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Abstract: It is commonplace for people to perform various kinds of activities in groups. The
recognition of human groups is of importance in many applications including crowd evacuation,
teamwork coordination, and advertising. Existing group recognition approaches require snapshots
of human trajectories, which is often impossible in the reality due to different data collection start
time and frequency, and the inherent time deviations of devices. This study proposes an approach
to synchronize the data of people for group recognition. All people’s trajectory data are aligned by
using data interpolating. The optimal interpolating points are computed based on our proposed error
function. Moreover, the time deviations among devices are estimated and eliminated by message
passing. A real-life data set is used to validate the effectiveness of the proposed approach. The
results show that 97.7% accuracy of group recognition can be achieved. The approach proposed to
deal with time deviations was also proven to lead to better performance compared to that of the
existing approaches.

Keywords: group recognition; synchronization; trajectory interpolation; message passing

1. Introduction

People often perform various kinds of activities in groups. For example, friends,
colleagues, or a family often go shopping together [1,2], firefighters often form several
groups to search survivors in a burning building [3,4], and people in an earthquake often
escape with familiar persons [5]. It was reported that up to 70% of people’s time in public
places is spent with others [6]. High cohesion of a group enables more effective information
dissemination and human management. For example, if escape instructions are sent to
human groups rather than individuals in an emergency situation, the redundant message
transmission can be avoided, and thus, leads to a faster evacuation.

Existing works on the recognition of human groups mainly perform spatial-temporal
clustering or collective matrix factorization based on the snapshots of people’s
trajectory [2,7–10]. The snapshots of people’s trajectory are critical to the human group
recognition. One of the challenges is that data are required to be collected at the same time
from different persons. We call this problem the synchronization of group data collection.
There are many factors affecting it because the processing is inherently distributed in
different sensing devices carried by people. Firstly, the sensing devices may start their
data collections at different times. Secondly, the data collection frequencies are different
because there are different parameter settings in sensing devices. Thirdly, the clocks at
different sensing devices are usually not well synchronized. The synchronization usually
incurs high overhead, and sometimes is even impossible because of hardware constraints
or privacy concerns. What is worse is that the degree of the deviation of a clock to other
clocks is not known. Due to the aforementioned reasons, it is difficult to collect data from
people at the same time. Further data processing is demanded to improve this situation.
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This study focuses on the synchronized data collection for human group recognition.
Firstly, we synchronize the data of different people by interpolating data at a certain period
from a starting time. Detailed algorithm to compute the optimal starting time is also
illustrated. After that, we estimate the deviation of clocks between sensing devices based
on message passing. An approach is proposed to minimize such deviation using limited
number of message passings. Finally, we use a real-life data set to evaluate the proposed
approaches. In summary, this study makes the following contributions:

• We identified the synchronized data collection problem in the human group recognition.
• We proposed a trajectory interpolation algorithm to solve different start time and

frequency problem in the human group recognition. A reasonable error function is
designed to optimize the interpolation.

• We utilize message passing to estimate and minimize the deviation of clocks be-
tween devices.

• Extensive evaluations are carried out and the results show that the proposed algo-
rithms outperform the existing approaches.

The rest of the paper is organized as follows: Section 2 reviews the related works.
Section 3 introduces the system model of this study. Section 4 illustrates the aligned trajec-
tory interpolating algorithm to deal with different start times and frequencies. Section 5
illustrates the approach to estimate and minimize the deviation of clocks between sensing
devices. Section 6 reports the evaluation results, and Section 7 concludes this paper.

This study is based on our previous study [11]. In this version, we consider the time
deviations among devices as an important factor to affect the accuracy of human group
recognition, and propose an approach to estimate and eliminate such time deviations.

2. Related Work

In recent years, many researchers investigated the group recognizing based on sensors.
Wirz [12] et al. proposed a pedestrian flock detection algorithm by using the spatial-
temporal clustering [13] of a series of snapshots of GPS data of humans. Density-based
clustering algorithms such as DBSCAN [14] and DJ-Cluster [15] can be used for their
clusterings. The works [16,17] follow the similar idea based on GPS positioning data.
The similarity of other sensing signals including acceleration, orientation, WiFi signals,
and Bluetooth signals [1,18,19] can also be used to deduce the groups. Feese [3,4] et al.
detected groups of firefighters by using the built-in ANT radio and atmospheric pressure
sensor of mobile phones. The ANT radio based communications are used to determine
the distance between two firefighters, and the atmospheric pressure sensor is used to
determine their located floors in a building. These data are further combined to detect
the groups of moving firefighters. Shen et al. utilize the similarities of RSS trends of
WiFi data from people to infer their group affiliations [20]. They further combine the
smartphone usage behaviors (measured by the number of bursts of WiFi probes) into
the computation of similarities [2]. More features including the spatial features, signal
strength features, motion features, turn features, and level change features of humans are
combined to deduce the group affiliation [1,9,21–23]. One of our previous works utilizes
the interaction among humans to improve the recognition accuracy [24]. Instead of using
raw sensing data, the works [25,26] proposed a group affiliation detection algorithm based
on the data distribution, i.e., a mixture of Gaussian for acceleration and a mixture of von
Mises distributions for orientation. This method greatly reduces the amount of data to be
transmitted, and hence, gains benefits in the real-time processing and energy consumption.
All these works assumed that the sensing data are synchronized and collected in snapshots.
However, this assumption is not always satisfied. This study solves this problem.

There are also existing works for synchronizing the clocks among devices, including
server-slave communization-based approaches [27,28], broadcasting (single-hop or multi-
hops) based approaches [29], and hierarchical communization-based approaches [30,31].
The natural network effect and more complex models are also used to improve the syn-
chronizing accuracy [32–34]. However, in many scenarios, implicit synchronization is
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impossible due to hardware constraints of devices or privacy concerns from people. In this
study, we use the communications in the application layer to avoid this problem.

3. System Model

We assume that in a region such as a shopping mall there are n persons forming
multiple groups to perform activities. Each person’s data are collected by their mobile
devices or the sensors installed in the region. The data are assumed collected with a
duration of T. Data collection starts when people come into the region. People may
come into the region at different times, which causes different start times of data collection.
Person i’s data are collected periodically with a period of Fi. Therefore, we obtain a sequence
of location data P0, P1, ..., Pn−1 where Pi is the location data for person i (0 ≤ i < n). The
clocks of the data collection devices are not calibrated so inherent time deviations exist.
The different data collection start time, frequency, and time deviation causes unaligned
collected data.

We use Figure 1 to demonstrate the different start times and frequencies in the data
collection process. The rectangles represent the timestamps of data collection. According
to the figure, person 1 and person 2 start their data collections at different times, and thus
the collected data are not aligned. Person 1 and person 3 have different data collection
frequencies, and thus, also have unaligned collected data. The unaligned data make group
recognition difficult because group recognition is based on the snapshots of the states
of persons.

t0
collected data

start time

rajectory
of person1

2

3

interpolated data

Figure 1. Data collection process of human groups. Rectangles denote timestamps when data are
collected, and dots denote timestamps when data are interpolated. Collected data are not aligned,
but interpolated data are well aligned.

Our purpose is dual fold. Firstly, we aim to synchronize the data collection assuming
that all clocks have no time deviations. Data interpolation technique can be used to achieve
this purpose. As displayed in Figure 1, the dots represent the interpolated data, which are
aligned for all persons. After the interpolation, all the data used for group recognition start
at the time t0 and with the period of f where f ≤ min Fi, (i = 0, 1...n− 1). The determining
of f depends on the requirement of group recognition application (e.g., online update
frequency). We determine the interpolation approach and the optimal t0. Secondly, we
aim to estimate the time deviation among devices and further align the collected data. The
messages exchanged among devices can be used to compute the time deviation. Since
different messages have different impact on the time deviation estimation, we determine
the optimal messages to be sent.

4. Aligned Trajectory Interpolation

We first introduce the aligned trajectory interpolation approach for synchronizing the
collected data. This approach follows Catmull–Rom Spline[35] algorithm to interpolate a
datum in the middle of four consecutive data (called control points). It holds the property
that the control points are in the Bézier curve and no cusp and intersection on the curve
determined by the control points and interpolated data [35], which is consistent with the
human’s walking trajectory.

The interpolation process include two steps as follows:
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(a) Add one datum (i.e., 2P0 − P1) before the first collected datum (i.e., P0), and one
datum (i.e., 2Pn − Pn−1) after the last collected datum (i.e., Pn). This is to guarantee that
there are at least four collected data.

(b) Go through the whole data set, obtain four data each time as control points,
and interpolate one datum between the middle two control points. The interpolation is
performed at ti = t0 + i ∗ f (0 ≤ t0 < f , i = 1, 2...).

Following a proper starting time t0 and period f , the interpolated data can be aligned.
Assuming that [1, 2, 3] and [1.3, 2.3, 3.3] are two collected data, if t0 is 0 and f is 0.3, the
resulting data [1, 1.3, 1.6, 1.9, 2, 2.3, 2.6, 2.9, 3], [1.3, 1.6, 1.9, 2.2, 2.3, 2.6, 2.9, 3.2, 3.3]
are aligned.

The value of starting time t0 affects the accuracy of the interpolation. We further
define an error function to measure the difference between the interpolated data and the
real data. We aim to obtain the data close to the real ones by minimizing the error function.
To design the error function is quite challenging. Empirically, interpolation error of one
datum becomes larger when it is farther away from the control points. Based on this idea,
we propose an error function as follows:

g(x) = −10(1− x)10 + 10(1− x)9 (1)

where x ∈ [0, 1] represents the normalized distance of the interpolated datum from the
second control point to the third control point.

With the error function being determined, given a t0, we can compute the error of
each interpolated datum and accumulate it to the total errors. By iterating t0 ∈ [0, f ), we
can obtain the optimal value of t0 such that the total errors are minimized. The detailed
algorithm is illustrated in Algorithm 1. We assume that all the user data are stored in
userData, where userDatai represents the data of user i. interpolatedDatai stores all the
interpolated data of user i. t0 is checked with a time unit unitTime. We first obtain all
the interpolated data as in lines 5–7. Then, for each interpolated datum, we find its two
nearest control points (d0 and d1), and compute the normalized distance of it from d0 to d1
(lines 8–9). Based on the error function of Equation (1), we can compute the error of this
interpolated datum, and accumulate it into errors (line 10). We iterate all possible values
of t0 in [0, f ) and the optimal value is the one that achieves the minimal errors (lines 3
and 13–14).

Algorithm 1: Start time determination
Input: T, f , unitTime, userData :
Output: t0 :

1 minErrors = ∞
2 interpolatedData = ∅
3 for t0 = 0; t0 < f ; t0 = t0 + unitTime do
4 errors = 0
5 for i = 0; i < n; i++ do
6 for j = 0; j < T/ f ; j = j + 1 do
7 interpolatedDatai.add(t0 + j*f )
8 find the nearest two data in userDatai, say d0 and d1
9 x = (t0 + j ∗ f− d0)/(d1 − d0)

10 errors = errors + g(x)
11 end
12 end
13 minErrors= min(minErrors, errors)
14 output the t0 that achieves minErrors
15 end

After the data interpolation, we follow Wirz’s spatial-temporal flock detection algo-
rithm [12] to recognize the human groups. In each snapshot, the algorithm divides all the
people into groups by DJ-Cluster [15], according to people’s locations. In this approach,
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we use DBSCAN [14] rather than DJ-Cluster, because DBSCAN can detect a complete
cluster more fast for real-time processing. After that, the deduced groups are compared
with the ones identified in previous snapshots. If two groups in continuous snapshots are
sufficiently similar, they are regarded as the same group. Real-time graphically monitoring
of the groups is also feasible in this situation. An example of it is shown in Figure 2.

100 200 300 400 500 600 700 800 900 1000

1
2
3
4
5
6
7
8
9
10

Figure 2. Graphical display of human groups. Persons with ID 1–10 are grouped from timestamp
1–1000. Persons in one group are marked with same color. Blank space means no data, and gray
space means that person currently does not belong to any group.

5. Time Deviation Estimation and Elimination

In the previous section, we assume that the clocks among all the devices are synchro-
nized. Actually, this assumption is not always satisfied. The time deviation among the
devices commonly exists and affects the accuracy of group recognition. In this section, we
try to minimize the time deviation among the devices.

5.1. Time Deviation Estimation Based on Message Passing

We first estimate the time deviation of devices before eliminating it. Message passing
can be used for this purpose. Message passing is a technique to determine the temporal
relations among devices without synchronized clocks. The main idea is based on the fact
that the sending timestamp of a message must be prior to its receiving timestamp [36].
We bound the time deviation of devices based on message passing. Figure 3a illustrates
how message passing works where device1 and device2 have offset1 and offset2 deviated to a
reference timestamp, respectively. These devices transmit messages to each other where
each message passing is denoted by an arrow (e.g., message1 and message2). We have the
following inequalities:

ti
2 + offset2 < tj

1 + offset1

tk
1 + offset1 < th

2 + offset2
By solving the inequalities, we obtain the time deviation of the two devices off-

set1−offset2 ∈ [ti
2 − tj

1, th
2 − tk

1]. A message from device1 to device2 determines the upper
bound of offset1−offset2 while a message from device2 to device1 determines the lower bound
of offset1−offset2. A bidirectional message determines the time interval for offset1−offset2.
The length of the time interval is the sum of the two messages’ transmission durations.

Besides the aforementioned direct bidirectional messages, Figure 3b shows an indirect
bidirectional message. device1 and device3 have no direct message passing, but through
device2 we can determine their temporal relations. We calculate the time deviation between
them using the following inequalities:

ti
1 + offset1 < tj

2 + offset2
tk
2 + offset2 < th

1 + offset1
tr
2 + offset2 < ts

3 + offset3
tu
3 + offset3 < tv

2 + offset2

By solving the inequalities, we obtain offset1−offset2 ∈ [tk
2 − th

1, tj
2−ti

1], offset2−offset3 ∈
[tu

3−tv
2, ts

3− tr
2]. Combining the two time intervals, we have offset1−offset3 ∈ [tk

2− th
1 + tu

3 − tv
2,
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tj
2 − ti

1 + ts
3 − tr

2]. Consequently, even though device1 and device3 do not have any message
exchange directly, their time deviation can be estimated.

Given a reference device, the time deviation of other devices to it can be determined by
their direct or indirect message passings. We build a direct graph G to compute the direct
or indirect message passings, where a vertex represents a device, and an edge represents a
message passing between two devices. Whether a message passing between two devices
exists depends on the bidirectional reachability of the two vertices in the graph. Without
loss of the generality, we use the vertex that has the largest degree as the reference device.

… …

time line

offset1

device1 device2

offset2

message1

…

…

…

device1 device2 device3

offset1 offset2
offset3

time line
message2

message1

message2 message3

message4

reference 
time

reference 
time

(a)

… …

time line

offset1

device1 device2

offset2

message1

…

…

…

device1 device2 device3

offset1 offset2
offset3

time line
message2

message1

message2 message3

message4

reference 
time

reference 
time

(b)

Figure 3. (a) device1 and device2 has a bidirectional message. (b) device1 and device3 has an indirect
bidirectional message through device2.

Figure 4 illustrates an example of it. Vertex 3 is selected as the reference device. When
determining the time deviation of vertex 4 to vertex 3, from vertex 3 to vertex 4, there is
only one path 3→4, and hence offset3−offset4 is bounded by the time interval [−infinite,
−27.229]. However, from vertex 4 to vertex 3, there are three paths, 4→0→3, 4→1→0→3,
and 4→1→3, and hence offset3−offset4 is determined by the time intervals [−28.37, infinite],
[−30.017, infinite], and [−28.637, infinite], respectively. By minimizing the length of time
interval, offset3−offset4 is bounded by [−28.37, −27.229] that is derived from the paths 3→4
and 4→0→3.

0

4

3

1

2
offset1‐offset4∈[‐0.967, inf]

offset2‐offset3∈[65.739, inf]
offset2‐offset4∈[37.872, inf]
offset3‐offset4∈[‐inf, ‐27.229]

offset0‐offset1∈[15.964, inf]
offset0‐offset2∈[‐inf, inf]

offset0‐offset3∈[‐inf, 45.014]

offset0‐offset4∈[16.664, inf]
offset1‐offset2∈[‐inf, inf]

offset1‐offset3∈[‐inf, 27.671]

Figure 4. Time deviation estimation based on message passing.

Considering that initially not all the devices are bidirectionally reachable from the
reference device, more message passings are required to build the temporal relations among
them. Given a limited number of messages, we require to improve the estimation of time
deviations of all devices to the reference device. We define two criteria to evaluate the
accuracy of such estimation. One is the number of infinites in the time intervals bounded
the time deviation, and the other is the average length of the time intervals bounded
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the time deviation. The number of infinites has the priority on the average length of the
time intervals.

Table 1 illustrates the change in number of infinites and average length of the time
intervals bounded the time deviation. This result is derived when changing the number of
messages from 10 to 45 and fixing the number of devices to 10. We perform five experiments
and calculate the average of them. The reduced number of infinites and the average length
of the time intervals denote a more accurate estimation of the time deviations. For example,
there exist less than two infinites in the time interval (average case) when the number of
messages is between 10 and 20. When the number of messages is more than 25, infinite
is gradually eliminated. The average length of the time intervals also decreases with
more messages.

Table 1. Changes of estimated time deviation with number of messages.

Number of Messages

(InfNum, AveLength) 10 15 20 25 30 35 40 45

Exp.1 (8, 1.015) (9, 1.113) (8, 1.028) (0, 1.346) (0, 0.965) (0, 0.935) (0, 0.781) (0, 0.636)
Exp.2 (12, inf) (5, 0.607) (7, 0.616) (3, 0.965) (3, 1.314) (0, 1.036) (0, 0.941) (0, 0.705)
Exp.3 (15, inf) (3, 1.979) (7, 0.621) (3, 1.273) (1, 1.417) (0, 0.649) (0, 1.087) (0, 0.657)
Exp.4 (12, inf) (10, inf) (2, 0.944) (0, 1.531) (0, 1.414) (1, 0.925) (0, 0.93) (0, 0.489)
Exp.5 (12, 1.342) (9, 0.795) (4, 1.317) (4, 1.231) (2, 0.594) (0, 1.281) (0, 0.74) (0, 0.495)

Average (11.8, inf) (7.2, inf) (5.6, 0.905) (2.2, 1.269) (1.4, 1.141) (0.2, 0.965) (0, 0.896) (0, 0.596)

5.2. Improvement on the Estimation of Time Deviation

We use more message passings to improve the estimation accuracy of time deviations.
We first compute the number of additional messages required to obtain the estimation of
all the devices (i.e., eliminate all infinites in the estimation). Then, we discuss the sequence
to add these messages to improve the accuracy speed.

The first problem can be solved by guaranteeing the strong connection of the graph G
that represents the devices and message passings. We first calculate the least amount of
edges required for the graph to become a strongly connected directed graph. The main idea
for achieving this is that if one vertex is biconnected to any other vertex, the graph must be
strongly connected. The detailed approach is as follows. We first follow the work [37] to
detect the strongly connected components in G and replace each component with a new
vertex (called shrinking vertex), thus obtain a new graph G’. After that, the in-degree and
out-degree of each vertex in G’ are computed. The least number of edges required to be
added to make G’ be a strongly connected graph is max(|VI|, |VO|) where VI represents
the vertices whose in-degrees are 0 and VO represents the vertices whose out-degrees are 0.
Each added edge can reduce a vertex whose in-degree is 0 and a vertex whose out-degree
is 0.

For the sequence of additional message passings, we propose an algorithm to sequen-
tially add one more message passing to improve the accuracy of time deviation estimation.
The algorithm determines the start vertex and end vertex of a message passing which is
helpful to reduce the number of infinites in the time intervals bounded the time deviations.
The vertex with out-degree of 0 and the largest in-degree is selected as the start vertex, and
the vertex with in-degree of 0 and the largest out-degree is selected as the end vertex. A
message passing between such vertices is likely to establish more new paths in the graph,
and therefore, eliminate as many infinites as possible and refine the time intervals bounded
the time deviations.

The detailed approach is shown in Algorithm 2. The algorithm determines a message
passing sent from vertex startVertex to vertex endVertex. The algorithm first computes
Vin-degree=0 and Vout-degree=0 that represent the vertices whose in-degrees are 0 and the
vertices whose out-degrees are 0, respectively (line 1). Then, we determine startVertex as a
vertex in Vout-degree=0 that has the largest in-degree, and endVertex as a vertex in Vin-degree=0
that has the largest out-degree (lines 2 and 6). If the vertex is a shrinking vertex, the
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original vertex is determined as the startVertex or endVertex, following similar principles
(lines 3–5 and 7–9). If Vout-degree=0 is an empty set, we choose the vertex that has the largest
in-degree in G\endVertex as startVertex (lines 10–12). Similarly, endVertex can be determined
(lines 13–15).

An example is shown in Figure 5 in which there are five messages initially. According
to our approach, the next message to be passed should be from vertex 4 to vertex 3. By
adding this message, offset0−offset3 will be bounded by [−infinite, −54.233], offset1−offset3
will be bounded by [−11.716, −10.596], offset1−offset4 will be bounded by [15.092, 16.212],
offset2−offset3 will be bounded by [−infinite, 57.299] and offset3−offset4 will be bounded
by [26.808, 27.301], five infinites can be eliminated. This message is the best one for
eliminating the number of infinites. For example, if a message is from vertex 1 to vertex
3, offset0−offset3 will be bounded by [−infinite, −54.501], offset1−offset3 will be bounded
by [−11.716, −10.864], and offset2−offset3 will be bounded by [−infinite, 57.031]. There are
three infinites that can be eliminated.

After obtaining the time interval bounded the time deviation of a device to the
reference device, we use the middle as its time deviation. This time deviation can be
eliminated by adjusting the timestamps of the data collected.

The time deviation estimation is affected by the transmission time of messages and
the messages in the application layer. Less transmission time leads to more accurate
upper bound and lower bound of time deviation between two devices. The messages
among devices in the application layer also can help to estimate time deviation, and
then less independent messages are required for building the relations among devices.
If an application has frequent interactions among devices, our approach can be benefit
from them.

Algorithm 2: Additional Message Passing Determination
Input: G :
Output: startVertex, endVertex :

1 compute Vin-degree=0 and Vout-degree=0
2 determine startVertex ∈ Vout-degree=0 as a vertex that has the largest in-degree.
3 if startVertex is a shrinking vertex then
4 choose an original vertex that has the largest in-degree as the startVertex
5 end
6 determine endVertex ∈ Vin-degree=0 as a vertex that has the largest out-degree
7 if endVertex is a shrinking vertex then
8 choose an original vertex that has the largest out-degree as the endVertex
9 end

10 if startVertex = null then
11 determine startVertex as a vertex from G\endVertex that has the largest in-degree
12 end
13 if endVertex = null then
14 determine endVertex as a vertex from G\startVertex that has the largest out-degree
15 end

0

4

3

1

2
offset1‐offset4∈[‐inf, 16.262]

offset2‐offset3∈[‐inf, inf]
offset2‐offset4∈[‐Inf, 84.107]
offset3‐offset4∈[‐inf, 27.301]

offset0‐offset1∈[‐inf, ‐43.637]
offset0‐offset2∈[‐inf, inf]

offset0‐offset3∈[‐inf, inf]

offset0‐offset4∈[‐Inf, ‐27.425]
offset1‐offset2∈[‐67.895, ‐27.425]

offset1‐offset3∈[‐11.716, inf]

Figure 5. An example of additional message passing determination.
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6. Evaluation Results

We use the ATC (Asia and Pacific Trade Center) pedestrian group data set [38] to
evaluate the effectiveness of the proposed approaches. This data set was collected in
a shopping center of Osaka, Japan using 36 Panasonic D-IMager, 11 ASUS Xtion PRO
structured light cameras, and 2 Velodyne HDL-32E rotating laser scanners. The data include
the IDs of the users in the shopping center and their 3D locations, speeds, directions of
movement, and face orientations at different timestamps. We first evaluate the performance
of the aligned trajectory interpolation approach and then the time deviation estimation and
elimination approach.

6.1. Evaluation of Aligned Trajectory Interpolation

We first sample the ATC data within a certain period, and regard them to be the
sensing data for human group recognition. To simulate different data collection frequencies,
the period of data collection follow a normal distribution N (F, 0.2). Aligned trajectory
interpolation approach is used to synchronize the data. We mainly check the accuracy of
synchronized data when matching the real data, and the accuracy of group recognition.

Fréchet distance [39,40] is used to measure how accurate the synchronized data match
the real data. This measurement is based on dog-man distance measurement model where
a person holds a dog by a rope in an arbitrary speed and the distance between them
is measured by the length of the rope. It is commonly used to measure the distance of
two curves.

We first check the Fréchet distance between the synchronized data and the real data
with different t0. The result is shown in Figure 6 where F is set to 3s and f is set to 0.04s.
The average Fréchet distance changes periodically with the change of t0. Different values
of t0 lead to different Fréchet distances. The minimum value is achieved when t0 equals
0.005, which matches the result of our approach in previous sections.
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Figure 6. Average Fréchet distance with different t0.

We further check the Fréchet distance between the synchronized data and the real
data with different values of F. f is set to 0.04 s. Figure 7 shows the result. The proposed
approach is more effective when F is small. As F increases, the average Fréchet distance
slightly increases. This is because sparser location data in the trajectory are obtained
at a larger F, and therefore less real data are collected. However, the aligned trajectory
interpolation in our approach alleviate the increase of average Fréchet distance.
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Figure 7. Average Fréchet distance with different F.

Finally, we measure the effect of data synchronization on the group recognition.
Following the literature [12], FAA(Flock Assignment Accuracy) and NFDA(Number of
Flocks Detection Accuracy) are used as the evaluation metrics. The former denotes the
normalized average number of objects assigned to correct groups over all timestamps and
the latter denotes the normalized number of groups that are correctly identified. When F
changes from 1 to 5, the result is shown in Figure 8. Firstly, both FAA and NFDA [12] of our
approach are higher than that of Wirz et al.’s approach. It validates that our optimized data
interpolation helps to improve the accuracy of group recognition. Secondly, FAA of our
approach is quite stable and up to 97.7%. This value is even higher than using the original
ATC data set, which is 97.4%. This can be explained by the fact that the interpolated
trajectory is smoother than the original ATC trajectory by ruling out some location noises.
Therefore, our approach applies in a wide range of F in different applications.

In the daily life, people’s walking speed is generally at 0.5–2 m/s[10]. If the sampling
period is 5 s, the person’s walking distance reaches 2.5–10 m. Even in this difficult situation,
the trajectory obtained by using the trajectory interpolation algorithm still performs well in
the group recognition. According to the figure, the proposed interpolation approach can
achieve up to 97.7% FAA accuracy, and 84.5% NFDA accuracy. When the sampling is more
frequent in a normal situation, the performance of our approach will be more desirable.
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Figure 8. FAA and NFDA of group recognition of different approaches at different F.

6.2. Evaluation of Time Deviation Estimation

We further validate the effectiveness of the proposed approach to estimate the time
deviations among devices. In a system with n devices, we assume the time deviation
of device i, offseti (0 < i < n), randomly distributed in (0 s, 15 s). All devices start data
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collection at the same time and have the same data collection frequency. The transmission
time of messages follow a normal distribution N (0.1 s, 0.5 s). Initially, we randomly add
several message passings among devices, simulating their data communications.

We compare our approach with several existing approaches including random selec-
tion, TRandom selection, and hierarchical communication [30]. Random selection randomly
requests two devices to perform a message communication. TRandom selection is a random
selection based on the shrinking graph generated by Tarjan’s algorithm. The start vertex
is selected from Vout-degree=0 (if it is empty, randomly choose a vertex), and the end vertex
is selected from Vin-degree=0 (if it is empty, randomly choose a vertex). In the hierarchical
communication approach, the message exchanges are based a pre-established tree structure.
A device is requested to broadcast messages to its children and get responses from them,
so that each child device synchronizes to its parent to estimate the time deviation.

We first change the number of devices n from 10 to 30 to check the number of in-
finites when estimating their time deviations. The number of initial messages is set to
2n to simulate an unconnected communication structure in the system. The results are
shown in Figure 9. When the number of devices increases, the number of infinites increases.
TRandom selection slightly outperforms random selection because the former combines
the strongly connected component of the graph, and hence, avoid invalid messages in it.
TRandom selection, random selection, and hierarchical communication show similar per-
formance because they all use a random strategy for adding a new message. Our approach
outperforms the other approaches because the messages are optimized to explicitly reduce
the number of infinites. In a typical scenario where the number of devices is 20, the number
of infinites of our approach is 71.2% of TRandom selection, 68.9% of random selection, and
66.3% of hierarchical communication.

Figure 9. Number of infinites with different number of devices

We then fix the number of devices to 10 and change the number of messages from 10
to 30 to check the number of infinites in the time intervals bounded the time deviations.
According to Figure 10, the number of infinites decreases with more messages. This is
reasonable because more messages likely generate more paths between two devices, and
hence, provide a more accurate estimation of the time deviation between them. The reduced
number of infinites of our approach is much more than that of other approaches. It shows
that our approach determines more proper paths to reduce the number of infinites, and
therefore improves the estimation.
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Figure 10. Number of infinites with different number of messages.

After that, we compare the approaches when improving the average length of the
time intervals bounded time deviations. The result is shown in Figure 11. The number of
devices n is set to 10 and the initial number of messages is set to 40. In this configuration,
the devices are likely to have a strongly connected communication structure. If not, we
add a minimum number of extra messages to make the devices strongly connected. In the
situation of strongly connected communications, random selection and TRandom selection
perform the same, and therefore TRandom selection is not shown in the figure. With the
increase of the number of devices, the average length of time intervals of all approaches
slightly increases. Our approach outperforms other approaches because it trends to add the
messages that probably increase the communication paths between devices. Given same
number of messages, our approach leads more accurate estimation of time deviations.

Figure 11. Average length of time deviations with different number of devices.

Finally, we evaluate the group recognition results of our approach compared with the
ground truth and the approach proposed by Wirz et al. [12]. The real data are generated
by selecting 91 pedestrians from ATC pedestrian group data set [38] and the collected
data are supposed deviated randomly within (−15 s, 15 s) to the real data. The ground
truth is based on the real data, and our approach performs time deviation elimination.
For the fairness of comparison, we apply the aligned trajectory interpolation algorithm in
each time snapshots for all the approaches. In every snapshot, the humans are grouped
by their locations. Then, we evaluate the grouping result by the average FAA and NFDA
in the snapshots. In the experiments, we check the average FAA and NFDA in different
values of eps, the radius of neighborhood in DBSCAN. The result is shown in Figure 12.
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Compared with that of the ground truth, the FAA and NFDA when using Wirz et al.’s
approach decrease a lot. It validates that the time deviations affect the group recognition
accuracy. The FAA and NFDA when using our approach are close to the ground truth,
which validates the effectiveness of our proposed estimation and elimination approach.
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Figure 12. Group recognition accuracy comparison of our approach with other approaches

7. Conclusions

This study investigated the synchronization of data collection in human group recog-
nition. The challenges for this is that data collection usually has different start time and
frequency, and the inherent time deviations of different devices exist. We propose a trajec-
tory interpolation algorithm to synchronize the start time and frequency by minimizing
our proposed error function. Moreover, we propose an approach to estimate the time
deviations among devices by using message passing. The evaluation results validate the
effectiveness of the proposed approach.

In the future, we plan to study how to utilize the messages in the application layer to
estimate the time deviations among devices. The time deviation estimation result also can
be used to adjust the devices’ data collection frequencies for better synchronization.
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