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Abstract: Signcryption schemes leveraging chaotic constructions have garnered significant research
interest in recent years. These schemes have proffered practical solutions towards addressing the
vast security vulnerabilities in Electronic Cash Systems (ECS). The schemes can seamlessly perform
message confidentiality and authentication simultaneously. Still, their applications in emerging
electronic cash platforms require a higher degree of complexity in design and robustness, especially
as billions of online transactions are conducted globally. Consequently, several security issues arise
from using open wireless channels for online business transactions. In order to guarantee the security
of user information over these safety-limited channels, sophisticated security schemes are solely
desired. However, the existing signcryption schemes cannot provide the required confidentiality and
authentication for user information on these online platforms. Therefore, the need for certificateless
group signcryption schemes (CGSS) becomes imperative. This paper presents an efficient electronic
cash system based on CGSS using conformable chaotic maps (CCM). In our design, any group
signcrypter would encrypt information/data with the group manager (GM) and send it to the verifier,
who confirms the authenticity of the signcrypted information/data using the public criteria of the
group. Additionally, the traceability, unforgeability, unlinkability, and robust security of the proposed
CGSS-CCM ECS scheme have been built leveraging computationally difficult problems. Performance
evaluation of the proposed CGSS-CCM ECS scheme shows that it is secure from the Indistinguishably
Chosen Ciphertext Attack. Finally, the security analysis of the proposed technique shows high
efficiency in security-vulnerable applications. Overall, the scheme gave superior security features
compared to the existing methods in the preliminaries.

Keywords: certificateless group signcryption scheme (CGSS); conformable chaotic maps (CCM); elec-
tronic cash system (ECS); signcrypter; provably secure schemes; authentication; E-commerce channels

1. Introduction

In modern electronic commerce, digital signatures play a significant role due to
integrity and authentication requirements. Integrity is a vital property that helps to monitor
the received messages from being modified by an adversary, while the authentication
property helps protect the sender from impersonation [1]. Currently, group signcryption
schemes are gaining entrance into the e-commerce space. For example, Chaum and van
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Heyst [2] introduced a group signature scheme that allows a signature from any group
member to represent the group. However, several limitations of group signature schemes
have been identified [3–5]. Only group members are eligible to sign, and the message
receiver cannot know the signer, among others. In practice, a signcryption scheme should
be designed to meet specific security attributes such as public verifiability, ciphertext
authentication, public ciphertext authentication, and ciphertext anonymity [3–7]. Under
favorable conditions, these should be designed with extremely hard assumptions. However,
if an adversary can solve the hardness assumption of a given signcryption scheme, they
can conveniently process the private keys of each user in the system [8]. The ability
of the foe to solve the hardness assumption poses a severe security threat in electronic
commerce channels, and the need to address such security vulnerabilities is not negotiable.
In order to address this problem, this paper presents an efficient electronic commerce
system based on a certificateless group signcryption scheme (CGSS) using conformable
chaotic maps (CCM).

1.1. Contributions

The contributions of the paper are outlined as follows. First, we give comprehensive
literature on the electronic commerce system based on certificateless group signcryption
schemes. To ensure consumers’ anonymity in e-commerce platforms, we merged the
valuable features of a certificateless signature scheme (CSS) with a group signcryption
scheme (GSS) in the projected CGSS-CCM scheme for the electronic cash system (ECS). This
study proposed a new efficient certificateless group signcryption scheme and electronic
cash system (ECS). For the electronic cash system development, we used certificateless
group signcryption schemes, and for the development of certificateless group signcryption
schemes, we used conformable chaotic maps. A group signcrypter, with the help of the
group manager (GM), encrypts a communication on behalf of the group in our design.
In this scenario, any group signcrypter would encrypt information/data with the GM
and have it sent to the verifier, who then approves the authenticity of the signcrypted
information/data using the public criteria of the group. We further examined the proposed
scheme’s security to confirm that neither the GM nor any other group member can yield a
legal signcrypted text. Additionally, we carried out a performance analysis of the proposed
CGSS-CCM scheme and demonstrated its indistinguishably under the chosen ciphertext
attack. The traceability, unforgeability, unlinkability, and robust security of the proposed
CGSS-CCM ECS scheme were verified using computationally difficult problems. Finally,
we compared the security features of the proposed CGSS-CCM ECS scheme with the
existing techniques using several standard metrics.

1.2. Paper Organization

The organization of the paper is as follows. Section 2 covers the related works.
Section 3 presents the background and material. Section 4 covers the proposed certificate-
less group signcryption scheme using conformable chaotic maps; this section also captures
the setup, partial private key generation, private key generation. user key generation,
signcryption, verification, and opening. Section 5 gives a detailed security investigation of
the proposed CGSS-CCM ECS scheme. In Section 6, the proposed electronic cash system
based on CGSS using conformable chaotic maps is detailed. The scheme comprises the
initialization, joining, withdrawal, payment, deposit, and identity revocation phases. In
Section 7, the security analysis comprising unforgeability and anonymity of the proposed
ECS scheme is highlighted, and the efficiency of the scheme is demonstrated. Section 8
focuses on the performance comparison of the proposed CGSS-CCM with other related
schemes. Finally, Section 9 provides a concise conclusion to the paper.

2. Related Works

Conformable chaotic maps (CCM) are used to generate public and secret parameters
of the proposed CGSS. CCM and pairing are different; the development of CCM depends
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on the Chebyshev polynomial, but pairing depends on the bilinear pairing operation of
the function. Pairing operations cover more computation costs than chaotic maps or CCM.
Therefore, CCM or chaotic maps play a significant role in developing the lightweight
cryptographic scheme compared to pairing operation.

In the existing literature, Shamir [3] reported an identity-based cryptographic scheme,
whose idea motivated an identity-based multi-signcryption scheme [4], and a certificateless
signature without pairing [5]. Similarly, Park et al. [6] reported an identity-based group
signature, which allows verification of the group signature by examining the identities
of the group members. However, if a change in the group structure occurs, previous
group signatures provided by other group members become invalid. But this limitation
is undesirable in practical e-commerce systems. Tseng and Jan [7] presented a related
ID-based scheme that addresses most of the flaws identified in Park et al. [6]. In several
works of literature, the key escrow problem has been named one of the main flaws of
ID-based cryptosystems. Al-Riyami and Paterson [8] reported an encryption scheme that
does not need a public key to address this issue. Similarly, Ma, Ao, and He [9] proposed
a certificateless group signature to address the key escrow problem in ID-based group
signature schemes.

In recent years, public-key cryptosystems are fast gaining widespread popularity in
guaranteeing message confidentiality, non-repudiation, and more. Firstly, the message that
has the private key of the sender is signed, and the message signature pair is encrypted
using a temporal session key [10,11]. Consequently, the receiver’s public key can be used to
encrypt the session key before transmission, and the session key retrieved by the receiver
recovers sent messages using his private key. This procedure is carried out after both
the random session key and the receiver get the encrypted message-signature pair [12].
Afterwards, the receiver decrypts the encrypted message-signature pair using the session
key. In this case, the authenticity and integrity of the message are confirmed by the receiver
by verifying the signature using the sender’s public key. However, the traditional signature
and then encryption technique is cost-prohibitive and computationally intensive. In order
to decrease the cost and processing time of this scheme, the idea of signcryption that
combines the features of digital signature and encryption is presented by Zheng [13].

The signcryption scheme reported by Zheng uses the discrete logarithm (DL) problem
over a finite field. Interestingly, an enhanced form of Zheng’s scheme had been reported
by Zheng and Imai [14] to tackle the inherent public verifiability issues discovered in the
scheme reported by Zheng [13]. In the same vein, Bao and Deng’s [15] modification to
Zheng’s scheme allows public verifiability. However, public verifiability is undesirable in
practical applications requiring firewall filtering [16].

Gamage et al. [17] reported a robust signcryption scheme that maintains the public ci-
phertext authentication property. The scheme allows a seamless signature verification with-
out an external entity based on the computationally Diffie–Hellman (CDH) protocol [18].
However, the CDH-based protocol cannot perform ciphertext anonymity. Consequently, a
foe can conduct random checks to decipher the message’s originality [19]. In practice, this
is not desirable in e-commerce, where there is a need to adequately preserve the sender’s
information from any adversary. However, the schemes mentioned above did not address
the forward secrecy property, which is crucial in e-commerce. Motivated by this gap in the
literature, Chow et al. [19] offered a forward secure signcryption scheme that allows public
ciphertext authentication. However, the scheme uses bilinear pairing, which increases the
computational complexity [20].

Han et al. [21] have provided a forward secrecy scheme that does not use bilinear
pairing. The scheme shows better efficiency than Chow et al. [19]. A forward secure proxy
signcryption scheme with public verifiability was presented by Elkamchouchi, Nasr, and
Ismail [22]. Though this scheme aggregates hard problems, it showed limited efficiency,
perhaps due to composite modulus design, and cannot perform ciphertext authentication.
Additionally, Iqbal and Afzal [23] have reported a related construction with forward
secrecy and public ciphertext authentication for several applications. In a related study,
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Chaudhry et al. [24] offered a signcryption scheme tailored for an e-commerce system. Still,
the protocol cannot support forward secrecy and public verifiability, which are candidate
requirements in e-cash systems [25,26].

The security of electronic cash systems is a significant issue contending the rapid
development of e-commerce. Several security schemes have been presented to tackle this
issue [27,28]. Specifically, Wang, Cao and Zhang [27] offer a novel scheme for untraceable
electronic cash transactions based on discrete logarithm assumption and the cut-and-choose
approach. Here, the bank is not involved in any payment between a user and a receiver.

In [28], the authors utilized the concept of a group signature scheme to design a robust
ECS. However, the security issues threatening e-commerce channels remain, especially
as the business community is growing exponentially. Thus, the security of e-commerce
platforms is ripe for comprehensive research exploitation.

Following the preceding security schemes deployed in electronic cash systems, several
electronic cash protocols leveraging cryptographic constructions have been reported [29–34].
In particular, Lee, Choi, and Rhee [29] proposed a robust security scheme to address the
problem of double-spending in secure electronic cash systems. In work, due to Nishide
and Sakurai [30], a security scheme has been offered to secure offline anonymous electronic
cash systems. The goal is to preserve sensitive user information from being compromised
by insiders. Kutubi, Alam, and Morimoto [31] proposed an offline electronic payment
scheme that satisfies essential security requirements of e-payment platforms was proposed.
The scheme offers simple computations, and the merchant can verify the spent e-coin
leveraging Schnorr’s blind signature. Additionally, the scheme enables trusted authorities
to identify the dishonest spender if multiple spending occurs with ease.

Additionally, Islam [32] reported a provably secure pairingless identity-based sig-
nature scheme for use in an e-cash system. Recently, an exchange centre-based digital
cash payment solution was reported by Xu and Li [33] to address several security issues
proliferating the e-commerce domain. Lastly, Alidadi et al. [34] offered an identity-based
signature with key revocation functions for a cloud-enabled mobile payment system.

It is evident, based on the previous research, that no work has implemented the certifi-
cateless group signcryption scheme based on conformable chaotic maps in an electronic
cash system as in our proposed work.

3. Background and Materials

This segment reviews the various underlying concepts relating to the work before
delving into the current investigation on certificateless group signcryption schemes us-
ing conformable chaotic maps (CGSS-CCM). First, a short-lived Chebyshev chaotic map
implementation is presented. This is followed by a Chebyshev polynomial, conformable
chaotic maps using the minimal method, and delineated a list of other techniques used in
this development. A list of symbols used in the paper is provided in Table 1.
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Table 1. List of symbols.

Symbol Meaning

Ta Conformable Chebyshev chaotic maps
n Large integer

p1, p2 Large prime numbers
TDKGC Identity of KGC
TDGM Identity of GM
TDC Identity of C client

a An arbitrary rational number
msk Master secret key
Gprk Group’s public key
Gpbk Group’s private key

Á Cipher
H Hash function

mpk Public constraint
m Message
Î Key

3.1. Chebyshev Chaotic Polynomials

The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]).
In the ÿ variation, CSP T
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(ÿ) is a
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 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(ÿ) = cos(
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

× arc cos(ÿ)),

T0(ÿ) = 1, T1(ÿ) = ÿ,

T
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𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(ÿ) = 2ÿT
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

≥ 2

Under these conditions, the functional arc cos(ÿ) and cos(ÿ) denoted as
arc cos : [−1, 1]→ [0, π] and cos :
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

→ [−1, 1] .
CSP has two fundamental properties: chaotic and semi-group properties [36–40].

(1) The chaotic property: The CSP map is defined as T
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 
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> 1, is a chaotic map accompanying with the (invariant density) functional
f ∗(ÿ) = 1(

π
√

1−ÿ2
) for the positive Lyapunov exponent λ = ln
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> 0.

(2) Semi-group property: The possessions of a semi-group meet the following criteria:

T`(Tw(ÿ)) = cos (`arc cos((cos(warc cos(ÿ)))))
= cos(`arc cos(ÿ))
= Tw`(ÿ)
= Tw(T`(ÿ)),

where ÿ ∈ [−1, 1] and ` and w are positive integers.

Zhang [40] showed that the semi-group property preserves the interval (−∞,+∞),
which may be utilized to improve the property as tracks:

T
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−2
(ÿ); n ≥ 2

where ÿ ∈ (−∞,+∞) and q1 is a large and safe prime. As a result, the property is:

T`(Tw(ÿ))(modq1) = Tw`(ÿ)(modq1) = Tw(T`(ÿ))(modq1)

In addition, the semi-group property is retained. It is worth noting that extended
Chebyshev polynomials commute under confirmation as well.
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There are two assessments for Chebyshev polynomials (CP) that consider handling in
polynomial time:

(1) The discrete log’s (DL) task is to invent an integer ` with the end goal T`(ÿ) = v given
two items ÿ and v.

(2) The Diffie–Hellman problem (DHP) task is to measure the T`w(ÿ) element due to
three elements ÿ, T`(ÿ), and Tw(ÿ).

3.2. Conformable Chebyshev Chaotic Maps (CCCM)

Previously, the conformable calculus (CC) was known as the conformable fractional
calculus (CFC) [41]. However, it puts a burden on the known properties of fractional calcu-
lus (derivatives of non-integer power). CC, in essence, is responsible for future preparation.

Assume that u is a fractional (arbitrary) number between 0 and 1. An operator u is
conformable differential if and only if α0 is the self-operator and α1 is the usual difference
operational. For differentiable utility, αu is clearly conformable if and only if β = β(y).

α0β(y) = β(y), α1β(y) = β′(y).

Anderson et al. [41] have proposed a new formulation of CC derived from control the-
ory to describe the performance of a proportional-differentiation controller that conforms
to the error function. The following is the structure of the instruction.

Definition 1. If u ε [0, 1] is true, then CC has in the following documentation.

αuβ(y) = η1(u, y)β(y) + η0(u, y)β′(y),

where the η1 and η0 functions reach the limits

lim
u →0

η1(u, y) = 1, lim
u →1

η1(u, y) = 0,

lim
u→0

η0(u, y) = 0, lim
u →1

η0(u, y) = 1.

In order to get the overhead description, we shall deliberate η1(u, y) = (1− u)yu and
η0(u, y) = uy1−u, or η1(u, y) = (1−u)

Γ(1+u) and η0(u, y) = u
Γ(1+u) where αuβ(y) is the name of

the β(y) function’s conformable differential operator. As a result, the fractional tuning
connections of the function and its derivative, η1,η0 are always dependably.

We obtain the resulting structure by applying the notion of CC to express the polyno-
mial T
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𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) = 2
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

T
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

−1
(y), then αuT
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) has the subsequent formal relationship (1)

Tu
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) := αuT
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) = η1(u, y)T
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) + η0(u, y)T′
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) (1)

The Formula (1) can be replaced by (2)
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𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
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𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

(y) + 2
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

−1
(y), (2)

where ω(y) = 1 + 2y +
(
4y2 − 1

)
+ . . . +
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

− 1
)
-times. The conformable Chebyshev

polynomials (CCP) are defined by Equation (2) (See Figure 1 [42]).
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Figure 1. CCP for different values of 𝓊 = 0.25, 0.5, 1 with 𝜂 (𝓊,𝓎) = ( 𝓊)( 𝓊)  and η (𝓊,𝓎) = 𝓊( 𝓊). 

4. The Proposed Certificateless Group Signcryption Scheme Based on Conformable 
Chaotic Maps 

In this section, we introduced an efficient CGSS using conformable chaotic maps. A 
group of signcrypters (𝒮𝒢 ∶  ʗ , ʗ , … , ʗ𝔫) is included in the proposed CGSS-CCM, and an-
yone can signcrypt a message using the GM on behalf of a KGC and the group. The pro-
posed CGSS-CCM is divided into six phases, as follows: 

4.1. Setup 
Using the safe prime techniques [43,44], the KCG chooses an integer 𝔫 = 𝓅 × 𝓅  

where 𝓅 ,𝓅  are enormous primes. After that, they choose ℊ as a GF(𝓅 ) generator and 
pick the 𝑎 ∈ [0,1] rational number. Then they give 𝔫 and ℊ to the GM. 

4.2. Partial Private Key Generation (PPKG) 
The KGC is in charge of this operation. As it secretes factor and their identification 𝔗𝔇 , the KGC selects a master secret key 𝔪  at this point. Then they assess 𝔪 , a 

public constraint whose security is guaranteed by solving conformable chaotic maps. 𝔪 = 𝚃𝔪 (ℊ)(𝑚𝑜𝑑 𝔫)  

Then they hand over (𝔪 ,𝔗𝔇 ) to the GM. 

4.3. Private Key Generation (PKG) 
The PKG measurements are as follows: the GM selects three private variables 𝜆, ⅾ 

and  𝔗𝔇 , and then calculates the group’s public and private keys as follows. 𝒢  =  𝜆 × 𝔪  + 𝔗𝔇 × 𝔗𝔇 (𝑚𝑜𝑑 𝔫) 𝒢 = 𝚃𝒢 (ℊ)(𝑚𝑜𝑑 𝔫)  𝘦𝘥 ≡ 1 𝑚𝑜𝑑 𝜙(𝔫). 
The GM then makes (𝔫,ℊ,𝔪 ,𝔗𝔇  , 𝘦,𝒢 ) variables public while keeping them (𝜆, 𝘦,𝒢 ) secret as their private key. 

4.4. User Key Generation (UKG) 
The signcrypter and the GM are in this phase. This level’s steps are listed below. 

Step 1. After determining the public factor, any signcrypter picks a secret parameter 𝑊 ∈𝕫𝔫∗ on behalf of the party and calculates 𝔗𝔇  as follows: 𝔗𝔇 = 𝚃 (𝔗𝔇 )(𝑚𝑜𝑑 𝔫) 

The 𝔗𝔇  is then sent to the GM through a private channel. 

Figure 1. CCP for different values of u = 0.25, 0.5, 1 with η1(u, y) = (1−u)
Γ(1+u) andη0(u, y) = u

Γ(1+u) .

Properties of CCCM: The CCCM possesses the following two exciting features:

Definition 2. (Chaotic properties of CCCM). The CCCM satisfies recurrent relations under
the chaotic property [42] i.e.,

Tu
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
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(y)

It is worth noting that when we use u→ 0 , we get the original instance from [40].
At this point, we note that the DL and assignments for the CCP are approximately

DHP occur.

4. The Proposed Certificateless Group Signcryption Scheme Based on Conformable
Chaotic Maps

In this section, we introduced an efficient CGSS using conformable chaotic maps. A
group of signcrypters (SG : C1, C2, . . . , Cn) is included in the proposed CGSS-CCM, and
anyone can signcrypt a message using the GM on behalf of a KGC and the group. The
proposed CGSS-CCM is divided into six phases, as follows:

4.1. Setup

Using the safe prime techniques [43,44], the KCG chooses an integer n = p1 × p2
where p1, p2 are enormous primes. After that, they choose g as a GF (p1) generator and
pick the a ∈ [0, 1] rational number. Then they give n and g to the GM.

4.2. Partial Private Key Generation (PPKG)

The KGC is in charge of this operation. As it secretes factor and their identification
TDKGC, the KGC selects a master secret key msk at this point. Then they assess mpk, a public
constraint whose security is guaranteed by solving conformable chaotic maps.

mpk = Ta
msk

(g)(mod n)

Then they hand over
(
mpk, TDKGC

)
to the GM.

4.3. Private Key Generation (PKG)

The PKG measurements are as follows: the GM selects three private variables λ, d
and TDGM, and then calculates the group’s public and private keys as follows.
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Gprk = λ×mpk + TDKGC × TDGM(mod n)

Gpbk = Ta
Gprk

(g)(mod n)

ed ≡ 1 mod φ(n).

The GM then makes
(
n, g,mpk,TDGM, e,Gprk

)
variables public while keeping them(

λ, e, Gprk

)
secret as their private key.

4.4. User Key Generation (UKG)

The signcrypter and the GM are in this phase. This level’s steps are listed below.
Step 1. After determining the public factor, any signcrypter picks a secret parameter

W ∈ Z∗n on behalf of the party and calculates TDC as follows:

TDC = Ta
W(TDGM)(mod n)

The TDC is then sent to the GM through a private channel.
Step 2. Following the estimation of TDC, the GM selects a secrete parameter α ∈ Z∗n

and estimates ω1, ω2, ω3 as follows:

ω1 = Ta
α(TDC)(mod n)

ω2 = (α× T + ω1)(mod n)

ω3 = Ta
ω1×d(TDGM)(mod n)

The GM sends (ω1, ω2, ω3) to the signcrypter after measuring all of the values.
Step 3. The signcrypter then uses this equation to check the parameter’s authenticity.

Ta
ω2
(TDC) = (Ta

T (ω1)× Ta
eW(ω3))(mod n)

If this equation holds true, the client will receive three factors; if it does not, the client
will return it to the GM.

Correctness.

Ta
ω2
(TDC) =

(
Ta

αT(TDC)× Ta
ω1
(TDC)

)
(mod n)

=
(

Ta
T (ω1)× Ta

Wω1
(TDGM)

)
(mod n)

= (Ta
T (ω1)× Ta

(W
d )
(ω3))(mod n)

= (Ta
T (ω1)× Ta

eW(ω3))(mod n)

4.5. Signcryption

The client will signcrypt the text on behalf of the party at this point. The client initially
chooses a
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∈ Z∗n private factor, after which he/she determines the following: Key (Î) and
cipher (Á).

U =
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+ Ta
( e

ω1
)(ω3)(mod n)

Key(Î) = H
(
U ×

Sensors 2021, 21, 7039 5 of 17 
 

 

𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

)
(mod n)

Cipher (Á) = (Î×Message(m)) + Gpbk(mod n)

λ =
(

Ta
ω3

(
Gpbk

)
× Ta

W(TDGM)
)
(mod n) (3)

λ1 = Ta
ω3
(g)(mod n) (4)

λ2 = λ + Ta
m(λ1)(mod n) (5)

The client then refers the verifier to the signcrypted text (U, Á, λ, λ1, λ2).
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4.6. Verification

The verifier confirms the legitimacy of the signcrypted information after discovering
it, but first, they must locate the message. The verifier evaluates the following processes to
locate a message:
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= (U − TDGM) (mod n)

Î′ = H
(

U ×

Sensors 2021, 21, 7039 5 of 17 
 

 

𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

′)
(mod n) (6)

m′ =
(

U − Gpbk

)
×

(
Î′
)−1

(mod n) (7)

Otherwise, they would dismiss the communication as illegitimate. As soon as the
message is identified, the verifier verifies its legitimacy.

λ2 = λ + Ta
m(λ1)(mod n) (8)

If this occurs, the verifier will create the signcrypted text on the message.

4.7. Opening

The GM will identify the sender if the sender is involved in a legal issue.

TDC =
λ

Ta
prk(λ1)

(mod n) (9)

5. Security Investigation of the Proposed CGSS-CCM ECS Scheme

The proposed CGSS-CCM scheme is given a formal security foundation in this section.
As a result, two types of adversaries are studied, and the proposed technique’s security
assessment is detailed as follows.

Theorem 1. The CGSS-CCM generated signcrypted text that is correct.

Proof. This theorem demonstrates the correctness property of the projected CGSS-CCM
scheme. �

We can observe, as a result of Equation (5), that
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′
= (U − TDGM)(mod n)

= U − Ta
ed(TDGM)(mod n)

= U − Ta

(ed)
ω1
ω3
(TDGM)(mod n)

= U − Ta
( e

ω1
)(ω3)(mod n)

=
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 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
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In addition, the semi-group property is retained. It is worth noting that extended 
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items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

The suggested CGSS-CCM scheme appears to be implemented appropriately.

Theorem 2. The CGSS-CCM is expected to have traceability capabilities, such as the ability for
the GM only to open the signcrypter identification that has signed the signcrypted document.

Proof. As a result of Equation (7), we realize that a signcrypter’s identity can be retrieved
as TDU = ω/ω1

Gprk . �

Let

λ

Ta
Gprk

(λ1)
=

Ta
ω3

(
Gpbk

)
× Ta

W(TDGM)

Ta
ω3Gprk

(g)
(mod n) = TDC(mod n)
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As a result, the traceability properties of the proposed CGSS-CCM approach are fulfilled.

Theorem 3. Using the CCM-CDHP, the given CGSS-CCM can withstand Type-II and Type-I
attacks, as stated below.

Definition 4. (Type I Attack). A foe (
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rity assessment is detailed as follows. 
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Proof. This theorem demonstrates the correctness property of the projected CGSS-CCM 
scheme.   □ 
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As a result, the traceability properties of the proposed CGSS-CCM approach are ful-
filled. 

Theorem 3. Using the CCM-CDHP, the given CGSS-CCM can withstand Type-II and 
Type-I attacks, as stated below. 

Definition 4. (Type I Attack). A foe (Ƒ ) having access to the device will be unable to 
gain the master secret key. However, Ƒ  can generate a signcrypted text by substituting 
public keys, removing private and partial private keys. 

Proof. The game is played among the challenger (Ƈ) and the foe (Ƒ ) and the challenger 
(Ƈ) in the Type-I attack. The steps outlined below are used to communicate between them.  
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1) having access to the device will be unable to gain
the master secret key. However,
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1 can generate a signcrypted text by substituting public
keys, removing private and partial private keys.

Proof. The game is played among the challenger (Á) and the foe
(
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Theorem 3. Using the CCM-CDHP, the given CGSS-CCM can withstand Type-II and 
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(Ƈ) in the Type-I attack. The steps outlined below are used to communicate between them.  
□ 

1
)

and the challenger (Á)
in the Type-I attack. The steps outlined below are used to communicate between them. �

PPKG: When the challenger (Á) requests it, the challenger (Á) conducts the setup
procedure to generate a KGC’s master private key and a public factor

(
mpk

)
corresponding

to the KGC’s identification (TD), then transmits
(
mpk

)
to the foe

(
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□ 

1
)
.

Key generation (KG): In the KG stage, the challenger (Á) evaluates a (λ) private value
after learning the GM’s identification (TDGM), then uses the private key and partial secrete
key to estimate the GM’s private key

(
Gprk

)
and communicate it to the foe.

Request public key: For any identification, the adversary will now turn to the public
key. The challenger calculates the value of the GM’s public key

(
Gprk

)
and delivers it to

the foe after getting the appeal.
Replace public key: The foe creates a novel λ1 private value and substitutes the

challenger’s public key with their own public key
(
Gprk1

)
after obtaining the challenger’s

public key.
Signcryption: For signcrypt, the client chooses specific secret values, but for a chal-

lenger message, the GM’s public key and the original text are required. The challenger
then sends the signed text S = (U, Á, λ, λ1, λ2) on message m1 to the foe using a public
key for the sender’s identity that matches the GM’s public key. The foe wins the game if
Designcrypt

(
mpk1, TDGM1, λ1, m1, S1

)
equals 1, but the adversary does not breach the

security since the foe cannot enquire about the signcryption on the message m1 and the
private key for an TDGM1.

Definition 5. (Type II Attack). The foe
(
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rity assessment is detailed as follows. 

Theorem 1. The CGSS-CCM generated signcrypted text that is correct. 

Proof. This theorem demonstrates the correctness property of the projected CGSS-CCM 
scheme.   □ 
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Proof. As a result of Equation (7), we realize that a signcrypter’s identity can be retrieved 
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Definition 4. (Type I Attack). A foe (Ƒ ) having access to the device will be unable to 
gain the master secret key. However, Ƒ  can generate a signcrypted text by substituting 
public keys, removing private and partial private keys. 
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(Ƈ) in the Type-I attack. The steps outlined below are used to communicate between them.  
□ 

2
)

has retrieved the master key via a Type-II
attack but cannot substitute any client’s public key.

Proof. The challenger (Á) and the foe
(
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2
)

compete in this game. �

PPKG: The challenger then uses the setup method to generate a KGC’s master private
key and an

(
mpk

)
public factor based on the KGC’s identity (TD), and then delivers the

public and private keys to the foe. After that, the adversary would be able to estimate the
partial private key.

Key generation: Following the GMs identify (TDGM), the challenger (Á) estimates a

(λ) hidden value, calculates the GM’s private key
(
Gprk

)
using the partial private key and

secret key and delivers it to the foe
(
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(Ƈ) in the Type-I attack. The steps outlined below are used to communicate between them.  
□ 

2
)
.

Request public key: The challenger then determines the GM’s following public key
and, upon request, provides it to the foe.

Signcryption: The challenger can now estimate a signcrypted text S1 = (U, Á, λ, λ1, λ2)
on message m1 and give it to the foe

(
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2
)

using a public key for the sender’s identity and

the GM’s public key. The foe wins the game if Designcrypt
(
mpk1, TDGM 1, λ1, m1, S1

)
equals 1, but the adversary does not breach the security since the foe cannot request the
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signcryption on the message m1 and the private key for an TDGM 1. The presented system
has also been proved to be resistant to Type-II and Type-I attacks.

Theorem 4. The proposed CGSS-CCM satisfies the unlinkability property.

Proof. The verifier confirms the signcrypted info by using the group’s Gpbk public info
and TDGM as exposed in Equation (6) after discovering the group signcrypted info
(U, Á, λ, λ1, λ2) for m message . If the verifier receives alternative signcrypted information(

U′, Á′, λ′, λ′1, λ′2
)

for the message m′. In the two signcrypted info (U, Á, λ, λ1, λ2), there
are no identical variables. When the verifier wishes to know the signcrypter’s identity
(TD), they must consult the GM. The projected CGSS-CCM also comprises five variables,
namely

(
α,
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In addition, the semi-group property is retained. It is worth noting that extended 
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There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
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ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

, U, W, e
)

, to hide the precise estimate of the group’s signcrypted info/text.

As a result, it is impossible to decode the estimates of
(

α,
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, U
)

from the signcrypted
data. As a result, an adversary would never be able to link signed data to the compliant
signcrypter. �

6. Proposed Electronic Cash System Based on CGSS Using Conformable
Chaotic Maps

This section proposes a new efficient electronic cash system based on CGSS using
conformable chaotic maps. A consumer, a GM of that customer group (CG), a bank and a
merchant participate in an ECS consisting of a series of protocols. In sum, an electronic
cash system comprises the following six distinct phases, and Figure 2 depicts the planned
E-cash scheme’s configuration.
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Figure 2. A model of the proposed electronic cash system (ECS).

6.1. Initialization

This stage is handled by a trusted third-party key generation center (KGC) and the
GM because our projected method is a certificateless scheme. With KGC, the group’s GM
establishes a public and private key for the group.

Step 1. The KCG selects an integer n = p1 × p2 where p1, p2 are huge primes using
the secure prime schemes. Then they select g as a GF (p1) generator and select a random
a ∈ [0, 1] rational number. Then they give g and n to the GM.

Step 2. The KGC selects two secret parameters m′sk and TD′KGC ∈ Z∗n at random and
computes a public parameter m′pk as a result.

m′pk = Ta
m′sk

(g)(mod n) (10)

Then, on a secret channel, they send
(
n,m′pk, g

)
to the GM.

Step 3. The GM first selects a secret parameter λ′ ∈ Z∗n and their identification as
TD′GM after obtaining the parameter from the KGC, and then calculates the group’s public
and private key as
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G ′prk = λ′ ×m′pk + TD′KGC × TD′GM (mod n)

G ′Pbk = Ta
G ′prk

(g)(mod n)

e ≡ 1 mod φ(n).

The GM then makes
(
n, g,TD′GM, e, G ′Pbk

)
public to everybody while keeping(

e, λ′,G ′prk

)
private.

6.2. Joining Phase

Each customer Ci wishes to join the CG in this step. Thus they engage with the GM
as in Step 1. Initial, each customer Ci selects a secret parameter W ′ ∈ Z∗n at random and
calculates the subsequent:

TDCi = Ta
w′
(
TD′GM

)
(mod n) (11)

They then send it to the GM.
GM produces a membership certificate for each customer after determining

their identification.
mCi = Ta

W′
(
TDCi

)
(mod n) (12)

After, the GM adds a new record for customer identification with the membership
certificate as

(
mCi , d

)
.

6.3. Withdrawal Phase

The customer approaches the bank and requests a coin. The bank demands identity
confirmation from the customer; thus, the customer must complete the promise stage
before the procedure can be signcrypted.

Step 1. In this stage, each customer selects two secret parameters at random: α′,
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items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

′
∈ Z∗n,

and calculates the signcrypted text as follows:

ω11 = Ta
α′
(
TDCi

)
(mod n)

ω21 = α′ × T + ω11(mod n)

where T is the time and date concatenation.

ω31 = Ta
ω11×e

(
mCi

)
(mod n)

U′ =
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′
+ TD′GM(mod n)

Key
(
Î′
)
= H

(
U′ × n′

)
(mod n)

C′ = Î′ ×m′ + G ′Pbk(mod n)

Step 2. The bank verifies the text’s legitimacy after discovering the signcrypted text
from the customer.

Ta
ω21

(
TDCi

)
= Ta

T (ω11)×ω31(mod n)

Correctness.

Ta
ω21

(
TDCi

)
= Ta

α′×T +ω11

(
TDCi

)
(mod n)

= Ta
α′×T

(
TDCi

)
× Ta

ω11

(
TDCi

)
(mod n)

= Ta
T(ω11)× Ta

ω11/d
(
mCi

)
(mod n)

= Ta
T(ω11)× Ta

ω11×e
(
mCi

)
(mod n)
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= Ta
ω21

(
TDCi

)
= Ta

T (ω11)×ω31(mod n)

If this equation is true, the bank calculates

ξ ′ = Ta
ω31

(
G ′Pbk

)
× TDCi (mod n)

ξ ′1 = Ta
ω31

(g)(mod n)

The bank then sends the consumer these two parameters
(
ξ ′, ξ ′1

)
as their bank identification.

Step 3. The customer calculates another secret parameter after obtaining the secret parame-
ter from the bank.

ξ ′3 = Ta
n′
(
ξ ′2
)
(mod n)

where ξ ′2 =
(
ξ ′ + ξ ′1

)
and stores the coin as

(
ξ ′3, Î′, C′, U′

)
6.4. Payment Phase

The interaction between the merchant and the customer takes place during this phase.
Step 1. The customer delivers the coin

(
ξ ′2, ξ ′3, Î′, C′, U′

)
to the merchant for payment.

After locating the coin, the merchant first validates its legitimacy, which requires them
to compute.
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There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 
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(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-
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′
= U′ − TD′GM(mod n).

Then they determine if the condition’s value is met or not.

H
(

U′ ×

Sensors 2021, 21, 7039 5 of 17 
 

 

𝔗𝔇  Identity of 𝐶 client 𝑎 An arbitrary rational number 𝔪  Master secret key 𝒢  Group’s public key 𝒢  Group’s private key ƈ Cipher  ɦ Hash function 𝔪  Public constraint 𝔪 Message ƙ Key 

3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

′)
= Î′(mod n),

If yes, the merchant proceeds to the next step; otherwise, the customer is notified.
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7. Security Analysis of the Proposed CGSS-CCM ECS Scheme 
This section details some of the security and effectiveness features of our ECS scheme. 

We demonstrate that our offline ECS scheme is secure from threats, such as forgery and 
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7.1. Unforgeability 
In the suggested approach, a fraudulent customer cannot falsify the coin because, in 

the event of blackmail or a legal disagreement, the bank notifies the GM of that client 
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customer’s identification, and only the user who is the account owner in the withdrawal 
protocol can withdraw an e-coin. 

7.2. Anonymity 
The projected technique allows the user to make an anonymous payment to the mer-

chant because the retailer is unaware of the customer’s identity. They can only accept a 
coin from the user and check the correctness of the signcrypted document, but the mer-
chant has no way of knowing who the customer is. As a result, the suggested system is 
unaffected by the anonymity attribute. 

8. Performance Comparison 
In this section, we compare our technique to recently contributed electronic cash sys-

tems [45–49] in terms of communication cost. The efficiency of the provided electronic 
cash system is evaluated based on communication costs. The output is compared based 
on the cost of the withdrawal and payment phases. In contrast to the installation, joining, 
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= C′ − G ′Pbk(mod n)

and F’s value is sent to the consumer.
Step 2. The customer then generates a new parameter as follows:
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deposit, and identity revocation stages, the withdrawal and payment phases need addi-
tional computational resources. As a result, the computation cost for the withdrawal and 
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7.2. Anonymity 
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3.1. Chebyshev Chaotic Polynomials 
The operatory of Chebyshev sequential polynomials (CSP) is investigated (see [35]). 

In the ʓ  variation, CSP 𝚃ᶇ ʓ  is a ᶇ-degree polynomial. Let the arrangement be ʓ ∈[−1, 1], and ᶇ be an integer. In general, CSP reported the following: 𝚃ᶇ ʓ = cos ᶇarc cos ʓ , 𝚃 ʓ  =  1, 𝚃 (ʓ)  =  ʓ, 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  ᶇ ≥ 2 
Under these conditions, the functional 𝑎𝑟𝑐 cos(ʓ) and  cos(ʓ)  are denoted as 𝑎𝑟𝑐cos: [−1, 1] → [0, ] and cos: Ɍ → [−1, 1]. 
CSP has two fundamental properties: chaotic and semi-group properties [36–40]. 

(1) The chaotic property: The CSP map is defined as 𝚃ᶇ: [−1, 1] →  [−1, 1] with de-
gree ᶇ  1, is a chaotic map accompanying with the (invariant density) functional  𝑓∗(ʓ) = ʓ  for the positive Lyapunov exponent 𝜆 = lnᶇ > 0. 

(2) Semi-group property: The possessions of a semi-group meet the following criteria: 𝚃ℓ 𝚃𝓌(ʓ) = cos ℓ𝑎𝑟𝑐 cos cos(𝓌𝑎𝑟𝑐 cos(ʓ))  
 = cos(ℓ𝑎𝑟𝑐 cos(ʓ)) 
 = 𝚃𝓌ℓ(ʓ) 
 =  𝚃𝓌(𝚃ℓ (ʓ)),  

where  ʓ[−1, 1] and ℓ and 𝓌 are positive integers. 
Zhang [40] showed that the semi-group property preserves the interval (−∞, +∞), 

which may be utilized to improve the property as tracks: 𝚃ᶇ(ʓ)  =  2ʓ𝚃ᶇ (ʓ) − 𝚃ᶇ (ʓ);  n ≥ 2 
where ʓ(−∞, +∞) and 𝑞  is a large and safe prime. As a result, the property is: 𝚃ℓ (𝚃𝓌(ʓ))(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌ℓ(ʓ)(𝑚𝑜𝑑𝑞 ) =  𝚃𝓌(𝚃ℓ (ʓ))(𝑚𝑜𝑑𝑞 ) 

In addition, the semi-group property is retained. It is worth noting that extended 
Chebyshev polynomials commute under confirmation as well. 

There are two assessments for Chebyshev polynomials (CP) that consider handling 
in polynomial time: 
(1) The discrete log’s (DL) task is to invent an integer ℓ with the end goal 𝚃ℓ(ʓ) = 𝓋 given two 

items ʓ and 𝓋. 
(2) The Diffie–Hellman problem (DHP) task is to measure the 𝚃ℓ𝓌(ʓ) element due to three ele-

ments ʓ, 𝚃ℓ(ʓ), and 𝚃𝓌(ʓ). 
  

′)
= Î′(mod n) if the coin exists, otherwise

it sends an incorrect message.
The bank stores the coin (
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chant because the retailer is unaware of the customer’s identity. They can only accept a 
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chant has no way of knowing who the customer is. As a result, the suggested system is 
unaffected by the anonymity attribute. 
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) in the placed table if it is valid.

6.6. Identity Revocation Phase

In the event of a dispute, the bank will submit the signcrypted document to the GM,
who will then identify the dishonest customer.

TDCi = ξ ′/Ta
G ′prk

(
ξ ′1
)
(mod n) (13)

7. Security Analysis of the Proposed CGSS-CCM ECS Scheme

This section details some of the security and effectiveness features of our ECS scheme.
We demonstrate that our offline ECS scheme is secure from threats, such as forgery
and anonymity.
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7.1. Unforgeability

In the suggested approach, a fraudulent customer cannot falsify the coin because, in
the event of blackmail or a legal disagreement, the bank notifies the GM of that client group.
The GM can then use the equation TDCi = ξ ′/Ta

G ′prk

(
ξ ′1
)
(mod n) to identify the customer’s

identification, and only the user who is the account owner in the withdrawal protocol can
withdraw an e-coin.

7.2. Anonymity

The projected technique allows the user to make an anonymous payment to the
merchant because the retailer is unaware of the customer’s identity. They can only accept a
coin from the user and check the correctness of the signcrypted document, but the merchant
has no way of knowing who the customer is. As a result, the suggested system is unaffected
by the anonymity attribute.

8. Performance Comparison

In this section, we compare our technique to recently contributed electronic cash
systems [45–49] in terms of communication cost. The efficiency of the provided electronic
cash system is evaluated based on communication costs. The output is compared based
on the cost of the withdrawal and payment phases. In contrast to the installation, joining,
deposit, and identity revocation stages, the withdrawal and payment phases need addi-
tional computational resources. As a result, the computation cost for the withdrawal and
payment phases is used to perform the comparison analysis. In this part of the comparisons
study, we utilized the following six notations of this complexity:
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era and beyond [54]. 
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outperforms the other methods. The proposed CGSS-CCM ECS scheme would find useful
applications in emerging wireless communication systems in the 6G era and beyond [54].
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Table 2. Assessments of important operations with reverence techniques.

Techniques Withdrawal Phase Payment Phase Total

Chen et al. [45] 3
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9. Conclusions 
This paper proposed an efficient and effective ECS based on the concept of CGSS-
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results showed that our ECS had lower costs than the other five schemes. Finally, our 
scheme can be helpful in many real-life applications, such as online auctions, e-banking, 
and electronic voting systems. Future work could extend the proposed CGSS-CCM as-
sisted scheme to ease its applicability in emerging wireless application scenarios. 
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9. Conclusions

This paper proposed an efficient and effective ECS based on the concept of CGSS-
CCM, which is secure against an IND-CCA attack in conformable chaotic maps. In order
to demonstrate the strengths of our CGSS-CCM enabled scheme, we performed standard
security examinations. We found that it meets the requirements for anonymity and unforge-
ability in a well-designed and secure electronic cash payment system. Additionally, we
compared the computational costs of our scheme with five other schemes, and the results
showed that our ECS had lower costs than the other five schemes. Finally, our scheme can
be helpful in many real-life applications, such as online auctions, e-banking, and electronic
voting systems. Future work could extend the proposed CGSS-CCM assisted scheme to
ease its applicability in emerging wireless application scenarios.
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