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Abstract: Direct visual odometry algorithms assume that every frame from the camera has the same
photometric characteristics. However, the cameras with auto exposure are widely used outdoors
as the environment often changes. The vignetting also affects the pixel’s brightness on different
frames, even if the exposure time is fixed. We propose an online vignetting correction and exposure
time estimation method for stereo direct visual odometry algorithms. Our method works on a
camera that has a gamma-like response function. The inverse vignetting function and exposure time
ratio between neighboring frames are estimated. Stereo matching is used to select correspondences
between the left image and right image in the same frame at the initialization step. Feature points are
used to pick the correspondences between different frames. Our method provides static correction
results during the experiments on datasets and a stereo camera.

Keywords: direct visual odometry; stereo camera; vignetting; response function; stereo matching

1. Introduction

With the fast development of digital cameras, more and more computer vision systems
are applied in various fields, such as visual navigation robotics. Visual odometry algorithms
have been improved greatly. Direct methods, such as LSD-SLAM (Large-scale direct
monocular SLAM) [1], DSO (Direct Sparse Odometry) [2], LDSO (Direct Sparse Odometry
with Loop Closure) [3], Stereo DSO [4], and SO-DSO (Scale Optimized Direct Sparse
Odometry) [5], have been proposed. These methods assume that the same point in different
frames appears same pixel value. However, for auto exposure cameras, which could adapt
to different light environments, the observed pixel value from the same scene point may
change during a time in the sequence. This affects the precision of the direct visual
odometry algorithms.

Worse yet, there is an irradiance fall-off phenomenon called vignetting. The irradiance
reduces on the periphery compared to the image center. It means that, even the exposure
time is fixed, the pixel value changes if the camera is moving and the projected location of
the scene point to the camera is changing.

Prior photometric camera calibration has been proved effective for improving the
performance of DSO. Therefore, it is necessary to align the brightness of the same scene
point in different frames. For this purpose, the vignetting phenomenon is required to be
estimated. Furthermore, the relationship between the irradiance captured by the camera
and the output image brightness value is often nonlinear, which makes the estimation more
complex. The camera response function (CRF) is used to describe the relationship between
the irradiance and the image brightness.

There are also other color correction factors, such as white balance correction, for
multi-camera systems. In most visual odometry systems, only grayscale images or one
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channel of the color images are used for processing. Thus, we just discuss the grayscale
images in this work.

In some cases, the response function and vignetting function are estimated beforehand.
However, to achieve the response function in this case, the camera and the scene objects
should remain static, and the environment light source should be fixed. In fact, if the
exposure time and other parameters change during recording, it is more desirable to use
the captured images to estimate the response function [6]. For the vignetting function, a
uniform radiance plane is usually used as a given reference target [7], and the function
that describes the relationship of pixel brightness and location is established. However,
sometimes, there is no condition to do the pre-calibration, such as the exposure time could
not be set manually. In addition, the change of aperture or focus affect the vignetting, the
calibrated function under fixed settings may not be suited to different actual operations.

There are also many calibration methods for the captured images without special
patterns. In some multi-view systems and image-stitching tasks, the overlap area gives
many correspondences, so that we could analyze the brightness change rule of one object
point in different views or images. A. Litvinov et al. [8] propose a linear least squares solu-
tion for response and vignetting functions, where they use the correspondences obtained
from panorama stitching. In the visual odometry system, the camera usually moves at fast
forward speed. Drastic changes in perspective relationships affect the performance of the
image stitching method. S. J. Kim et al. [9] propose a method to estimate the radiometric
response function of the camera and the exposure difference between frames with feature
tracking. M. Grundmant et al. [10] suppose the camera response function changes with
scene content and exposure and propose a self-calibration model for time-varying mixture
of responses. In these methods, they suppose that the movement in the track is short,
and no vignetting is present. In order to improve the performance of monocular direct
visual odometry, P. Bergmann et al. [11] propose an energy function for response and
vignetting at the same time. The correspondences for the function are captured from the
KLT tracker. In direct visual odometry with stereo cameras [4], the exposure differences
between neighboring frames are estimated without considering the vignetting effects.

In this paper, we propose a new calibration method to establish the vignetting function
and exposure time ratios between frames from a stereo camera used in direct visual
odometry. Feature points tracking and stereo matching give out the correspondences
for solving the energy function. The method is suitable for the camera with a gamma-
like response function. We calibrate the captured images with the inverse vignetting
function and the exposure time ratios during the visual odometry processing. We tested
our algorithm on open datasets and image sequences captured by a stereo camera.

2. Method
2.1. Photometric Model

In this paper, we suppose that every object in the scene has a Lambertian surface.
The radiance of a Lambertian surface to a camera is the same regardless of the camera’s an-
gle of view. Although there may be some objects that do not follow Lambertian reflectance,
if we can get enough points pairs on the Lambertian surface, the solving processing of
energy equation will be robust. When L is the radiance of a point in the scene, t is the
exposure time of the camera, and then the irradiance of the point at the sensor should be tL
in the ideal situation. However, the vignetting effect appears in most camera systems. V(x)
is used to describe the vignetting effect of the camera, and x is the location of the point in
the image sensor. The real irradiance of one point in the sensor is V(x)tL.

In order to make the image taken by a camera to be adapted to the color space standard,
digital camera normally uses a nonlinear response function to transform the irradiance on
the sensor to image pixel brightness value. However, the response function in fact depends
on the camera devices to generate visually preferable images. The function f describes
the CRF. For an 8-bit image, which is normally used in image processing, the range of f is
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[0, 255]. Here, we normalize the range to [0, 1] for convenience. The brightness value of a
scene point in the image captured by the camera can be written as

I = f (tV(x)L).

For the point pi in k-th frame with exposure time tk, the value in the image can be
written as

Ii
k = f (tkV(xi

k)Li).

Here, Li is a fixed value for the object corresponding to the pixel pi based on the
Lambertian reflection assumption. We can get the function:

f−1(Ii
k)

V(xi
k)tk

= Li.

It is easy to think of an energy equation in the below format:

E =
n

∑
k=1

∑
i∈P

(
f−1(Ii

k)

V(xi
k)tk
− Li)

2.

Here, n is the totally used frame number and P is the set of tracked points. As the Li
is unknown, we change the format of energy equation to

E =
n−1

∑
k=1

∑
i∈P

(
f−1(Ii

k+1)

V(xi
k+1)

−
f−1(Ii

k)tk+1

V(xi
k)tk

)2.

We cannot know the real exposure time but only the ratio of exposure time between frames.

2.2. Vignetting Function Model

In our method, a polynomial is used to approximate the vignetting correction function.

Ṽ(x) =
1

V(x)
= 1 +

n

∑
i=1

viR(x)i.

Here, R(x) is the normalized radius of the image point to the optical center of the
image. If the optical center is not known, the center of the image is used. In most SLAM
datasets or stereo camera systems, the optical center is necessary for odometry-related
processing. We could consider the location of the optical center as known information.

2.3. Response Function Model

Grossberg and Nayar [12] introduced a diverse database of real-world camera response
functions (DoRF). They combine the basis functions from DoRF to create a low-parameter
Empirical Model of Response (EMoR), such as:

f (x) = g0(x) +
n

∑
s=1

cshs(x).

Here, g0(x) is the mean response function, and cs is the parameter for each basic
function hs. Many camera manufacturers design the response to be a gamma curve.
Therefore, they included a few gamma curves, chosen from the range 0.2 ≤ γ ≤ 2.8, in the
database.

Then, we consider the camera with a CRF in the type of

f (l) = lγ,

where l is the normalized irradiance, l ∈ [0, 1], γ > 0. We get f (0) = 0, f (1) = 1, and f is a
monotonically increasing function.
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We assume that there is an ideal solution with a response function f0(l) = lγ0 , a vi-
gnetting function V0, and the exposure time of k-th frame is t0

k . With this solution, we get

f−1
0 (Ii

k+1)

V0(xi
k+1)

=
f−1
0 (Ii

k)t
0
k+1

V0(xi
k)t

0
k

.

Then, for another γj, which is a given constant different from γ0, we can give out
another solution: 

f j(l) = ( f0(l))γj/γ0 = lγj ,
Vj(x) = (V0(x))γ0/γj ,
tj
k = (t0

k)
γ0/γj .

(1)

With this solution, we can also get

f−1
j (Ii

k+1)

Vj(xi
k+1)

= (
f−1
0 (Ii

k+1)

V0(xi
k+1)

)γ0/γj = (
f−1
0 (Ii

k)t
0
k+1

V0(xi
k)t

0
k

)γ0/γj =
f−1
j (Ii

k)t
j
k+1

Vj(xi
k)t

j
k

.

Thus, there are infinite solutions for the equation without extra assumption.
We also use several other kinds of functions to estimate the response function, such as

polynomial, power function (gamma curve) with constant term and functions in Reference [12].
We tested these methods on different datasets, and they all give an unstable performance.

2.4. Assumptions

Usually, the left camera and right camera in a stereo camera system have the same
light-sensitive components and the same type of lens. Some stereo camera systems have
hardware synchronization that makes the exposure time settings for the multi-cameras
exactly the same. Even without hardware synchronization, the same auto-exposure algo-
rithm and highly overlapping fields of view make the exposure time of the left camera
and the right camera almost the same in most conditions. In our method, the response
functions of the left camera and right camera are assumed to be same. Even though each
lens has a slight difference, we still can assume that the vignetting effects are the same.

Gamma correction is a widely used nonlinear operation for encoding and decoding
luminance or tristimulus values in video or still image systems for compensating the
display tone reproduction curve [13]. The image sensors used in the industrial application
usually have a gamma correction parameter in settings. Some cameras for image processing
have a linear CRF, which means a gamma curve with γ = 1. Thus, in our method, we
assume the CRF is described with a gamma curve. In the previous section, we discuss
that, if there is a ideal solution for the energy equation, for any γ, we can get another
solution. Especially, we set the CRF function as f (x) = x. Although we cannot get the real
solution, we can use the special solution to unify the pixels in different frames which are
corresponding to the same object into the same brightness value.

Figure 1 shows the flow chart of the whole processing.

Figure 1. Flow chart of the process of the proposed method.
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2.5. Stereo Matching

Stereo matching algorithms have been greatly developed in recent years. We use stereo
matching between image pairs in the initialization step of the algorithm to get a quick
estimate of the vignetting function. Here, we focus on the computational cost. The accuracy
of each point and density of the disparity image are not much concerned as we do not use
the disparity to calculate the depth. The semi-global matching [14] method is chosen to
process the stereo matching. This is a mature algorithm, which can be realized on GPU.
The internal and external parameters of stereo camera are necessary before stereo matching,
where they are often provided in a visual odometry system. So, it is reasonable to assume
that those parameters are already known in the processing. During the stereo matching,
each point gets a cost value to measure the confidence of the matching. Usually, the pixel
with high confidence should be chosen. In stereo matching, the edge points or corner
points often get a higher confidence value. The disparity is a sub-pixel value, and the
brightness changes a lot on the edge area. It is not easy to achieve exact correspondences of
brightness on the edge area. As the applied method is a dense matching, we can get enough
correspondences even if the points on the edge area are not selected. In order to move out
the pixels on the edge area from the data used for estimation, the canny detector [15] is
applied to extract the edge. Then, we apply a blur kernel to the edge image. The pixel value
of the blurred image is used to measure the distance of the pixel to the nearby edge. Finally,
we select pixels with high confidence and far away from edges to get correspondences.
Figure 2 shows a sample of a filtered disparity image.

(a) (b)

(c) (d)

Figure 2. The disparity image is transformed from grey image to color image for visualization. The value of disparity is
normalized and used as hue channel value of HSV ((Hue, Saturation, Value) color space. The pixel which is black means the
disparity is unknown. The edge image is captured from the left image. The white pixels show the edge area. (a) Image from
KITTI dataset [16] sequence 00 (left camera). (b) Disparity image. (c) Edge image. (d) Disparity image applied filter.

In the algorithm, we resize the input image to speed up the stereo matching. Then,
an interpolation method is processed to resize the disparity map to its original size. We
also give out a GPU accelerated version of the stereo matching program to ensure the
processing in real-time.

2.6. Feature Points Mapping

We choose the ORB-features [17] to process feature points mapping between frames.
The ORB-feature is robust to rotation and illumination change, so it is suitable for our target.
We calculate the feature points mapping between the previous frame and the current frame.
Further, we calculate the feature points mapping between the left and right frames in the
same frame pair. As we assume the left and right frames have the same exposure time, the
difference between the same point in the two frames occurred by the vignetting effects.
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One point may have different projected coordinates in the left camera and right camera
because of the baseline of the two cameras. Thus, the radius of the point to the optical
center changes in the left camera and right camera. These two frames from one frame pair
give more stable information for vignetting estimation than two frames that have different
exposure times.

To estimate the exposure time ratio between two frames, it is easy to consider using
the matched feature points and calculating the ratio of their pixel brightness. However,
as the camera often keeps moving during the visual odometry processing, the location of
one point in the frame changes during time. The vignetting affects the pixel value in each
frame. If we just use the matched points pair in two frames with different radius without an
inverse vignetting function, the precision will be affected. In the early step of the estimation,
vignetting function is unknown. It is a challenge for a monocular camera algorithm to fix
this problem. In stereo camera system, we could use the previous left camera to match the
current camera and also use the previous right camera to match the current left camera.
Much more feature points pairs could be achieved. We give a threshold for the difference
of radius of the two points in one pair. Only when the points have almost the same radius
will the points pair be used in the estimation. In addition, a weight coefficient inversely
proportional to the radius is used to reduce the vignetting effect.

After the estimation of the exposure time ratio, we give out a threshold to decide
whether use the previous frame pair to achieve more points pairs for vignetting function
or not. If the exposure time rate is very close to 1, we assume that the camera did not
change the exposure setting between the two frames. The feature points pairs between
the previous frame pair and current frame pair are used to achieve more information for
vignetting estimation. The brightness values of neighboring pixels of points pairs are used
to increase the precision. We stop this step when enough points have been selected for the
calculation of the vignetting function. The next exposure time estimation is the same as the
original direct visual odometry. In this paper, we apply our method on Stereo DSO and
SO-DSO.

2.7. Energy Equation

We assume that the CRF is f (x) = x, and the energy equation is simplified as follows:

E =
n−1

∑
k=1

∑
i∈P

(
Ii
k+1

V(xi
k+1)

−
Ii
ktk+1

V(xi
k)tk

)2.

rk = tk+1/tk is calculated by the points pairs with similar radius to optical center
before solving the equation. Then, we change the energy equation format to

E =
n−1

∑
k=1

∑
i∈P

(Ii
k+1Ṽ(xi

k+1)− Ii
krkṼ(xi

k))
2.

Here, Ṽ is the vignetting correction function which is unknown in the equation. We
use SVD decomposition to solve this least square problem.

3. Evaluation
3.1. KITTI Dataset

The KITTI dataset [16] is a well-known odometry benchmark. Stereo images and
ground truth are provided in several sequences captured in the urban environment. How-
ever, the exposure time of each frame is unknown in this dataset. The left and right cameras
have almost the same exposure time. We use the point pairs from left and right images
which have similar radius to the optical center to estimate the exposure time ratio between
the left and right images.

First, we test the algorithm in Reference [11] with its open-source implementation. We
take the left camera view as the target input in the algorithm. The default parameters in the
open source implementation are used in the experiment. We also apply our algorithm on
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the same dataset but using both left view and right view. Although we cannot compare the
evaluated exposure time with the real exposure time, the corrected images of Reference [11]
show an obviously failed result in Figure 3. Figure 4 shows the estimated inverse vignetting
functions on sequence 00 to 10 in KITTI dataset.

(a) (b) (c)

Figure 3. The experimental results of KITTI dataset 00 sequences. (a) The original images of KITTI 00 sequences. (b) Cor-
rected images by Reference [11]. (c) Corrected images by our method.

1

1.05

1.1

1.15

1.2

1.25

1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
v
er

se
 v

ig
n

et
ti

n
g

  
fu

n
ct

io
n

Radius

KITTI 00

KITTI 01

KITTI 02

KITTI 03

KITTI 04

KITTI 05

KITTI 06

KITTI 07

KITTI 08

KITTI 09

KITTI 10

Figure 4. Inverse vignetting function versus radius of sequences 00 to 10 in KITTI dataset.

As the main purpose of the paper is to improve the accuracy of visual odometry,
we test the Stereo DSO and SO-DSO combined with our method. There is no official
open source implementation of Stereo DSO, so we develop the algorithm based on DSO
open-source implementation. There are many parameters in the implementation, and our
results of Stereo DSO are not as good as the results in the paper [4]. However, we can still
compare the results of our implementation with and without the proposed method.

We apply Stereo DSO and SO-DSO on the first 11 sequences in the datasets. The results
in Table 1 show that our method achieves a better result than Stereo DSO. However, the
improvement is not very significant. The vignetting usually affects the pixels on the corners
of a square image. In the KITTI dataset, the images are narrow rectangles. Thus, the pixels
affected by the strong vignetting phenomenon may be already cut off. In some sequences,
such as #00, #04, the improvement is confirmed. Table 2 contains the results on SO-DSO
and shows a similar situation as in Table 1.
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Table 1. Results of Stereo DSO with and without the proposed method on the KITTI dataset. trel
translational RMSE (%), rrel rotational RMSE (degree per 100 m). Best results are shown in bold type.

Stereo-DSO
with Our Method Stereo DSO

Seq. trel rrel trel rrel

00 0.9871 0.0036 0.9908 0.0069
01 1.9327 0.0007 1.9602 0.0007
02 0.7835 0.0024 0.7846 0.0024
03 0.9860 0.0020 0.9578 0.0020
04 0.8795 0.0015 1.0487 0.0023
05 0.9307 0.0036 0.9352 0.0036
06 0.7235 0.0032 0.7085 0.0032
07 0.9848 0.0052 0.9307 0.0047
08 1.2247 0.0034 1.2307 0.0034
09 1.0573 0.0020 1.0602 0.0020
10 0.4934 0.0019 0.4949 0.0019

mean 0.9985 0.0027 1.0093 0.0030

Table 2. Results of SO-DSO with and without the proposed method on the KITTI dataset. trel
translational RMSE (%), rrel rotational RMSE (degree per 100 m). Best results are shown in bold type.

Stereo-DSO
with Our Method Stereo DSO

Seq. trel rrel trel rrel

00 1.9137 0.0053 1.9430 0.0054
01 2.4935 0.0021 2.4876 0.0023
02 1.5320 0.0042 1.5790 0.0044
03 3.3254 0.0039 3.1587 0.0039
04 1.9332 0.0025 1.9928 0.0026
05 1.7524 0.0019 2.0662 0.0040
06 2.0650 0.0041 2.2160 0.0051
07 2.9020 0.0061 2.7461 0.0060
08 2.0257 0.0044 2.0827 0.0044
09 2.2449 0.0046 2.2295 0.0047
10 1.4299 0.0045 1.4343 0.0046

mean 2.1471 0.0040 2.1760 0.0043

The experiments are carried out on a computer with an Intel i7-6700 CPU and an
NVIDIA GeForce GTX 1050 GPU. The GPU is used to accelerate depth map calculation.
The initialization step of our method is time consuming, and the sequences in the KITTI
dataset have different numbers of frames. Therefore, the average time per frame of each
sequence will change greatly. We compare the time of the two stages separately. In the
process of calculating the inverse vignetting function, the additional average time per
frame, excluding the odometry processing, is 309.747 ms. After the initialization step, we
apply the inverse vignetting function from the beginning of the sequences to compare the
time costs of corrected images and original images on odometry algorithms. Here, we do
not compare the time cost of Stereo DSO and SO-DSO but compare their effects with and
without our method, respectively. Table 3 shows that Stereo DSO and SO-DSO work faster
on corrected images in most sequences.
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Table 3. Time costs of Stereo DSO and SO-DSO on the original KITTI dataset and the corrected
images by the proposed method. Best results are shown in bold type.

Stereo DSO SO-DSO

Seq. Original
(ms)

Corrected
(ms)

Original
(ms)

Corrected
(ms)

00 72.807 49.086 96.875 96.149
01 49.235 54.025 68.326 68.997
02 68.058 65.059 109.479 98.934
03 67.022 65.832 74.837 73.197
04 47.103 47.616 99.630 99.382
05 67.667 59.465 89.686 87.872
06 63.709 62.288 92.076 88.542
07 65.992 65.442 83.895 80.590
08 73.212 61.095 93.830 93.625
09 67.226 64.144 94.610 93.393
10 64.454 61.207 83.028 80.964

3.2. OpenLORIS-Scene Dataset

The OpenLORIS-Scene dataset [18] contains sequences from 5 scenes. The stereo fish-
eye images in the dataset are captured by RealSense T265 [19]. The vignetting phenomenon
is obvious in the fisheye images. Both Stereo DSO and SO-DSO faced challenges in this
dataset. We applied the proposed method with Stereo DSO and SO-DSO. Figure 5 shows
the trajectories of the first sequences of each scene on the OpenLORIS-Scene dataset. All
the calculated trajectories performed Sim(3) alignment to the ground-truth. The results
show that the trajectories by our method are more similar to the ground-truth, especially
more than Stereo DSO.

3.3. Stereo Camera

For demonstrating more the effectiveness of the proposed method, we choose a stereo
camera LeadSense N1 [20], which is produced by Shanghai Eyevolution Technology Co.,
Ltd., Shanghai, China. This camera could give out real exposure time. The default CRF
of this camera is f (x) = x. The two cameras are synchronized, and the focal lengths are
fixed. We set the auto exposure mode to region of interest (ROI) mode. In this mode, the
camera selects part of the image to adjust the exposure time. We set the ROI to a 100 × 100
rectangle on the top left corner of the image. When the camera is moving, the scene usually
changes fast on the corner of the image. Thus, the exposure time changes faster then normal
condition. The resolution of the image is 1280× 720 pixels. The camera is held by human
hand and moves with strong rotation around an office.

We test three γ of gamma-curves to the images from the camera. We compare the
exposure time rate of current frame and previous frame calculated by our method and
Reference [11] with ground truth. The exposure ratio by our method in Figure 6 is calculated
as follows:

ratiok = (rk)
1/γ,

where k is the frame index.
As shown in Figure 4, the estimated exposure ratio is significantly closer to the true

value than the comparison method in all γ values. This makes the exposure calibration
between frames feasible.

We also compare the reconstructed map by our method and stereo DSO. The camera
is also held by human hand and makes a circle around the office. Samples of the captured
images in the office are shown in Figure 7. The office is about 200 square meters, and the
sequence contains 1312 frames.
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Figure 5. The experimental results on OpenLORIS-Scene dataset. (a) Trajectories by Stereo DSO
with and without the proposed method. (b) Trajectories by SO-DSO with and without the pro-
posed method.
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Figure 6. Ground truth of exposure time from a sequence capture by a stereo camera. Evaluated
exposure times by Reference [11] and our method are compared with the ground truth.

Figure 7. Samples of the sequence captured in an office.

As we have no ground truth of the camera movement or the map, we use a laser radar
YDLIDAR G4 [21] on a remote control car TurtleBot2 [22] to create a map for reference.
The reconstructed maps in Figure 8 are captured from top-view. The red trajectories are the
calculated camera trajectories. The result of our method shows more complete structure of
the office and is more similar to the result captured by the radar.

(a) (b) (c)

Figure 8. The visual odometry results of a sequence captured by a stereo camera. (a) The recon-
structed map of an office by laser radar. (b) The reconstructed map by Reference [11]. (c) The
reconstructed map by our method.
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4. Conclusions

We present a vignetting and exposure time estimation method for a stereo camera
in a visual SLAM system. The method is suitable for the camera with a gamma-like
response function. In the beginning stage of processing, the disparity map is used to get
corresponding points between the left image and right image in one frame pair. The parallel
computing in GPU reduces the processing time of the disparity map generation step. The
exposure time rate between frames is calculated from the brightness of feature point pairs
between frames combined with vignetting reverse function. The method works when the
left and right cameras are synchronous or have similar exposure time. The experiments
are applied on an open dataset and our stereo camera. The results of the experiment on
the open datasets show that our method improves the accuracy of odometry, though the
vignetting phenomenon is not obvious in this dataset. At the same time, the existing
photometric calibration method shows its limitations in some sequences. We also apply
the proposed method to our stereo camera data and show that the proposed method
outperforms the conventional calibration method in the exposure time rate estimation. The
odometry results are visually compared with the map reconstructed from the laser radar
data, and the effectiveness of the proposed method is confirmed.
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