recently been upgraded with additional modules to enhance perfor-
mance and safety when exercise is announced. If patients announce exercise, a feed-forward
controller will adapt the insulin gains and, if required, the consumption of a snack will be
suggested [32]. Furthermore, we included an adaptive IOB system to enhance postprandial
control [33]. This control system has already been tested in clinical trials against meals and
exercise and has showed promising results [34–36]. The overall control strategy is depicted
in Figure 1 and is the control system that will be used in this work.

Insulin
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Insulin
PK model
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Figure 1. Multivariable hybrid AP. The black blocks and signals are elements from the insulin
feedback loop, the blue from the CHO feedback loop, the red from the feed-forward exercise control,
the violet is the IOB adaptive algorithm and the orange block is the patient to control.

This system is a hybrid AP where the patient takes fundamental roles. We want to
address the patient-in-the-loop situation that arises when using patients as an operator and
as the plant to control. In this configuration, patients play a sensor role when announcing
meals and exercise. They also play an actuator role when the CHO controller suggests
rescue CHO. Therefore, patients can introduce errors into the system that could eventually
lead to faults. We consider patient-in-the-loop faults as poorly estimated meal boluses,
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when patients do not follow the CHO controller recommendations, or when the dynamical
plant is behaving in an unexpected manner.

3. Materials and Methods

In this work, we develop a system for the detection of patient modes by using the
scheme proposed in [37] based on creating a HA model that presents as many states as
patient modes. For mode detection, we will generate a set of residual signals. Checking at
every time instant which residuals are consistent with the current mode, we can detect the
change of mode. Residuals will be generated by using a bank of zonotopic Kalman filters.

3.1. Hybrid Automaton

The HA has been developed based on [37]. The idea behind using an HA is to mimic
real patient operational modes and transitions. Using this approach, the HA is defined by
the following components, HAk =< Q,X ,U ,Y ,F ,G,H, Σ, T > where:

1. Q is the set of modes. Each of the modes qi ∈ Q represents an operational mode of
the patient. The set of modes is constituted by nominal and faulty operational modes,
i.e., Q = QN ∪QF. Particularly, we consider three nominal operational modes and
three faulty modes, see Figure 2;

2. X ⊆ Rnx defines the state space of the system on each of the modes x(k) ∈ X ,
where x(k) is the state space vector. U ⊆ Rnu and Y ⊆ Rny define the continuous
input and output spaces. In this work, the input space includes both insulin, rescue
CHO and meal inputs, and the output space only considers the CGM measurements.
G defines the set of discrete time state functions and H is the set of discrete time
output functions;

3. Σ = ΣS ∪ ΣC ∪ ΣF is a set of events. This set of events can be split into spontaneous
mode switching events ΣS, input events ΣC and fault events ΣF . Spontaneous switch-
ing events are unknown events that may produce transitions between modes in the
real patient. For example, an unannounced meal may lead to a spontaneous transition
to the meal operational mode, even if that event (eating) is unknown to the system.
Input events are defined by patient actions, such as announcing meals or exercise.
Fault events are defined by checking the consistency of the residuals and the ending
transitioning mode;

4. F is the set of possible faults. For each faulty mode qi ∈ QF the system has a specific
fi ∈ F , which is associated with a fault event ΣF;

5. T : Q× Σ → Q is the transition function. Transitions from one mode qi to another
mode qj are labeled by an event σ ∈ Σ. Transitions labeled as σf ∈ ΣF indicate that
the transition is a faulty transition.

The HA operational modes and transitions for the patient are presented in Figure 2.
Three automata modes define the normal operation for the system. These modes were
selected for its differentiated dynamics and significance during operation. Transitions
between and to these modes are labeled ΣS ∪ ΣC = {σ1, σ2, . . . , σ13} and include input
patient information about meals and exercise, and events triggered by the consistency of
residuals. Transitions to faulty modes are possible depending on the current operation
mode. The set ΣF = {σf 1, σf 2, . . . , σf 7} represent the fault events. Some of these faults
may be structural (faults in the actuator) such as not eating rescue CHO or injecting
inappropriate boluses for meals.

3.2. Online Diagnoser

The online diagnoser is responsible of the mode change detection within the HA. At
every sampling time k, the patient observable events ΣC and the generated residuals are
processed and used by the hybrid diagnosis to detect specific modes or faults. Patient-in-
the-loop faults are detected when a triggered transition leads to one of the faulty modes,
see Figure 2.
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Figure 2. Component automata. The hybrid model of the automata includes three normal operation
modes and considers three faulty modes.

The consistency of the residuals is checked at every sampling time against the de-
signed thresholds. A potential mode change is detected if the residuals violate any of
the thresholds. Then, a binary signature vector (F) is generated and checked with the
admissible rows of the fault signature matrix (FSM). The FSM is a binary matrix that
displays the signatures required to move from one automaton mode to another. A signature
is used to describe a configuration of symptoms that may lead to a transition. Each of the
rows of the FSM are related to each of the possible automaton transitions T . Hence, the
FSM has as many rows as possible events σ (nσ = 20) and as many columns as existing
automaton modes (nm = 6).

FSM =


f1,1 f1,2 · · · f1,nm

f2,1 f2,2 · · · f2,nm
...

...
...

...
fnσ ,1 fnσ ,2 · · · fnσ ,nm

 (1)

This can be viewed as having a total of nm different subsets of FSMs for each of the
HA modes. For example, the FSM associated to the mode q1 is as follows

FSMq1 :=

0 fσ1,q2 0 0 0 0
0 0 fσ3,q3 0 0 0
0 0 0 0 0 fσf 3,q6

 =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 (2)

The FSMq1 will only be used when the current HA mode is q1. Then, the binary signa-
ture vector F1×nm is constructed at every sampling time. Elements fi of F are computed as

fi =

{
1, if ∏M

i=1

(
tl
ri
< 0∨ tu

ri
> 0

)
= 1

0, otherwise
(3)

where i = 1, · · · , nm indicates the binary residual generated by the appropriate observers
for the current operation mode at time instant k, M ≤ no accounts for possible residual
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combinations that may be used to generate the binary signal, no is the total number of
observers, tl

ri
and tu

ri
are the lower and upper interval residual bands generated by the i-th

zonotopic observer. Essentially, if the observer predicted band does not include the zero
residual, then the real system behavior cannot be explained and a fault is triggered by that
residual signal. The vector F is then compared element-wise to each of the rows of the
appropriate FSMqi . If the signature F is not matched by any of the rows of the particular
FSMqi , then transition detection is not possible and the HA stays at the current mode.

3.3. Observable Events Processing

Using a binary transition and fault detection system might not be enough for detection
if several signatures have the same binary combination, i.e., they are not isolable. For
that reason, the transitions may be aided with external information, such as input events,
the sign of the residuals and by the value and trend of the measured variables. In this
work, the system makes use of patient information, if available, such as meal/exercise
announcements. Particularly, we consider the following transitions based on the FSM and
patient information:

1. Meal and Postprandial Mode Detection: Transitions between the meal/postprandial
mode (q1) and the resting/fasting mode (q3) happen when in normal operation. If
meals are announced, the system can instantly switch to the meal/postprandial
mode and if in a designed period of 15 min the meal observer does not explain the
system behavior, a transition to the meal faulty mode (q6) will be triggered. In the
situation where both meal and rest residuals are consistent, the system returns to the
resting/fasting operational mode.

2. Altered Sensitivity Periods Detection: Transitions σ1, σ2, σ5, and σ6 to and from the
changed insulin sensitivity mode (q2) are considered. Similarly to σ4, the transition
events σ1 and σ6 are activated if the altered sensitivity residual is consistent with
the observations. In this approach, an altered sensitivity period is caused when
performing aerobic physical activity. Then, if exercise is announced, a transition to
the q2 mode can instantly happen if the altered sensitivity residuals are consistent.
Transition events σ2 and σ5 are triggered if the meal or the rest residuals consistency
are valid and the altered insulin sensitivity residual is not. If the consistency of both
residuals generated by the meal and rest observers are satisfied, then the binary FSM
cannot tell which transition to execute. In such a case, prior patient inputs can be used
to decide if a transition needs to be made. If the residual from the altered sensitivity
observer is no longer consistent, the residual with minimum absolute value is picked
as the next transition event to be processed.

3. Misestimated Meals Detection: The AP used in this work requires patients to announce
meals. Announcing a meal means that the patient needs to provide two inputs: (1) the
time when the meal is going to be consumed and (2) the quantity of CHO in grams of
that meal. The detection of a misestimated meal (q6) involves the transition events
σ9, σ10, σf 3 and σf 4. Transition towards q6 is possible through events σf 3 and σf 4. If a
meal is not announced while being on mode q3 and the rest observer is not consistent,
then the CGM signal is checked. If CGM is higher than 160 mg/dL and the trend for
the last 30 min is positive, a transition to mode q6 happens. Contrarily, if the meal is
announced, then transition event σf 3 might be triggered when in mode q1, if the meal
observer is not consistent.

4. Missed Rescue Carbohydrates Detection: Two types of rescue CHO are considered:
(1) feed-forward rescue CHO when exercise is announced and (2) rescue CHO sug-
gested by the feedback controller. This control action is a source of potential patient-in-
the-loop faults in free living conditions. Patients may forget to consume the suggested
CHO or they will simply not consume them for other physiological reasons, such as
weight gain. Transitions to the faulty rescue CHO mode (q4) are expected through
events σf 6 or σf 7, which are only checked when the controller triggers a recommenda-
tion of CHO. Transitions σ8, σ11 and σ13 return the HA to normal operational modes,
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respectively to q2, q1 and q3. These transitions are exclusive, meaning that if any of
the meal, rest or altered sensitivity observer residuals are consistent, a transition to
any of the aforementioned normal operation modes will be triggered.

4. Modeling of T1D Patients

In this section, the model used for the design of observers is presented. Several
dynamical models are available in the literature to describe normal and impaired glucose
metabolism in humans. One of the early models and most likely the most used is the so-
called minimal model [38], which only consists of three state variables and is able to capture
some of the underlying glucose dynamics. Since then, many other models have appeared
such as the more complex Food and Drug Administration (FDA) accepted UVA/Padova
T1D Simulator [39]. Selecting a model for the design of observers is crucial and one has
to trade off precision and complexity with simplicity and usability. Particularly, complex
glucose models may present observability issues because only one variable is measured.
For that reason, we use a modified version of the Hovorka nonlinear model [40], which is
of intermediate complexity [41].

4.1. The Reduced Hovorka Model

The model used in this work is a reduced version of the nonlinear Hovorka model [40]
as proposed in [42]. Figure 3 shows the whole block diagram of both model versions. It is a
compartmental model with four main sub-systems: carbohydrate absorption, subcutaneous
insulin absorption, insulin action on glucose uptake and removal, and the BG dynamics.

D1 D2 Q1 Q2

G

S1 S2 I

x1 x2x3

d(t) Ug

u(t)

ka3 ka1 ka2

FR Fc
01

kb3 kb1 kb2

EGP0

k12

Gsub(t)

ke

Insulin subsystem

Carbohydrate absorption

Insulin action

Glucose subsystem

Figure 3. Block diagram of the reduced Hovorka nonlinear model. The dashed red nodes and arrows
indicate the structural relations removed from the original nonlinear Hovorka model. The thicker
black lines denote new relations in the reduced model.

The simplified model excludes the states I(t), x2(t) and x3(t). By doing this reduction,
not only have we decreased the system complexity, but most importantly we have improved
the structural behavior of the overall model. Notice the new direct connections from
node S2 to Q1 and Q2. Those connections greatly simplify any observability issues since
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more relations between different states are considered. The removed states define insulin
dynamics and are described by

İ(t) =
S2(t)

tmaxIVi
− ke I(t)

ẋ2(t) =− ka2x2(t) + S f
IDka2 I(t)

ẋ3(t) =− ka3x3(t) + S f
IEka3 I(t)

(4)

The reduced model is obtained by considering the steady state value of the removed
states into the rest of the equations. One can easily obtain the following steady state relations

Iss =
S2

tmaxIVike
(5)

which leads to

xss
2 =

S f
ID

tmaxIVike
S2

xss
3 =

S f
IE

tmaxIVike
S2

(6)

Plugging these equations into the original Hovorka model and removing the afore-
mentioned states leads to the final model

Ṡ1(t) =u(t)− S1(t)
tmaxI

Ṡ2(t) =
S1(t)− S2(t)

tmaxI

ẋ1(t) =ka1

(
kaS f

IT
VIke

S2(t)− x1(t)

)
Q̇1(t) =− x1(t)Q1(t) + k12Q2(t)− Fc

01 − FR −Ug+

+ EGP0

(
1−

kaS f
IE

VIke
S2(t)

)

Q̇2(t) =x1(t)Q1(t)− k12Q2(t) +
kaS f

ID
VIke

S2(t)Q2(t)

(7)

where u(t) is the exogenous insulin infusion (basal and bolus), Q1 and Q2 are the masses of
glucose in the accessible and non-accessible (not measurable) compartments, respectively,
S1 and S2 define the insulin absorption rate dynamics and FR and Fc

01 are defined as

Fc
01(t) =

{
F01 if G(t) ≥ 4.5 mmol L−1

F01G/4.5 otherwise
(8)

FR(t) =

{
0.003(G(t)− 9)Vg if G(t) ≥ 9 mmol L−1

0 otherwise
(9)

The original Hovorka model assumes that the compartment G represents the measur-
able glucose concentration and defines it as G(t) = Q1(t)/Vg. However, one can use any
other CGM model available in the literature.
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The glucose absorption sub-system can be defined separately as

Ḋ1(t) =−
D1(t)
tmaxG

+ d(t)B

Ḋ2(t) =
D1(t)
tmaxG

− D2(t)
tmaxG

Ug(t) =
D2(t)
tmaxG

(10)

where Ug is the rate of carbohydrate absorption, d(t) is the input meal content in grams
and D1 and D2 are glucose compartments. If meals are considered in the model, the state
vector is simply extended with states D1 and D2.

4.2. Model Parameters and Individualization

For the purpose of state estimation, we use the model constants and mean parameter
values presented in [40] and summarized in Table 1.

Table 1. Model parameters.

Parameter Value Description

B (kg) Individualized Weight
k12 (min−1) 0.066 Transfer rate
ka1 (min−1) 0.006 Deactivation rate
ka2 (min−1) 0.06 Deactivation rate
ka3 (min−1) 0.03 Deactivation rate
ke (min−1) 0.138 Time constant of insulin elimination
Vi (L) 0.12 BW Insulin distribution volume
Vg (L) 0.16 BW Glucose distribution volume
S f

IT (L min−1 mU−1) 51.2× 10−4 Insulin sensitivity on transport
S f

ID (L min−1 mU−1) 8.2× 10−4 Insulin sensitivity of disposal
S f

IE (L mU−1) 520× 10−4 Insulin sensitivity of EGP0
EGP0 (mmol kg−1min−1) 0.0161 Endogenous glucose production at

zero insulin
F01 (mmol kg−1 min−1) 0.0097 Non-insulin-dependant glucose flux
tmaxI (min−1) 55 Time constant of insulin absorption

The model is firstly individualized by the patient’s weight. The patient weight alters
the insulin sensitivity parameters and the available glucose and insulin distribution vol-
umes. However, this might not be sufficient to characterize highly varying patients and
therefore model predictions will be inherently erroneous. To address this individualization
issue, the insulin sensitivity parameters are adapted based on the fasting patient glucose
and basal infusion rate. Then, a new tuning parameter η is introduced and obtained by
solving the steady state of the original model

f(S1, S2, x1, x2, x3, I, Q2, η) = 0 (11)

were f(S1, S2, x1, x2, x3, I, Q2, η) represents the non-linear model equations and η is a factor
that multiplies the insulin sensitivity S f

IT , S f
ID and S f

IE terms.
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4.3. Linear Parameter Varying Model

LPV systems are linear time varying systems whose state-space system matrices
depend on a vector of varying parameters. These parameters can be estimated online or
measured. Then, the continuous system representation is given by

ẋ(t) =A(Φ(t))x(t) + B(Φ(t))u(t)

y(k) =C(Φ(t))x(t) + D(Φ(t))u(t)
(12)

where A(Φ(t)) ∈ Rnx×nx , B(Φ(t)) ∈ Rnx×nu , C(Φ(t)) ∈ Rny×nx and D(Φ(t)) ∈ Rny×nu

are the system state space matrices that depend on the varying time-dependent vector
Φ(t) ∈ Rl . The vector of varying parameters Φ(t) depends at the same time on some
measurable signals ρ ∈ RnΦ , referred to as scheduling variables, that can be estimated
using an appropriate scheduling function

Φ(t) = p(ρ(t)) (13)

where p : Rl → RnΦ is a continuous mapping. If the vector of scheduling variables depend
on some internal variables, such as internal states, the system is called quasi-LPV [43]. In
this work, the system is strictly proper, with input and output matrices being invariant
B(Φ(t)) = B, C(Φ(t)) = C and D(Φ(t)) = 0.

Particularly, the reduced Hovorka nonlinear model can be transformed into the LPV
representation (12) using the nonlinear embedding approach proposed in [43]. This ap-
proach is based on embedding the system nonlinearities inside the scheduling parameters
of the LPV model. Then, the following state space matrices are obtained for the reduced
Hovorka model in LPV form

A(Φ(t)) =



−ka 0 0 0 0 0 0

ka −ka 0 0 0 0 0

0 a31 −ka1 0 0 0 0

0 a41 a43 a44 k12 + a45 0 a47

0 a52 a53 0 −k12 0 0

0 0 0 0 0 a66 0

0 0 0 0 0 a76 a77


B(Φ(t)) =

[
1 0 0 0 0 0 0

]T

(14)

with the following output equation y(t) = Q2(t)/Vg measurable from the CGM sensor.
The following terms have constant values

a31 =
ηkaS f

ITka1

Vike

a41 =
−ηkaS f

IEEGP0

Vike

a47 =− a66 = a76 = −a77 =
1

tmaxG

(15)
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and the nonlinearities can be embedded in the following terms

a43 =−Q1(t)

a44 =
Fc

01(G(t))
Q1(t)

− FR(G(t))

a45 =
EGP0

Q2

a52 =
ηkaS f

ID
VIke

Q2(t)

a53 =Q2(t)

(16)

Furthermore, if measurements of Φ are available, and its admissible range of operation
is known

Φi ≤ Φi ≤ Φi, i = 1, . . . , l (17)

where Φi and Φi are the lower and upper bounds of each element in Φ, then we can put
the parameter vector Φ into polytopic form [44,45]

Φ ∈ Co{ω1, ω2, . . . , ωN} :=

{
N

∑
i=1

µiωi : µi ≥ 0,
N

∑
i=1

µi = 1

}
(18)

where N = {1, . . . , 2nΦ}. This transformation is known as the bounding box method,
because Φ is the convex hull generated by vertex ωi. Hence, a polytopic representation
of the system is obtained by the state space matrices defined at the different vertex of the
convex hull

[A(Φ)] ∈ Co{[Ai] := [Ai(ωi)]} (19)

Using this approach, the system (12) can be represented as a weighting function of the
system matrices at the polytope vertices

ẋ(t) =
2nΦ

∑
i=1

(µi(Φ))(Ai(Φ)x(t) + Bi(Φ)u(t))

y(t) =
2nΦ

∑
i=1

(µi(Φ))(Ci(Φ)x(t) + Di(Φ)u(t))

(20)

where µ(i) are the membership functions. Basically, at any given time instant the state
space system description is obtained by a linear interpolation of the system matrices at the
polytope vertices. The weighting function is defined as in [46]

µi(Φ) =
2nΦ

∏
j=1

ξij(η
j
0, η

j
1), ∀i = {1, . . . , 2nΦ} (21)

with

ξij(η
j
0, η

j
1) =

{
η

j
0, if mod(n, 2m) ∈

{
1, . . . , 2j−1}

η
j
1, otherwise

(22)

η
j
0 =

Φj −Φ(k)

Φj −Φj
(23)

η
j
1 = 1− η

j
0 (24)
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where j = 1, . . . , nΦ and each element of the vector Φ is known and varies in a known
interval Φj(k) ∈

[
Φj, Φj

]
. The scheduling variables for the reduced Hovorka model can be

defined as
Φ(t) =

[
Q1(t) Q2(t)

]
(25)

leading to four linear time invariant (LTI) systems that will conform the vertices of the
polytope. Notice that this representation is not unique and other scheduling variables can
be chosen depending on the model. The operational range for these variables is attached in
Table 2.

Table 2. Limits for the system scheduling variables.

Variable Minimum Maximum

Q1 (mmol) 10 400
Q2 (mmol) 10 400

The original continuous time system can be discretized using a number of discretiza-
tion methods. In this work, we use the zero order hold approach with a sampling time
of 5 min, which is a common measurement rate provided by CGM devices. Then, the
continuous polytopic system (20) takes the following discrete-time representation

x(k + 1) =
2nΦ

∑
i=1

(µi(Φ))(Ad,i(Φ)x(k) + Bd,i(Φ)u(k))

y(k) =
2nΦ

∑
i=1

(µi(Φ))(Cd,i(Φ)x(k) + Dd,i(Φ)u(k))

(26)

where Ad,i(Φ) ∈ Rnx×nx , Bd,i(Φ) ∈ Rnx×nu , Cd,i(Φ) ∈ Rny×nx and Dd,i(Φ) ∈ Rny×nu are
the discretized state space matrices for the i-th vertex.

5. Residual Generation

The AP systems are characterized by having few sensors and actuators. Therefore, to
monitor the system and patient state, observers are designed for the purpose of generating
residuals. However, only little information is available for AP systems. In most cases,
the only information available from sensors is the CGM glucose measurements. To tackle
this limitation, the design of a robust state estimator for residual generation has been
considered in this section.

5.1. Design Method

Residual generation is based on the state estimation using the polytopic LPV model (26)
by means of a Kalman filter of the following form

x̂(k + 1) =
2nΦ

∑
i=1

(µi(Φ))(Ad,i(Φ)x(k) + Bd,i(Φ)u(k))+

+ L(Φ)(y(k)− ŷ(k))

(27)

were x̂ ∈ Rnx are the estimated states and L(Φ) ∈ Rnx×ny is the observer gain defined as

L(Φ) =
2nΦ

∑
i=1

µi(Φ)Li (28)
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and Li are the observer gains for each one of the systems at the vertices of the polytope. Prior
to the observer design, the observability property is checked. A total of 2nΦ observability
matrices are generated, for each one of the vertex polytopic representations

O =


Cd,i(Φ)

Cd,i(Φ)Ad,i(Φ)
...

Cd,i(Φ)Ad,i(Φ)nx−1

 (29)

then, the system is observable if each observability matrix is of full rank, i.e., rank(O) = nx.
The observer gain can be designed by solving the associated LQC dual problem [47].

Given the system description (26), tuning matrices Q = QT = HTH ≥ 0, R = RT > 0 and
the performance bound γ. Then, the observer gains for the polytopic system are obtained
by finding Υ and Wi through the solution of the following LMI minimization problem

min
γ,Υ=ΥT ,W

γ (30)

subject to

[
γIn In
In Υ

]
> 0 (31)


−Υ ΥAd,i −WTCd,i ΥHT WT

AT
d,iΥ− CT

d,iW −Υ 0 0
HΥ 0 Inx 0
W 0 0 −R−1

 < 0 (32)

[
−rΥ qΥ + AT

d,iΥ− CT
d,iW

qΥ + ΥAd,i −WCd,i −rΥ

]
< 0 (33)

where q = 0 and r = 1 are the center and radius of a unitary circle respectively and Inx is
the identity matrix of size nx. Note that constraints (33) are not mandatory to solve the
original LQC problem [47]. However, they guarantee the stability of the observer system.

In this paper, the process disturbances (ω ∈ Rnx ) and measurement noise (υ ∈ Rny )
are unknown but assumed to be bounded and represented by zonotopes

W = {ωk ∈ Rnx : |ωk − cω | ≤ ω, cω ∈ Rnx , ω ∈ Rnx} = 〈cω, Rω〉 (34)

V = {υk ∈ Rny : |υk − cυ| ≤ υ, cυ ∈ Rny , υ ∈ Rny} = 〈cυ, Rυ〉 (35)

where cω and cυ are the centers of the process disturbances and measurement noise zono-
topes, with the generator matrices being Rω ∈ Rnx×nx and Rυ ∈ Rny×ny . Then, according
to [48] the polytopic observer in (27) can be converted into a zonotopic state estimation
observer by computing the center and the generator matrix of the state observer, i.e.,
X̂ = 〈cx, Rx〉, at every single step as follows

cx(k + 1) = cp(k) + L

(
y(k)−

2nΦ

∑
i=1

(µi(Φ)Ci)cp(k)

)
(36)

Rx(k + 1) =

[(
I− L

2nΦ

∑
i=1

(µi(Φ)Ci)

)
Rp(k) − LEv

]
(37)
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with L being defined in Equation (28) and

cp(k + 1) =
2nΦ

∑
i=1

(µi(Φ))(Ai(Φ)x(k) + Biu(k)) (38)

Rp(k + 1) =

[
2nΦ

∑
i=1

(µi(Φ))(Ai(Φ))Rx(k) Eω

]
(39)

where Eω and Ev are the distribution matrices of the state disturbance and measurement
noise vectors, respectively.

5.2. The Bank of Observers

The bank of interval zonotopic observers is designed to generate appropriate residual
signals. The residual signals have to be sensitive to specific mode changes. Therefore,
several observers based on variations of the reduced Hovorka model have been considered.
Each of the observers tackle one specific mode of operation. A total of four different
observers have been designed (no = 4):

1. Meal observer: Observer designed to track meal and postprandial periods for an-
nounced meals. It allows the system to detect faults in meal estimations and erroneous
boluses. It includes the whole Hovorka model with two extended states related to
CHO consumption. Its state space vector is defined by x(k) = [S1 S2 x1 Q1 Q2 D1 D2]

T .
The CHO model time constant tmaxG is set to 40 min as in [40];

2. Resting and fasting observer: Observer designed to track night and in-between distur-
bances periods. Its state space vector is defined by x(k) = [S1 S2 x1 Q1 Q2]

T . We
assume that sleeping periods are characterized by having no disturbances affecting
the system and/or the effect of previous disturbances is small. For this reason, the ob-
server is designed considering only insulin inputs. Consistent estimations should be
provided by this observer during periods similar to steady state periods, i.e., resting
or fasting periods;

3. Altered insulin sensitivity observer: Observer designed to track periods with increased
sensitivity, for example during aerobic exercise sessions. The model parameter η has
been increased by a trial and error procedure to match simulated aerobic exercise
sessions based on clinical results [32]. Its state space vector is defined by x(k) =

[S1 S2 x1 Q1 Q2]
T ;

4. Rescue carbohydrates observer: Observer designed to detect a specific patient-in-the-loop
control action. The presented control approach uses CHO as a counter-regulatory
action to prevent hypoglycemia. This observer takes the insulin and CHO controller
actions as its inputs. The goal of the observer is to monitor the adherence of the patient
to the rescue CHO. Its state space vector is defined by x(k) = [S1 S2 x1 Q1 Q2 D1 D2]

T .
The CHO model time constant tmaxG is set to 20 min as in [27].

Each of the designed observers return a full state space interval estimation x̂1, x̂2, . . . x̂no .
Then, using those estimations, the interval residuals are computed based on the state
bounding zonotope X̂ (k) with the following residual center (cr) and generator matrix Rr

cr(k) = y(k)−
2nΦ

∑
i=1

(µi(Φ)Ci)x̂(k) (40)

Rr(k) =

[
−

2nΦ

∑
i=1

CiRx(k) − Ev

]
(41)

Hence, the FD test is based on checking the following condition

0 /∈< cr(k) Rr(k) > (42)
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A fault (or change of mode) is triggered when 0 is not included in the zonotope
< cr(k) Rr(k) >. To reduce the computational burden, condition (42) can be simplified
to check whether or not 0 is included in a box enclosing the zonotope

0 /∈< cr(k) b(Rr(k)) > (43)

where b(Rr(k)) = diag(||Rr(k)||1) and || · ||1 is the element by element absolute value
operator. Then, the zonotopic interval upper and lower bands used for FD in the FSM in
Equation (3) are defined as

tu
ri
(k) =cr(k) + ||Rr(k)||1 (44)

tl
ri
(k) =cr(k)− ||Rr(k)||1 (45)

The overall method scheme of the fault diagnosis system is shown in Figure 4. The
observer design problem is solved offline and the observer gains are obtained. For the
online observer iterations, a continuous-discrete approach can be used. With this approach
the a priori state estimation is obtained by integrating the original non-linear model, for
example using the ode45 function from Matlab. Then, the polytopic observer gain is found
by interpolation using (28). Residuals are then generated for each of the observers and fed
to the signature analysis module.

rn(k)

r2(k)

Real System

B1

∫
C1

L1

A1

µ1(Φ)

µn(Φ)

Φ

∑
Residual

Generation

Signature
Analysis

Hybrid
Diagnoser

Observable Events
Processing

Online Diagnoser

Polytopic Vertex 1
Polytopic Vertex 2

Polytopic Vertex n

Polytopic Observer 1

Polytopic Observer 2

Polytopic Observer no

u(k)
σc

y(k)

σs

x̂1(k)

r1(k)

HAk

.

.

.

. .
.

Figure 4. Conceptual diagram of the patient monitoring and FD system.

6. Results
6.1. In Silico Benchmarks

To test the robustness and precision of the monitoring system, two in silico benchmarks
have been developed. Each of the benchmarks were designed to check the proper behavior
of the system and its ability to detect different patient-in-the-loop modes and faults. All
simulations have been executed with Matlab R2019a using an AMD Ryzen 3800× 3.9 GHz
processor with 32 GB of RAM.

The FDA accepted UVa/Padova T1D Simulator (v3.2) [49] was used to evaluate the
strategy. All of the benchmarks share some scenario settings, which include a virtual cohort
of 10 adult patients. Scenarios last 4 days and 3 mixed meals of 60, 80, and 70 grams are
included each day at 8:00, 13:00, and 21:00, respectively. Intra-subject variability in insulin
absorption was included by assuming a ±30% in parameters (kd, ka1, ka2), and variability
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in insulin sensitivity was modeled by a sinusoidal pattern in parameters (Vmx, kp3) [50].
The first scenario is designed to evaluate performance when only meal disturbances appear.
The second scenario includes one session of aerobic exercise of heavy intensity (60%
VO2max) during the second scenario day at 18:00 for a total duration of 50 min. Exercise
was included into the simulation by using a previous developed model, which was fit to
clinical data, that increases insulin sensitivity [32,51].

6.2. Patient Mode Detection

Scenarios 1 and 2 were used to perform four complete simulations, which consider
different patient-in-the-loop faults. The simulations have the following characteristics:
(1) scenario 1 without faults, (2) scenario 2 without faults, (3) scenario 1 with patient
misestimated meals, and (4) scenario 2 with misestimated meals and missed rescue CHO.
In total, 480 meals were consumed and 20 exercise sessions were performed across all
simulations. Faults were introduced in a total of 160 meals, with over- and underestimations
of±60%, and feed-forward rescue CHO were also simulated with patient-in-the-loop faults
in 10 occasions.

Meals were correctly detected in 461 occasions out of the total 480 meals across all
simulations, resulting in a high sensitivity of 96.0%. Transitions towards the meal mode
q1 were triggered by the announcements and validated by the meal residual observer,
resulting in a detection time from the start of the event of 13 min, while the average
time in meal and postprandial period was 158 min. All exercise sessions were correctly
detected without false positives/negatives. The effect of exercise is known to last during
the following hours after an exercise session, this is also reflected in the time the system
remained on mode q2 of 328 min. Rest periods were considered as the periods in-between
meals, without periods where exercise happened, or during night. No detection time for
these periods is provided since there is no possible definition of when these events started,
average time in this period was 328 min.

Transitions to faulty modes only happened in simulations 3 and 4. Faults in the
consumption of rescue CHO, leading to transitions towards mode q4, were recorded from
simulation 4. A total of 10 missed rescue CHO consumption events were considered at the
instant of exercise announcement at 17:40 of simulation day 2. The HA correctly detected
8 of these faulty events and was also able to transition afterwards to the q2 mode. Two
of the faulty events were not detected and the HA automaton directly transitioned to the
altered insulin sensitivity mode q2, indicating a exercise. Misestimated meals were correctly
detected in 73 occasions with a sensitivity of 45.6%. No transitions to state q5 happened.

Table 3 shows the detection performance of the proposed approach for the aggregated
four simulations. Figures 5–9 showcase a simulation portion (from 39 to 55 simulation
hours) for the adult patient 10. Exercise starts at time instant 42 h and feed-forward
CHO are suggested at 39 h and 40 min. In this, case the patient does not consume the
recommended amount of CHO and the system transitions to a faulty CHO state. Notice,
that the system does not know if the patient has consumed or not the suggested rescue
CHO. Afterwards, the system transitions to the exercise state and remains in that state for
the following hours. This is an expected behavior of the system due to the modified insulin
sensitivity that last several hours after the end of exercise. Then, at time instant 45 h the
patient consumes a meal but the HA state remains at exercise. That is a normal behavior
due to the intertwined disturbance effects on the residuals.

6.3. Example of Controller Reconfiguration

This section provides insights regarding the benefits of using the proposed HA model
for the detection of patient-in-the-loop faults and controller reconfiguration. Particularly,
we focus on the case of announced exercise. When people using an AP announce exercise,
the feed-forward control can be applied in advance to mitigate the risk of exercise induced
hypoglycemia. The AP used in this work has an embedded feed-forward controller for ex-
ercise [32]. This block may degrade performance if triggered by an exercise announcement
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from the patient, but no physical activity is performed afterwards. To test the benefits of
controller reconfiguration, we use scenario 1, which does not include exercise, and assume
exercise at 16:00 during the second simulation day.

Table 3. Population performance metrics of patients mode transition by the HA.

Mode TP FP FN Sensitivity (%) Mean Transition Time (min) Mean Activated Time (min)

q1 461 1 19 96.0 13 158
q2 20 0 0 100.0 55 288
q3 476 0 33 93.5 - 328
q4 8 0 2 80.0 17 83
q6 73 20 87 45.6 28 22
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Figure 5. Representative fast and resting observer residual for the period 39–55 h from patient 10.
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Figure 6. Representative meal observer residual for the period 39–55 h from patient 10.
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Figure 7. Representative altered insulin sensitivity observer residual for the period 39–55 h from
patient 10.

The actions triggered by the feed-forward block are: (1) suggestion of feed-forward
CHO, (2) basal insulin reduction, (3) reduction of the next insulin bolus, and (4) decrease of
the insulin controller aggressivity (lower controller gains for the next 6 h after the ending of
the exercise session). Controller reconfiguration happens if there is a mode detection change
to mode q5 in a timely manner and the CGM is higher than 150 mg/dL. We assume exercise
is announced 20 min prior to the start [32] and we let the system monitor the patient until
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20 min after the supposed start of exercise. If the HAk is in a normal operational mode and
there is no mode change detection to q2 or a mode transition to q5 happens in that period
of time, then the controller resumes its original tuning and assumes that the patient is not
exercising even though there was an announcement.
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Figure 8. Representative rescue carbohydrates observer residual for the period 39–55 h from pa-
tient 10.
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Figure 9. Representative detection of faulty rescue CHO by the automaton state Qk for patient 10.
Data shown correspond to the simulation period from 39 to 55 h. The meal period comprises the 2 h
following the meal and the exercise period includes the active exercise and the time in advance of the
exercise announcement.

Table 4 shows the glycemic results when comparing the strategies with (AP+HA
column) and without (AP column) controller reconfiguration when faults in exercise
announcement happen. Figures 10 and 11 show the CGM trajectories and insulin infusions
for each case. The patient announces exercise at time instant 39 h and 40 min (day 2, 15:40).
The patient is supposed to start exercising at 40 h (day 2, 16:00) and have dinner at 45 h
(day 2, 21:00). Results show that reconfiguration allows for early insulin infusion to start
the following meal with lower BG and allows for better and tighter BG control during the
postprandial period following an exercise session.

Controller reconfiguration allowed for a tighter and better BG control during and
after the false exercise session and also for the next postprandial period. Overall, time in
range 70–180 mg/dL significantly increased from 38.3 (34.3, 47.5)% to 62.0 (58.4, 71.5)%
and the mean CGM was also reduced from 211.7 (172.4, 231.9) mg/dL to 154.9 (121.0,
206.3) mg/dL. The risk of hyperglycemia was also minimized as reflected by the time
ranges above 180 mg/dL, and no risk of hypoglycemia was observed. Insulin infusion was
resumed earlier upon mode detection as shown in Figure 11, allowing lower BG at the start
of the second day dinner. Postprandial control was specially improved in the reconfigured
controller, mainly due to the restored insulin bolus previously mitigated by the exercise
feedforward actions.
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Table 4. Glycemic performance when subjects introduce faults in the exercise announcement.

Performance Indicator AP AP+HA

Mean CGM (mg/dL) 211.7 (172.4, 231.9) 154.9 (121.0, 206.3)∗

Median CGM (mg/dL) 199.8 (164.4, 221.1) 153.7 (117.5, 200.6)∗

Maximum CGM (mg/dL) 361.3 (258.1, 410.3) 200.9 (174.0, 265.3)∗

Minimum CGM (mg/dL) 142.9 (125.9, 162.1) 108.2 (87.3, 157.9)∗

% of time CGM
>250 mg/dL 8.0 (0.0, 18.3) 0.0 (0.0, 16.8)
>180 mg/dL 51.1 (35.8, 52.6) 30.7 (20.4, 37.2)
70–180 mg/dL 38.3 (34.3, 47.5) 62.0 (58.4, 71.5)∗

<70 mg/dL 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
<54 mg/dL 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)

The results are median (interquartile range) during the time period between the 40th and 51th simulation hours.
* p value < 0.01 (Wilcoxon signed rank test). AP refers to the system without controller reconfiguration and
AP+HA refers to the system with controller reconfiguration.

Figure 10. Population CGM trajectory (MEAN ± STD) when an exercise announcement patient-in-
the-loop fault affects the system. The blue curve represents the controller without reconfiguration
and the magenta curve represents the controller with reconfiguration. The exercise announcement
occurs at time instant 39 h and 40 min.

Figure 11. Population insulin trajectory (MEAN ± STD) when an exercise announcement patient-in-
the-loop fault affects the system. The blue curve represents the controller without reconfiguration
and the magenta curve represents the controller with reconfiguration. The circular and star points at
the 45th simulation hour represent the mean boluses taken in each simulation.

7. Discussion

The patient-in-the-loop concept is fundamental for any diabetes treatment. Patients
play essential roles within the treatment, from being the plant to control to actuate as an
operator. This is the case for both OL and CL insulin therapies, and significantly more
important in OL strategies where patients have more responsibility. Errors introduced by
patients may compromise the performance and stability of treatments and patients may
put themselves at risk. To minimize patient-in-the-loop faults, tools that monitor and detect
those behaviors are needed. Detection of faults may allow CL controllers to take additional
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corrective actions to minimize the impact of the fault on the system performance. However,
not all patient-in-the-loop faults might be easy to respond to. In any situation, monitoring
systems will allow the collection of patient data that could be used to individualize the
tuning of controllers or identify when faults are most likely to happen. Additionally, the
detection of patient-in-the-loop faults with minimal impact during CL operation can be
hard. CL systems are designed to reduce variability of the controlled variable and for
disturbance rejection. Therefore, faults that have a small impact on the system and on BG
concentration might be counteracted by the CL system itself and not detected as a fault.
This is the case of misestimated meals in hybrid AP settings. In the case of OL therapies,
this issue should be of less importance, allowing for more accurate detection.

To tackle this issue, we proposed a methodology based on a HA model. Even though
the results we obtained were satisfactory and promising, our study suffered from several
limitations. The first one is related to the data used to classify patient modes and faults.
We used a simulation environment to stress the system and check its robustness and
performance in several proof-of-concept examples. Certain limitations exist when trying
to replicate real patient-in-the-loop faults in a simulation environment. BG trajectories
may significantly vary depending on what the patient is performing, which may fall under
normal operation. For example, postprandial periods where the patient is mostly in a
sedentary state may differ from periods where the patient engages in slow walks. In
any situation, these should not be detected as different patient states since there is no
abnormality in the system. Real free-living condition data is still needed to assess the
performance and detection capabilities of the proposed approach.

In this approach, we used a bank of interval zonotopic Kalman filters for the purpose
of generating residuals. There are limitations to this approach due to the fact of using
an approximate model and limited measurements. Particularly, the altered sensitivity
observer has been designed to detect decreases in BG caused by aerobic exercise. Other
types of exercise may have different effects on insulin sensitivity, requiring additional
observers. Other factors such as illness, stress, menstruation cycle, sleep apnea, or some
medications can also lead to important physiological changes, including changes in insulin
sensitivity [52,53]. Therefore, the system is assumed to be working under normal operation
for the detection of aerobic exercise. The major limitation of using a bank of observers is
the need to build many different observers for the detection of the multitude of factors
encountered in free living conditions. We used a reduced glucoregulatory model to relax
the problem of observability of linear systems when only one measurement is available,
but many states have to be estimated. Even though we only used the observers as a mean
to generate residuals, the information from the observers could also be used to estimate
other physiological parameters, such as the rates of glucose absorption.

We used the basic AP configuration, which only includes a CGM and an insulin pump.
This was decided because even though there are studies using additional signals (such as
using heart rate monitors, energy expenditure information and galvanic skin responses)
these additional signals mean that the user (the patient) will have to wear additional sensors.
Thus, although this could be of benefit for better detection performance, it also means that
there is an increased risk of faults because more devices are used. Ultimately, the CGM and
an insulin pump are always required devices for any AP operation. The proposed approach
has two goals: (1) provide information for the AP in real time, and (2) provide information
for long term decision making. By classifying patient errors, we believe that the system
can be fine-tuned to maximize performance and minimize the risk of hypoglycemia due to
patient actions. The developed approach could also work with different AP configurations,
for example, AP systems with additional control signals such as glucagon [54]. This holds
true because the developed approach is model-based, and by adding extra control actions
the real model (the patient) retains the same dynamics. However, notice that this may
require a re-tuning of the approach since not all possible modes have been considered,
for example, faults regarding glucagon. The system performance may be compromised
if used with other treatment options such as cadaveric islet or stem-cell derived islet
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transplantation. This also holds true when using the proposed approach for very specific
sub-cohorts of people with T1D. All approaches that may modify the open-loop dynamics
of the patient will require a model check for the proposed system to work.

Automated insulin delivery systems are still under research and improvement, with
few systems such as the Medtronic 670 G and newer 780 G available on the market [55].
The most common AP uses the so-called subcutaneous route to sense glucose and deliver
insulin. Non-physiological routes inevitably create non-physiological delays that are
nonexistent in the healthy endogenous beta cells when sensing glucose and secreting
insulin [56]. The major limiting factor of the subcutaneous route is related to the absorption
of fast or ultra-fast insulin analogues. Most of these insulin formulations start actuating
10–15 min after their injection with a maximum peak of action between 1 and 2 h [57]. One
of the consequences of this is the fact that most AP systems are rather conservative in insulin
delivery to avoid overdoses of insulin, which may lead to hypoglycemia. As new insulins
come to the market with faster profiles, the AP systems should be able to better control
blood glucose due to a lowered delay of the control action effect. For example, newer
formulations of insulin Aspart such as AT247, IAsp and FIAsp still have an approximate
onset of exposure of 5 min [58–60]. On the other hand, CGM sensors have gradually
improved their accuracy and some models can already be used as non-adjunctive, such as
de Dexcom G6 [61]. Delays in blood glucose sensing by CGMs have been acknowledged
for a long time [62]. Newer models already reported MARD < 10%, however, delays
between plasma insulin and measured CGM glucose concentrations are still in the range
of 5–10 min [61]. CGM technology provides close to continuous flux of glucose readings,
generally between 1 and 5 min. Although this measurement sampling rate is much slower
compared to how fast the healthy endogenous beta cells sense glucose, it is fast enough to
control blood glucose since the dynamics of the overall system are much slower.

Current AP systems will certainly improve their performance if the delays associated
with the subcutaneous route are reduced [56]. Especially, in situations where fast distur-
bances affect the system, for example for postprandial control [63]. Recent clinical trial
outcomes of AP systems suggest that night periods are better controlled compared to tradi-
tional therapies [8], while day periods remain a challenge. This is caused by the absence of
disturbances, mainly meals, during nights. Therefore, controlling postprandial periods is
still difficult for AP systems even with the newest improved algorithms. Improving the
absorption of insulin analogues will most likely allow for better control of postprandial
periods than improving the already tested algorithms. The proposed approach should be
able to accommodate improvements for newer insulin formulations and CGM systems
since it is model-based. Theoretically, these improvements are equivalent to changing
the time constants of the insulin and glucose sub-systems change. Then, the proposed
approach would require including these new time constants in the models used. Clearly,
the model change will have to be validated and the system performance assessed again.

Detection performance should be analyzed in depth before performing controller
reconfiguration. While some patient-in-the-loop faults might be easier to detect with high
accuracy, others might show higher rate of FP and FN. The results presented in this paper
showed that detecting faults in CHO control actions can be accurately performed, while
detecting errors in meal estimation is harder. The detection of meal misestimations is
especially critical for the case of FP events, where controller reconfiguration could be
triggered erroneously. This is something that must be taken into consideration when
designing the FTC strategy. Detecting faults of people with type 1 diabetes is a complex
task. Unfortunately, to discriminate different faults, the use of different observers is
required. Nevertheless, the HA model is not restricted to work with observers. Residuals
can be generated in a multitude of ways. In this work we used a bank of observers for the
generation of residuals. However, any other methodology for the residual generation can
be used and incorporated into the HA model.
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8. Conclusions

A methodology to monitor patient-in-the-loop modes and faults has been presented.
The system is built around a HA model that replicate patient’s real life operation modes.
Transitions between different modes allow for the identification of key operational modes
and faults. The diagnoser is responsible for mode recognition by using a group of indicators
generated from a set of residuals for every mode. A bank of interval zonotopic Kalman
filters was constructed for the residual generation, allowing the system to have confidence
bounds on the state estimation and residual generation.

Several proof of concept simulated benchmarks were done using challenging scenarios.
The results suggest that mode and patient-in-the-loop faults can be detected in real time.
Next, the information resulting from this study could be used as a tool to reconfigure CL
controllers, monitor the system continuously and classify patient-in-the-loop behaviors.
The exploration of these areas will be part of future research. Moreover, the adaptation of
the LPV Hovorka reduced model to represent glycemic dynamics will be investigated.
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