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Abstract: The influence of the impregnation process of pine wood (Pinus sylvestris L.) samples on the
electrical resistance changes and the moisture-content measurement accuracy is presented in this
paper. In this study, the resistances of impregnated and nonimpregnated green pine timber harvested
from northern Poland were compared. An impregnation method based on a vacuum-pressure
chamber was used. Copper salts were applied as the impregnated solutions. The obtained results of
the electrical resistance comparison showed a dependence of wood resistance on the moisture content.
Higher conductivity occurred in impregnated wood samples filled with copper salt compared with
wood samples without impregnation. Noticeable differences in the electrical resistance values were
observed when the wood moisture content was significantly above the Fibre Saturation Point (FSP).

Keywords: wood drying; impregnated wood; pine wood; wood moisture content; wood resistance;
moisture content; moisture meter resistance

1. Introduction

The moisture content (MC) of green timber varies between 40% and 70%, and it needs
to be decreased to around 10–15%. Therefore, it is necessary to dry it to a balanced level. In
order to optimise the drying process and to achieve the target MC, it is important to have
systems which are able to measure or predict the changes in MC during drying and final
wood treatment. Requirements from timber buyers and from new drying standards are
increasingly focusing on the importance of obtaining the correct final MC.

The drying process impacts deformations, surface checking, discoloration, and hence
the product quality and the manufacturing costs. A good drying process may prevent
the timber from developing outer and inner cracks as well as several other defects. It
increases the timber strength; nails, screws and glue hold better, paint and finishes adhere
well. This process is a function of time which is influenced by many different parameters
such as temperature, diffusion coefficient (wood structure), dimension of wood, drying
medium speed, its relative humidity and other factors. Many of these parameters can
be controlled during the drying process with reliable sensors. However, controlling the
moisture flow throughout the whole piece of wood is not possible yet. On a timber stack
level, the inhomogeneity of the initial MC and the natural scatter of moisture-related wood
properties pose a challenge to the operator monitoring the drying process and achieving
the required drying quality. Research in this field is of great importance for the wood
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industry, as the industrial drying process always needs to be continuously improved as
market demands increase and new wood products are developed.

The most important quality factor in the chain production and the final wood products’
application is the wood MC [1]. Reliable methods for determining MC are essential,
both for the producer and the user, in order to avoid the problems that can occur when
timber is used with an inappropriate MC. Industrial tests of commercial online MC meters
have shown low accuracy of individual readings [2,3]. All MC measuring methods have
their advantages and disadvantages, and most of today’s meters only use one measuring
technique [4]. Some subjective methods, such as estimating MC from smell, weight, or
the way the wood behaves, have been used in the past by experienced people. The results
made by these methods have been compared with reliable measurements and it has been
clearly shown that the first ones are unreliable. These methods can provide rough data, but
the inherent errors are far too great for them to be used for proper wood quality control.

Examples of moisture sensors for wood and wood-based materials are widely ap-
plied, employing a variety of sensing technologies, including, for example, electrical
resistance [5–7], acoustics [8,9], microwaves [10,11], and near-infrared spectroscopy
(NIR) [12,13]. Dielectric sensors have also been successfully applied using, for example,
radio frequency spectroscopy [14], time or frequency domain reflectometry [15,16], and
direct capacity measurements [17–19]. Each of these approaches has its own merits, but
most of them are not entirely practical for flowing streams of material, which is required
in industrial applications of process control. Additionally, the accuracy of wood MC
measurements can be improved by taking into account the visual properties [3].

The electrical resistance of wood decreases with increasing MC [20] and a common
method in wood MC determination is the electrical resistance measurement between two
electrodes inserted in the wood. The relationship between MC and material resistance is
different in various MC ranges. It is affected by the species wood, experimental variables
and calibration experiments. The measurement result is influenced by many factors, e.g.,
temperature, the content of extractives, etc. Capacitive moisture meters consider the density
of the wood, which can differ significantly even inside a single board. The reliability of
wood MC readings with electrical resistance meters decreases with an increase of MC above
20% and below 9%. In dry wood up to 7% MC, the reduction in electrical conductivity
is about five-fold for an increase of 1% in MC [21]. From 7% MC to the Fibre Saturation
Point (FSP), the decrease in resistivity is slightly smaller, about two to four times for every
1% increase in MC [20]. Above the FSP, the resistance decreases with MC increase, but
compared to the changes in electrical conductivity below fibre saturation, the changes are
small [22].

All MC measurement systems have their limitations. Nowadays, for sawn timber
kilns, there are no commercial monitoring systems for MC measurement where each single
board of the stack can be monitored.

On other hand, the kiln drying is accomplished by controlling the equilibrium moisture
content (EMC) which depends on the drying medium’s humidity and temperature in the
drying kiln. To make the process faster, the EMC should be lower and vice versa. This
can be achieved by automatic (computerized) simultaneous control of heater, fan, and
ventilation. While the drying process of the timber surface is directly controlled by setting
the EMC, drying of the inside material highly depends on the surface properties, its state,
and also the type of timber, velocity, and humidity of drying medium inside the kiln, hence
it is not easy to control [23].

The increased use of wood in its natural form, as a construction material and as a
renewable and low-embodied energy, is an alternative to reinforced concrete and steel. In
a certain environments and applications, issues related to durability, fire resistance and
dimensional stability need to be solved [24–26]. In general, the treatment of wood through
chemical and thermal modifications, coatings or impregnation offers effective ways to
address some of these issues [27]. In particular, “controlled” impregnation of specific
monomers into the wood cell cavity (lumen) and also into the wood cell wall [28–30]
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followed by polymerization, can enhance the performance of wood in construction by
improving its mechanical properties, giving the wood higher durability and fire resis-
tance [28,31–34].

This article presents the results of the electrical resistance changes and thus MC
measurement accuracy in selected samples impregnated and nonimpregnated of pine
wood (Pinus sylverstis L.). The obtained results of the electrical resistance comparison
showed a dependence of wood resistance on the moisture content. It has been observed
that a higher conductivity occurred in impregnated wood samples filled by copper salt than
wood samples without impregnation. Noticeable differences in the electrical resistance
values were observed when the wood moisture content was significantly above the Fibre
Saturation Point (FSP). The applied water-soluble impregnate is an aqueous copper salt
solution that penetrates on a capillary and diffusion basis, and the MC of impregnated
wood does not significantly impact its penetration into the material. The diffusion intensity
is directly proportional to the impregnation salt’s aqueous (water)-solution concentration
and depends on the duration of this phenomenon. It continues after removing the wood
sample from the salt solution until the wood is dried and the wood MC reaches a value
below the fibre saturation point (FSP). The impregnation method based on the vacuum–
pressure chamber was used.

2. Materials and Methods

The material used during the experiments was pine wood (Pinus sylvestris L.). The
wood for the impregnated wood samples (three boards) was initially dried in industrial
conditions until the MC was below FSP. Then, they were full-scale impregnated in an
autoclave. The impregnation process continued for 120 min, and the retention level was
1.0 dm3/(m3.min).

The so called full-cell impregnation method is based on the technique widely described
in detail by Babiński (1992) [35]. The boards were placed in the impregnation solution
environment under atmospheric pressure. The first impregnation phase lasted 25 min in
a vacuum of −0.8 bar. In the next step, a pressure of 10 bar was maintained for 55 min.
After the second impregnation phase when the pressure was decreased to atmospheric,
the surplus of impregnation solution was removed from the autoclave. The final phase,
the impregnation step, during which the impregnation water solution is sucked out of the
lumens, was carried out under a pressure of −0.8 bar and lasted 40 min. The pressure
changes in time during the impregnation process are presented in Figure 1. A preservative
(TANALITH E3475, Arch Timber Protection, Castleford, UK) and colouring (TANATONE
3950, Arch Timber Protection, Castleford, UK) agents based on copper salt were used.
Tanalith E3474 contains basic copper carbonate (copper(II), carbonate-copper(II), hydrox-
ide(1:1)): 15.7% w/w pure substance or 9% w/w expressed in copper. The concentration of
impregnate solution was 3.8%. The other three wood boards, which were not impregnated,
were freshly cut.

There are also other preservatives, including coal-tar substances such as creosote, oil-
based chemicals such as pentachlorophenol (PCP), and aqueous solutions of compounds
such as chromated copper arsenate (CCA), ammoniacal copper zinc arsenate (ACZA), and
copper azole (CA-B). An example of a CA-B preservative is TANALITH E3475. Creosote,
PCP and CCA are used on heavy structural members such as railroad ties, utility poles,
marine poles, and bridge timbers, while ACZA and CA-B are used on common structural
timber. The impregnating solution contains salts, such as copper (III) carbonate and copper
hydroxide. In addition, it also contains 2-aminoethanol (NH3CH2CH2OH) alcohol and
organic acids. As a result of the reaction of 2-aminoethanol with organic acids, salts are
formed.
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Figure 1. The course of phases or pressure changes of the impregnation process preformed in the
autoclave.

Before the experiments, the wood was prepared as 500 mm-long boards (Figure 2). The
growth rings of this wood were tangential (Figure 3a,b). The wood that was intended for
impregnation process was cut into pieces (samples) of the following dimensions: 120 mm
× 105 mm × 40 mm (Figure 2b). The other boards (nonimpregnated before experiments)
were also cut into pieces, but the dimensions were as follows: 60 mm × 105 mm × 50 mm,
respectively (Figure 2a) [36–40].
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Figure 2. Dimensions of wood samples prepared for an experiment: (a) nonimpregnated wood, (b) impregnated wood. The
wood samples taken for the initial wood MC determination (applying the gravimetric method).

The wood for the research was obtained from Sylva Ltd. Co. sawmill in Wiele, Poland.
Wood samples without heartwood were selected. Values of basic properties such as initial
and final MC and density of impregnated and nonimpregnated pine wood are presented
in Table 1. These properties and the salt concentration in wood are very important with
respect to electrical resistance measurement.
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Table 1. Values of initial and final MC and density (ρ) of impregnated and nonimpregnated pine
wood.

Impregnated
Wood

Nonimpregnated
Sawnwood

1. Average initial MC MCi [%] 27 55

2. Average final MC MCf [%] 6.5 8.6

3. Average initial density ρi [kg/m3] 640 520

4. Average final density ρf [kg/m3] 530 480

Each pine wood sample was seasoned in open-air conditions. The measurements
were performed at 24 h intervals in the laboratory, with conditions at 25 ◦C and a relative
humidity φ of 29.5%. For these parameters, the equilibrium MC was Wr = 6%. The drying
time was about 30 days for impregnated wood and about 45 days for nonimpregnated
wood (Figure 4).

The gravimetric method was used to determine wood MC. The samples were taken
from the centre of the 500 mm boards (Figure 2). This method is more accurate than the
commonly used methods with MC sensors based on resistance measurement. The test
stand was equipped with a precision balance to measure the mass of the samples. The mass
measurements were made with an accuracy of 0.001 g. The drying process of samples to
an oven-dry state was performed in the laboratory kiln at 103 ± 2 ◦C. MC was calculated
using Equation (1):

MCg =
mw − m0

mw
·100% (1)

where:

mw is the mass of the moisture sample [grams];
mo is the mass of the absolute dry sample [grams].

Then, the wood MC was measured using an electrical-resistance moisture meter
Hydromette type RTU 600 (Gann Mess-u. Regeltechnik GmbH, Gerlingen, Germany). The
moisture meter was calibrated for a room temperature of 25 ◦C and for the specified wood
species: Scots pine. The MC measuring range was 4–100% [41].
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To determine the resistance of impregnated and nonimpregnated pine wood samples,
the measuring system was used (Figure 5). It consisted of an MUC 2000 multimeter (Slandi,
Michalowice, Poland) with an internal resistance of 10 MΩ, a power supply generating a
constant voltage of 9.45 V [42], and measurement probes within the Hydromette RTU 600
moisture meter. The probes were placed at the same measuring points in a sapwood.
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The resistance of the test samples was determined with the following general formula:

I =
U
R

=
Us

Rm + Rw
=

Um

Rm
=

Uw

Rw
(2)

The constant voltage Us was calculated using equation presented below:

Us = Um + Uw (3)

The resistance of the pine wood Rw was calculated with the following equation:

Rw = Rm·
(

Us

Um
− 1
)

(4)

where:

Us is the constant voltage generated by power supply [9.45 V];
Rm is the internal resistance of the multimeter, [10 MΩ];
Um is the voltage indicated by multimeter [V];
Uw is the voltage of wood samples [V] and
Rw is the resistance of the pine wood [MΩ].

3. Results and Discussion

The experiment examined pine wood resistance as a function of its MC; 24 samples of
nonimpregnated boards and 24 samples of impregnated boards were tested. The resistance
curves differed for impregnated wood and nonimpregnated boards due to differences
in resistance values of the tested wood. The characteristic resistance points of studied
wood were approximated with an exponential function (Figure 6). The results imply that
electrical resistance drops more rapidly and then more and more gradually with increasing
MC. In these regression curves, the coefficient of determination, R2, is very high and is
equal to 0.8338 for impregnated and 0.9282 for nonimpregnated wood. The deviation of the
measured resistance values near the regression curves is significant due to the large variation
in the electrical properties of wood. The deviation decreases with higher wood MC.
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Then, the resistance moisture meter was used to determine the impact of wood im-
pregnation on the error of measuring its MC. The reference values of MC were obtained
using the gravimetric method with a 0.001 g accuracy balance. The results from the mea-
surements are shown in Figure 7. The measurement of nonimpregnated wood MC using
the resistance meter was in good agreement with the gravimetric method. This is because
there were no chemical additives that could change the resistance of the dried material.
However, impregnated wood MC values using the resistance meter were consistent with
the gravimetric method only when it was below 20%. In such wood samples there was only
a small amount of water in the material, so the chemical additives did not influence overall
wood resistance. Above 20% MC, there were very big differences between resistance meter
and gravimetric method measurements. This is because the wood samples contained a
mixture of water together with the chemical additives, and this mixture affects wood’s
electrical resistance.
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The results of MC measurement of nonimpregnated wood with a resistance meter are
characterized by a slight deviation from the reference values measured by the gravimetric
method up to the FSP level. As the MC increased above the FSP, the error during mea-
surement was higher, which is in accordance with the information in the resistance meter
manufacturer’s manual data. In the case of this measurement for the impregnated wood,
the deviation increased exponentially above the values of MC equal to 15% (measured by
gravimetric method). Above this value, the use of an appropriate correction formula was
necessary.

After determining the impact of wood impregnation on the MC measurement error
using the resistance moisture meter, the differences in wood MC of nonimpregnated and
impregnated wood were compared (Table 2) and graphically presented (Figures 8 and 9),
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and the value of wood MC difference at constant wood resistance was calculated using the
formula presented below:

∆MC =

[(
MCg − MCr

)
MCg

]2

·100 (5)

where:

MCg is the wood MC using gravimetric method [%];
MCr is the wood MC using resistance meter, [%].
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The results of the calculations according to Formula 5 are presented in Table 3. It can be
noticed that moisture-content differences for nonimpregnated boards increase from 2.290 to
23.209% proportionally with wood resistance changes from 0.19 to 188.380 MΩ. For impreg-
nated wood, the MC differences vary between 47.068 and 29.746% with wood resistance
changes from 0.03 to 9.632 MΩ. For impregnated wood samples, the resistance changes are
higher than for nonimpregnated ones. On the other hand, moisture-content differences for
both types of pine wood samples are similar, at about 13.25% for nonimpregnated boards
and around 17.6% for impregnated wood.
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measurement method.

Table 2. Differences of MC of nonimpregnated and impregnated pine wood using gravimetric and
resistance meter methods at constant resistance.

Nonimpregnated Wood Impregnated Wood

Wood
Samples’

Resistance

Gravimetric
Method

Resistance
Meter

Method
Wood

Samples’
Resistance

Gravimetric
Method

Resistance
Meter

Method

MC MC MC MC

[MΩ] [%] [%] [MΩ] [%] [%]

1. 0.190 41.99 39.70 0.030 61.40 90.30

2. 0.208 37.53 39.80 0.045 53.70 72.90

3. 0.241 34.44 36.90 0.052 50.20 68.60

4. 0.399 28.60 32.90 0.072 42.60 55.40

5. 5.101 17.45 20.30 0.511 23.40 33.00

6. 13.158 14.63 17.80 1.196 20.50 26.90

7. 188.380 10.47 12.90 9.632 15.80 20.50

The statistical analyses were performed using Statistica 13.1 software with the alpha
level set at 0.0.5. To check the influence of the moisture-measuring method and the wood-
impregnation process on the moisture-content values; the analysis of covariance (ANCOVA)
was applied. Statistical analyses showed that both wood impregnation (F1,301 = 707.9;
p < 0.001) and method of moisture measuring (F1;301 = 90.229; p < 0.001) significantly
influence the moisture content throughout the time of the experiment (F4;301 = 528.45;
p < 0.001).
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Table 3. The moisture-content differences between nonimpregnated and impregnated pine wood using gravimetric and
resistance-meter methods.

Nonimpregnated Boards Impregnated Boards

Wood
Samples’

Resistance

Gravimertic
Method

Resistance
Meter

Method
Moisture-
Content

Difference

Wood
Samples’

Resistance

Gravimetric
Method

Resistance
Meter

Method
Moisture-
Content

Difference
Moisture
Content

Moisture
Content

Moisture
Content

Moisture
Content

[MΩ] [%] [%] [%] [MΩ] [%] [%] [%]

1. 0.190 41.99 39.70 0.297 0.030 61.40 90.30 22.154

2. 0.208 37.53 39.80 0.365 0.045 53.70 72.90 12.783

3. 0.241 34.44 36.90 0.510 0.052 50.20 68.60 13.434

4. 0.399 28.60 32.90 2.260 0.072 42.60 55.40 9.028

5. 5.101 17.45 20.30 2.667 0.511 23.40 33.00 16.831

6. 13.158 14.63 17.80 4.695 1.196 20.50 26.90 9.746

7. 188.380 10.47 12.90 5.386 9.632 15.80 20.50 8.848

The results of this task are presented in Figures 10–12. Pine wood impregnation
preceding the drying process leads to an increase in the average MC compared with the
average MC obtained with nonimpregnated timber measured at the same time intervals
(analysis of covariance (ANCOVA) F4;304 = 623.95; p < 0.001), as shown in Figure 10. Differ-
ences in the curve courses indicates that MC measurement during drying depends on the
wood impregnation process and the measurement method.
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The gravimetric moisture-content measurement method indicates a lower MC value of
dried material, both of impregnated and nonimpregnated wood, compared to the resistance
moisture-content measurement method. Nonimpregnated wood is characterized by lower
moisture-content values regardless of its measurement method.

It should also be added that both the impregnation process and the time of drying
process significantly affect the material resistance values, as seen in Figure 12. At the
beginning of the drying process, for about 250 min, the resistance of nonimpregnated
timber and impregnated wood is low, in the ranges 0.19–13.158 MΩ and 0.03–1.196 MΩ,
respectively, and in a short period of time it rapidly increases to values of 188.38 MΩ
and 9.632 MΩ for nonimpregnated and impregnated wood, respectively. The resistance
differences between the nonimpregnated and impregnated woods vary from 60 to 200%.
This is the effect of the moisture removal process during drying in both wood types, and
the retention of copper-based salts in the impregnated wood.

4. Conclusions

This work presents the results of wood MC measurement accuracy in impregnated
wood and nonimpregnated boards.

The impregnation process of pine wood (Pinus sylvestris L.) impacts the resistance
values and thus the accuracy of MC measurements. Impregnation of wood with the
preservatives and colouring agents, TANALITH E3475 and TANATONE 3950, respectively,
lowered the electrical resistance and consequently increased the apparent measured MC
that was predicted with the moisture meter (Hydromette RTU 600) at the default calibration
settings.

The MC measurements of impregnated pine wood using a resistance meter were
significantly different from MC measurements using the gravimetric method. Such a
phenomenon was particularly noticeable above the FSP level.

The resistance MC measurement method is not suitable for MC measurement of
impregnated pine wood when the MC content is above 20%. The application of this method
requires correction formulas, which would need to be estimated empirically depending on
the type and amount of impregnant substance in the wood material.

The wood MC during drying depends on the wood impregnation process and the
measurement method. The gravimetric measurement method indicates a lower value of
dried material MC, both in impregnated and nonimpregnated wood, compared with the
resistance MC measurement method. The wood impregnation and the time of the drying
process significantly influence the material’s resistance values. The resistance differences
between the nonimpregnated and impregnated woods vary over a wide range. This is a
result of moisture removal during the drying process in both wood types, and the retention
of copper-based salts in the impregnated wood.

The coefficient of determination, R2, for nonimpregnated green timber was higher
than for the impregnated wood based on separate data-fitting equations. The obtained
results corresponding to impregnated wood were better fitted using an exponential rather
than a linear function.

Pine wood impregnation preceding the drying process leads to an increase in the aver-
age MC compared with the average MC obtained with nonimpregnated timber measured
at the same time intervals.
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