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Abstract: High-precision indoor localisation is becoming a necessity with novel location-based ser-
vices that are emerging around 5G. The deployment of high-precision indoor location technologies
is usually costly due to the high density of reference points. In this work, we propose the oppor-
tunistic fusion of several different technologies, such as ultra-wide band (UWB) and WiFi fine-time
measurement (FTM), in order to improve the performance of location. We also propose the use of
fusion with cellular networks, such as LTE, to complement these technologies where the number of
reference points is under-determined, increasing the availability of the location service. Maximum
likelihood estimation (MLE) is presented to weight the different reference points to eliminate outliers,
and several searching methods are presented and evaluated for the localisation algorithm. An
experimental setup is used to validate the presented system, using UWB and WiFi FTM due to their
incorporation in the latest flagship smartphones. It is shown that the use of multi-technology fusion
in trilateration algorithm remarkably optimises the precise coverage area. In addition, it reduces the
positioning error by over-determining the positioning problem. This technique reduces the costs of
any network deployment oriented to location services, since a reduced number of reference points
from each technology is required.

Keywords: indoor positioning; fusion technologies; UWB; WiFi fine time measurement; LTE;
maximum likelihood estimator

1. Introduction

Location-based services in the fifth generation (5G) mobile network require reliable,
continuous, and precise positioning information for their full functionality potential [1].
Global navigation satellite systems (GNSS) have settled as the reference localisation system
for outdoor navigation. GNSS offer a meter-level accuracy at open sky scenarios. However,
the precision is reduced drastically when the target enters a building or tunnel. Several
technologies (e.g., WiFi and Bluetooth) and techniques (e.g., fingerprinting and image
recognition) try to provide accurate and precise location information [2,3]. Nevertheless,
indoor scenarios are extremely challenging due to the harsh radio propagation conditions.
Indoor scenarios usually contain metallic objects that reflect and block the signals creating
multipath effects that can strongly deteriorate the navigation solution or create areas where
no navigation information is available. Moreover, typical indoor scenarios are dynamic
with constant changes due to the mobility of people within the scenario, such as in a
shopping mall or an office. High-precision positioning becomes crucial for some Internet
of Things (IoT) services, such as augmented reality (AR) or context-aware applications.

In recent years, some technologies have emerged for precise indoor localisation. There
are two main families of techniques: based on trilateration, and based on fingerprinting.
Trilateration consists in obtaining the position of the target based on the intersection of
the distance between the target and at least three reference points. Some technologies that
are being studied are ultra-wide band (UWB) [4], WiFi fine-time-measurement (FTM) [5]
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and cellular-based radio [1]. UWB has been widely adopted due to its robustness against
multipath and its centimetre-level accuracy [6]. It may become the standard for indoor
positioning in the next years as defined by ETSI [7]. Since UWB devices have a range of up
to few tens of metres, they need a fairly dense deployment to ensure the required coverage.
However, a dense deployment of UWB in the real world has a very high cost, making it
feasible only for limited scenarios. WiFi FTM relies on the wide availability of WiFi access
points (APs), and the higher range of WiFi signals to reduce the deployment costs, but it is
still a fairly new technology that has not a wide commercial adoption. Although 5G ranging
is still under research [8], it promises a very high availability thanks to the omnipresence
of 5G base stations. Long term evolution (LTE) has also been used for obtaining location,
although its precision is not as high as UWB or WiFi FTM [9].

WiFi fingerprinting [2,3] has also been widely studied. In fingerprinting, instead of
using reference points, the terrain is divided in a lattice, and for each division, the set
of visible WiFi APs is collected in an offline stage. For estimating location, a target will
then obtain a list with the visible APs, and will use it to find the point in the lattice
where it is most likely located. The map must be frequently updated to reflect changes in
the environment.

In this work, we propose a method for opportunistically aggregating ranges obtained
from different technologies. This fusion technique helps to reduce the cost of deployment
because the end-user benefits from any nearby ranging reference point (RP) for localisa-
tion [10]. In addition, this technique also helps dealing with coverage holes of certain
deployments, that is, areas where there are less than three visible reference points of one
technology. Since not all ranges have the same precision, we propose a weighting stage
that prioritises the reference points that offer a better location quality. To this end, this
work uses a maximum likelihood estimator (MLE) to characterise the ranges and sources in
order to define the weighting algorithm to balance the information of the over-determined
system which provides high accuracy indoor positioning.

To validate the proposed method, we use a real location deployment with ranging
information based on time measurement from UWB and WiFi and received signal strength
from a LTE network as a back-up. To the best of our knowledge, no system unifies all
these three technologies and brings them into a real scenario to show the performance of
real-time localisation. We also test several search methods for the MLE, to compare the
advantages in location precision and computational time of each one.

The contribution of this paper is listed as follows:

• Proposition of a fusion method in trilateration based on the work presented in [10],
with a dynamic weighting with MLE that improves the robustness of location accuracy;

• Validation of the proposed method with a real-world setup with several different scenarios;
• Comparison between different MLE search methods for finding the best for resolving

over-determined location problems.

The rest of this paper is organised as follows: Section 2 provides an overview of the
different location technologies explaining features of the technologies used in this work.
Section 3 explains the proposed method and the algorithm of multi-technology fusion and
the MLE as a weighting technique for outliers. Section 4 describes the experimental setup
with two scenarios and Section 5 presents the results obtained from three different cases
deployed in the two scenarios. Section 6 discusses the results presented in the previous
section. Finally, Section 7 presents the conclusions of this work.

The acronyms in this paper are listed in the Table 1 as follows:
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Table 1. Overview of acronyms.

Acronym Definition

5G Fifth generation

AP Access Points

AR Augmented Reality

BLE Bluetooth Low Energy

FCC Federal Communication Commission

FTM Fine-Time Measurement

GNSS Global Navigation Satellite Systems

GPS Global Satellite System

IoT Internet of Things

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

LoS Line of Sight

LTE Long Term Evolution

NLoS Non Line of Sight

MLE Maximum Likelihood Estimator

PANS Positioning And Networking Stack

RSSI Received Signal Strength Indicator

RTT Round-Trip Time

ToA Time of Arrival

UE User Equipment

UWB Ultra-Wide Band

WLS Weighted Least-Square

2. Overview of Location Technologies

The focus of the cellular-user location has changed over the generations from outdoors
to indoors [1]. Thus, GNSS has had to adapt to the new requirements. However, other
technologies and techniques have overcome satellite-ranging solutions for indoor position-
ing. Ranging-based or fingerprinting location have been studied [11,12] to provide a high
accuracy for indoors with technologies presented in Table 2, such as Bluetooth or WiFi.
Some of these technologies have been discarded for this work for several reasons. First of
all, the scope of this work is to study the real-time positioning with technologies that do
not need the data collection phase in fingerprinting, such as geomagnetism [12]. Secondly,
user location must be computed in the cloud for two main reasons: it will help future
applications, such as driver-less cars in which the cloud runs the commands to the cars and
must know their positions [13], and computing in the cloud also helps reducing energy
consumption in the end-device [14]. Thus, inertial navigation system (INS) is excluded for
this study because it is unfeasible to send the information of the accelerometer or gyroscope
in real time (update rate ≥ 100 Hz) with high energy efficiency. Thirdly, low-stability
technologies, such as Bluetooth, might not allow to update in real-time, for the RSSI varia-
tions [15]. Moreover, Bluetooth provides an insufficient coverage for wide scenarios [16].
Hence, we decided to discard Bluetooth for this indoor positioning study. Henceforth,
the technologies that are finally studied in depth for indoor positioning with high-precision
performance are UWB and WiFi FTM. LTE is also studied as a back-up technology due to
the wide-area coverage and deployed infrastructure. Table 2 presents an overview of the
technologies mentioned in this study.
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Table 2. Overview of indoor positioning technology.

Technology Access
Point

Positioning
Accuracy

Positioning
Method Advantages Disadvantages

Cellular network Cellular tower >30 m Trilateration

World-wide
coverage;
No extra

infrastructure needed

Low-precision
>100 m

UWB UWB anchor cm-m Trilateration

Robust against
multpath;

high-accuracy;
easy-deployment

High-cost

WiFi-FTM Router cm-m Trilateration
Low cost;

high-accuracy
Not yet

widely deployed

Bluetooth Beacon m
Trilateration;

fingerprinting
Low cost;

easy-deployment Low-stability

INS N/A m PDR Self-sufficient
Accumulative error;
Smartphone-based

calculation

Geomagnetism N/A m Fingerprinting
No infrastructure;

low-cost; ubiquitous

Need data
collection;

affected by temporal
electrical equipment;

Hereinafter, a brief description of cellular-based radio, UWB and WiFi that will be
used in this paper is completed.

2.1. Cellular-Based Radio

Cellular-based localisation has been used as a simple and coarse solution when there
is a lack of satellite visibility in GNSS, typically indoors and in scenarios, such as urban
canyons [17]. The arrival of 5G brings new specifications for high-precision positioning as
described in [9], which can be summarised in:

• Horizontal and vertical positioning error < 3 m for 80% of user equipments (UEs) in
indoor deployments;

• Horizontal and vertical positioning error <10 m and <3 m, respectively, for 80% of
UEs in outdoors deployments.

5G works on 700 MHz, 3.5 GHz and millimetre wave of 26 and 28 GHz. High
frequencies allow high-precision ranging in direct line of sight (LoS) with the target but
highly suffers from attenuation, multipath and reflections in non-line of sight (NLoS).
In contrast, lower frequencies are more robust to attenuation reaching longer distances,
however, multipath effects can deteriorate the precision of the ranges. In [1], in order to
eliminate the need for clock synchronisation, the use of different timing techniques such
round-trip time (RTT) are proposed for indoors.

Nevertheless, the existing and deployed LTE networks can be used as a back-up
for other location technologies [10]. Despite of the coarse ranging information that LTE
provides, LTE network is globally available in contrast with 5G that has not been yet fully
deployed. End-users may benefit from LTE in cases where no high-precision technologies
provide localisation. However, LTE utilises the received signal strength indicator (RSSI) for
ranging. RSSI highly suffers from multipath and fadings which leads to high variations
and an increase in the ranging error.

2.2. Ultra-Wide Band

UWB technology provides a high ranging accuracy based on the RTT protocol, even
in environments with harsh propagation characteristics [18]. This technology has multiple
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advantages, such as centimetre-level ranging precision, good obstacle-penetration capa-
bilities [4], and multipath mitigation in dense scenarios [2], making it indispensable for
indoor positioning. UWB is also a wireless communication technology that supports a high
throughput owing to the use of a very large spectrum. UWB uses very short time pulses of
few nanoseconds that take a wide bandwidth. The Federal Communication Commission
(FCC) authorised the unlicensed use of UWB in the range of 3.1 to 10.6 GHz [3]. UWB
signals are centered at 3.5 GHz with a bandwidth higher than 500 MHz. The latest market
trends show that UWB will soon become a de-facto standard for positioning and will
eventually be addressed by 3GPP standards [7]. Accordingly, some smartphones have
integrated UWB chipsets in the recent years [19]. As a drawback, to achieve the short pulse
width the UWB device has a high energy consumption.

2.3. WiFi Fine Time Measurement

IEEE 802.11mc includes a fine time measurement (FTM) for range estimation in timing
protocols using RTT [20,21]. This release will transform the indoor positioning industry
in the next years because WiFi infrastructure is widely deployed. The protocol estimates
precisely the distance to any WiFi access point (AP) which supports the protocol without
needing to be connected to them [22]. The information is calculated on the device for
privacy preserving, since sensitive location information is not shared among network
peers. In [23], the accuracy for positioning of WiFi FTM is computed with a precision of a
meter-level accuracy in real scenarios with dense deployments of WiFi APs.

3. Materials and Methods
3.1. Proposed Positioning Method

In trilateration, the position of the target is in the intersection between geometric forms,
such as circles or hyperbolas defined by the distance between the target and the RP [1–3].
Any ranging information can be used to obtain the final target position, such as time of
arrival (ToA), RSSI, or RTT time measurements. A minimum of three sets of reference
points and ranges to each one is required for location in 2D. The proposed algorithm
is explained in Algorithm 1. First, once the ranging information is received, the MLE
weights each source depending on whether the source is new or the system already has
information about it. Then, the trilateration algorithm based on the weighted least-square
(WLS) algorithm is computed [24]. Once the position is obtained, the algorithm computes
the error based on the distance provided by the source and the computed position. Finally,
this error is temporarily stored and the weighting factor of the source is updated for the
next iteration. In this section, both techniques that will be used in this paper are described:
multi-technology fusion and maximum likelihood estimation (MLE).

Algorithm 1: Positioning algorithm with MLE and fusing technologies
Input: Distance and position from reference points.
foreach Reference Point do

if Reference Point is new: then
Assign a low initial weight.

else
Weight the reference point according to the accuracy of the last

measurements.
end

end
Compute the position of the target by WLS algorithm.
Estimate the distance from the target position to each reference point.
Calculate the error between the input and the estimated distances.
Storage temporarily the error of each reference point.
Output: Position of the target.
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For a better understanding, we have also provided a flowchart of the proposed
positioning method that will help to understand how the whole system works in Figure 1.

 
Positioning Data:

- Distances
- Reference Point (RP)

 
Provide Final Position

No

For each RP:

Compute WLS algorithm

Estimates and store 
the error of each RP

Estimates and store 
the weight of the RP

Is it a new reference point?

Yes

Have we got 
the weight of this RP?

Have we got 5 error measurements?

Are there minimum 3 positioning data? 

Gives a low initial 
weight for that RP

Provide the stored
weight for that RP

Yes

Yes

Yes

No

No

No

Figure 1. Flowchart of the system.

3.2. Multi-Technology Fusion

In trilateration the ranging information usually comes from a single technology. How-
ever, in [10], a scheme for fusing ranges from different technologies is presented. The use
of multi-technology fusion in trilateration improves low-precision accuracy provided by
technologies (in this work, LTE) by using the ranges of precise technologies, such as UWB
or WiFi FTM.

In addition, to enhance the end-user location precision, multi-technology fusion
also provides a seamless navigation between areas served by different technologies (e.g.,
exteriors where GNSS can be used, and interiors with UWB deployments, using other
ranging technologies, such as LTE to cover for the missing ranges in the borders). Fusion
benefits from high-precision reference points in a sparse deployment which can help to
improve location in emergency cases, such as fires, earthquakes, etc. In these scenarios,
fusion can also compensate the missing AP structures with portable APs in order to provide
high-precision localisation. Although in this paper we have set the focus on WiFi FTM
and UWB for precise positioning, other technologies which provide high-precision ranging
data could also be used, such as GNSS or Bluetooth.
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3.3. Maximum Likelihood Estimator (MLE)

Ranging information is uncertain because measurements are never ideal. Least squares
(LS) estimation solves over-determined systems even though they are inconsistent since it
is not possible to find a solution. The idea is to find a solution which minimises the error of
the system. However, the classical iterative LS method for positioning lacks robustness;
even a single outlier can introduce a great error in the estimated target position. This
problem increases when the final accuracy should be reduced to the sub-meter accuracy.
In [10], WLS was used to compute the location with trilateration, but to avoid the problem
of outliers, the ranges were weighted according to their precision. A higher weight was
assigned to UWB (which is more precise) than LTE. However, these weights were assigned
statically; so, if a specific device introduced a high-precision ranging error (due to factors
such as an especially challenging location for propagation, or software and hardware
malfunctions), the localisation accuracy would be considerably affected.

Maximum likelihood estimator (MLE) is the most popular estimator for obtaining the
parameter θ̂, which specifies a probability function P(X = x|θ) or a probability density
function p(X = x|θ) of a discrete or a continuous variable based on the observations
x1, x2; . . . , xn which are independently sampled from the distribution [25]. In this work,
MLE weights the ranges provided by different reference points in real-time depending on
the variation of the error attached to the ranges. The system stores the error associated to
each RP iteratively with a temporal window and weights the sources by their standard devi-
ation. Supposing that X = {X1, X2, . . . , Xn} with distribution Fθ being θ = {θ1, θ2, . . . , θn}
that follows the density function fθ(x) [26]. Hence, the likelihood function of the observa-
tion is given by:

L(θ; X) =
n

∏
i=1

fθ(Xi) (1)

The MLE estimates the best candidate that optimally maximises L as seen below:

θ̂ = argmax(log(L(θ; X))) (2)

Hence, assuming that observations follow a Gaussian distribution, the estimator
calculates the parameters of mean and standard deviation that best suits Equation (2).
In this work, MLE dynamically weights the different reference points at the WLS algorithm.
Once the target’s position is estimated, the distances (d̂est = {dest1, dest2, . . . , destn}) from
the estimated position to each RP positions are calculated. Then, the estimated error of
each RP (êest = {eest1, eest2, . . . , eestn}) between the estimated distances (d̂est) and the input
distances (initially for the LS algorithm) are obtained. Finally, MLE provides the weight
values of each RP based on the error (êest) from the last N time epochs. The value of N
depends on the periodicity that the measurements are captured. We store the N elements
that were captured in the last 5 s. Figure 2 represents the weighted values of different
reference points during an experiment. In this case, it can be observed that a WiFi AP is
overweighted for some epochs. Then, owing to a blocking of line of sight between the
target and the WiFi AP, the weight of the WiFi AP is reduced drastically due to the precision
of the range being reduced to the level of lower precision technologies such as LTE base
stations (BSs).

Thus, the system benefits from the most stable and precise ranges. When the MLE
receives a new input source (i.e., a new RP and its distance), the estimator assigns a low
weight during the first N epochs in order to check the stability of the new source. In case a
RP data are not captured, the MLE erases the stored data of that RP. Once all the information
is weighted, WLS algorithm utilises the weights to provide the best target position. To find
the solution, several searching techniques can be used for the MLE:

• Nelder–Mead: is the most widely used algorithm in direct search method for solv-
ing the unconstrained optimisation problem. The Nelder–Mead method iteratively
generates a sequence of tetrahedrons to approach the optimal point which can reflect,
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expand, contract, and shrink. The algorithm is designed for small search spaces
because it quickly stalls [27];

• Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS): is designed for large
non-linear optimisation problems. The algorithm handles bounds on the variables and
solves unconstrained problems. However, the convergence is slow and non-optimal
for real time cases [28];

• Truncated Newton (TNC): utilises rougher estimations of the optimal search direction
for efficiency. As a drawback, the algorithm appears to rapidly stall [29];

• Constrained optimisation by linear approximation (COBYLA): is a direct search
method which only incorporates linear models about the objective and the constrains
with quick searching time [30];

• Sequential least squares programming (SLSQP): is an iterative method in which the
objective and constraints functions demand to be triple continuously differentiable.
The method reduces the non-linear optimisation problems by sequential iterations to
trim the convergence time [31].

In this paper, the SciPy [32] package implementation of these algorithms was used.

Epoch

W
ei

g
h
t

LTE BS 1
LTE BS 2
LTE BS 3
UWB
WiFi AP

Figure 2. Functionality of the MLE during a real experiment.

4. Experimental Setup

In this section, an experimental setup for validating the solution is described. To val-
idate the benefits of the proposed solution with real data, an UWB and a WiFi FTM
deployment are used as high-precision ranging technologies and an indoors LTE network
as a backup element with low-location accuracy and high availability. LTE is used as a
placeholder of 5G due to the lack of an experimental infrastructure, but the conclusions
of the experiment are expected to be similar with femtocells in a height of 3.5 m. The LTE
network belongs to the University of Malaga which has configured the network to reduce
the interferences with commercial networks. On the other hand, according to the multi-
path effects, the scenario is a laboratory which presents several metallic elements, such as
computers, shelves, etc. Therefore, we expect that the measurements are heavily affected
by multipath. The UWB deployment is based on Decawave DWM1000 devices (DecaWave,
Dublin, Ireland) and they were placed on top of shelves in order to cover the whole scenario
with good visibility (2 m height). Meanwhile, the WiFi FTM APs are Google WiFi mesh
routers (Google, Montain View, CA, USA) that were placed in typical places for providing
WiFi connectivity throughout the laboratories (1 m height). Both DWM1001 and Google
WiFi routers are set to their default configuration parameters [33,34]. The UWB devices
transmit with a power of −14.3 dBm and they are centered in 6 GHz [34]. The Google
WiFi routers are configured to work at 2.4 GHz and, to the best of our knowledge, the WiFi
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RTT FTM function could not operate at 5 GHz. The transmission power of the router is
by default 28.17 dBm [33]. The LTE station parameters are configured with a transmission
power of −6.8 dBm and downlink and uplink frequencies of 2630 MHz and 2510 MHz,
respectively. The location target device is a Google Pixel 3 which runs Android 9.0 and
supports WiFi FTM RTT. An application has been programmed to capture all the ranging
data from the network reference points: LTE base stations, UWB anchors and WiFi APs.
The ranges with the LTE stations are estimated using the measured RSSI which is modelled
by the indoor office propagation model [35]. The WiFi FTM ranges are obtained from an
API created for this work. For the UWB measurements, a DWM1000 device is attached
to the smartphone and connected via Bluetooth low energy (BLE) to read the UWB data.
A limitation on the performance of the UWB devices is that the UWB tag can only receive
the information of four anchors simultaneously due to the software provided with the
DWM1000 family products [4]. The implementation of the positioning and networking
stack (PANS) firmware, the two-way ranging (TWR) communication protocol and the data
frame limit the number of anchors that the tag can listen at the same time. Hence, despite
a high-density set-up, the system is not highly over-determined. The captured data are
sent to a Flask server with a MySQL database which is configured in a laptop(Lenovo,
Beijing, China) running Windows 10. The sampling rate is 1 Hz. The measurements are
timestamped with the global satellite system (GPS) clock as a time reference. The mea-
surements are captured in a reduced time interval, assuming simultaneous samples which
would introduce some error due to synchronisation. However, a regular user moves slowly
in indoor scenarios which can lead to a maximum error of a few centimetres of ranging
information. Additionally, we have set the height of the phone to 1.1 m of height simulating
a person is carrying the phone on his pocket. Then, we send the information to the Flask
server to process the localisation data via HTTP with no retransmission allowed in order to
maintain the experiments as real-time.

These experiments were performed in three laboratories and hallways with a very
limited vision of the sky. Figure 3 illustrates the three experimental cases that have been
measured in the two different scenarios. These cases were selected in order to demonstrate
the advantages of fusing technologies and the performance of the MLE and its different
searching methods for localisation. Two experimental cases were carried out as shown in
the high-density deployed scenario illustrated in Figure 3a. In Case 1, seven regular UWB
anchors (in green) and three Google WiFi devices are used to show the performance of
fusion with high-accuracy ranges. The numbers of UWB and WiFi devices were chosen in
order to fully cover the scenario with at least three anchors or AP ranging data in the whole
area. In Case 2, two UWB anchors in bad locations (in red wine colour) were added to the
Case 1. In this scenario, UWB and WiFi will complement their information and improve
the geometry of the problem by having the reference points more evenly distributed. Thus,
with multi-technology fusion in trilateration the problem becomes over-determined for
each point, and it also has more reference points distributed over a wider area (which
means that the coverage of the overall system increases). As opposed to the scenario shown
in Figure 3a, Figure 3b shows a realistic scenario with one regular UWB device, one WiFi
AP and three LTE base stations distributed on the laboratories. With this deployment,
the high-precision information availability is reduced to a small area. LTE is used in order
to augment the availability of the positioning service. Nonetheless, with this deployment,
a high precision can only be achieved when there are three high-precision reference points
in range. When LTE is used, a low precision location is provided, which is still better than
a full outage in location provision.
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Lab 1Lab 2

Lab 3

Lab 1Lab 2

Lab 3

UWB

Scenario a) Scenario b)

Google WiFi LTE PicoCell

UWB in bad locations Case 1
Case 2
Case 3

Column
Door

9.46 m9.46 m 14.77 m

13.7 m

3.2 m

Figure 3. High density (a) and low density (b) scenario set-up distribution.

5. Results

In this section, the results obtained from each case are described separately in order
to demonstrate the performance of multi-technology fusion. Moreover, the different
searching methods of MLE are executed in order to observe some location characteristics
for each Case.

5.1. Results from Multi-Technology Fusion
5.1.1. Case 1: High-Density Deployment with Good UWB Conditions

In this first experiment, the set-up represents a scenario with a high-density of UWB
reference points, such that at any point the visibility of at least four anchors is guaranteed.
Moreover, all the anchors are in a location with good propagation conditions, favouring
a low ranging error. Figure 3a represents the scenario, with the UWB anchors and the
captured location data for one trajectory (yellow and orange dots). Figure 4 shows in 2D
the performance of system with the estimated locations (blue dots) against the ground truth
points (yellow dots). The UWB (green diamonds) and WiFi (pink triangles) illustrate where
the devices are placed. Figure 5 shows the location accuracy achieved with UWB, WiFi
FTM and the fusion of both in this case compared with the ground truth. In Figure 5, fusion
median (yellow line), standard deviation (rectangle height), and outliers (circles) improves
significantly from UWB and WiFi isolated cases. UWB localisation is better than WiFi in
this case. Despite having UWB anchors in good conditions, the positioning error has an
average near one meter. This meter-level accuracy is due to multipath effects that affect
both UWB and WiFi FTM (which has a lower accuracy). When using fusion, the accuracy
improves, with a lower average and much lower variance.
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Figure 4. Localisation performance of Case 1 in 2D.

5.1.2. Case 2: High-Density Deployment with 2 UWB in Bad Locations

As in the previous case, the set-up ensures the positioning service provided by UWB
with the ranging information of four anchor most of the time. However, in this case, two
of the anchors are installed in locations where a partial blocking of the anchors leads to
bad propagation conditions due to NLoS. This situation can be common in the real world,
where quick deployments are completed for situations such as emergencies or temporary
events. The bad deployment causes these anchors to report ranges with a higher error.
The data captured for this case are illustrated in Figure 3a as yellow dots. In this case,
the error of the only-UWB location service is much larger than in the previous case as
shown in Figure 5. Again, fusion median and standard deviation improve against isolated
technology localisation.

Figure 5. Horizontal error distribution of UWB + WiFi FTM for Cases 1 and 2.

A cumulative density function (CDF) of the error is given to illustrate and compare the
performance of Cases 1 and 2 as shown in Figure 6. The pink horizontal line represents 90%
sample line, and the error for using fusion in Case 1 drastically improves the horizontal
error. However, the outliers introduced by UWB in Case 2 have worsened the fusion
performance and WiFi, in this case, locates better the user in isolation.
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UWB Case 1
WiFi FTM Case 1
Fusion Case 1
UWB Case 2
WiFi FTM Case 2
Fusion Case 2

[m]

Figure 6. CDF of the horizontal error for Case 1 and 2.

5.1.3. Case 3: Low-Density Deployment of High-Precision Technologies

In this third case, the scenario is set up as a more realistic situation with less dense
high-precision devices than in the other Cases. In this case, the low-density of devices in
the scenario makes it impossible to locate a target by using the high-precision information
from UWB and WiFi devices, since the visibility of at least four reference points is not
guaranteed. Therefore, in this case, the missing ranges are complemented with LTE ranges,
which are less accurate. Figure 3b represents, in light blue dots, the positions where the
location service is provided by using the LTE data. In Figure 7, there is a comparison of the
location error between the only LTE and multi-technology fusion between LTE with UWB
anchors and WiFi AP ranging information.

Figure 7. Horizontal error distribution of LTE and fusion for Case 3.

In addition, the CDF of Case 3 has been also included when using fusion with 1 UWB
anchor, 1 WiFi AP or LTE plus both technologies as shown in Figure 8. In this Case, precise
ranging information greatly enhances the localisation accuracy of the multi-technology
system.
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LTE Case 3
LTE + 1 UWB Case 3
LTE + 1 WiFi  Case 3
LTE + 1 UWB + 
1 WiFi  Case 3

Figure 8. CDF of the horizontal error for Case 3.

Comparing Figure 9 (imported from [10]) with Figure 8, the fusion algorithm stands
out in both works showing the benefits of using high-precision data in areas only covered
by low-precision ranging technology such as LTE. In Case 3, just as in the simulation of [10],
LTE provides a worse precision performance when it is used in isolation. There is a contrast
between the results obtained in this work and in [10] because in the simulation the case of
the study was ideal in which some real-world conditions such as reflections, clutters, and
interferences, were omitted.

Figure 9. Horizontal Position Error of LTE (blue), fusion (yellow) and weighted fusion (red).

5.2. Comparison of the MLE Searching Methods for Positioning

Searching methods may provide different solutions to weight the sources. Nelder–
Mead, COBYLA, and SLSQP are linear methods which may perform better for estimating
the standard deviation of the sources. In addition, L-BFGS-B is designed for large problems
and TNC provides a rougher estimate to achieve a faster converge. Thus, L-BFGS-B
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and TNC may perform a priori worse than the rest. In this Section, a comparison of
the performance of the different searching methods for the MLE are shown in Table 3 in
the three different cases. All the results are obtained by using multi-technology fusion
in trilateration. In addition, the different searching methods are compared with a non-
weighted LS solution to show the performance of the MLE in positioning problems. Table 3
shows the mean (µ), standard deviation (σ), the 80% of the cumulative error (CDF) in
meters and the time elapsed for each iteration in milliseconds.

Table 3. Comparison of the search methods in both scenario.

Nelder-Mead L-BFGS-B TNC COBYLA SLSQP No Weighting

µ [m] 1.14 1.46 1.43 1.14 1.14 1.07

Case σ [m] 0.77 1.2 0.99 0.77 0.77 0.67

1 80% cdf error [m] 1.63 1.84 1.93 1.63 1.63 1.45

Time elapsed [s] 0.103 0.065 0.169 0.200 0.067 0.070

µ [m] 0.98 1.52 1.52 0.96 0.95 1.11

Case σ [m] 0.67 1.74 1.74 0.67 0.67 0.84

2 80% cdf error [m] 1.3 1.83 1.83 1.25 1.23 1.46

Time elapsed [s] 0.125 0.079 0.176 0.225 0.082 0.078

µ [m] 18.7 19.08 18.36 18.7 18.7 18.14

Case σ [m] 9.65 10.75 10.14 9.66 9.66 10.71

3 80% cdf error [m] 27.84 27.36 26.88 27.84 27.84 25.71

Time elapsed [s] 0.109 0.059 0.194 0.254 0.052 0.050

6. Discussion

In this section, the results are discussed showing the advantages of using multi-
technology fusion. Moreover, the results obtained for the different searching methods are
reviewed providing a guideline on which is the most convenient.

6.1. Performance of Multi-Technology Fusion

As seen in the previous section on Figures 5 and 7, the error obtained by multi-
technology fusion improves substantially with respect to single-technology positioning
performance. With fusion, more measurements over-determine the WLS algorithm and
also the geometry of the reference points enhances from a denser deployment. The over-
determination of the localisation problem might not enhance the system performance with
the inclusion of MLE if a RP appear intermittently, in which case MLE drastically reduces
the impact of this intermittent RP.

On the other hand, the combination of isolated high-precision ranging technology
with low-precision technology such as LTE shows a considerable improvement in all the
possible aspects, such as mean, standard deviation, or the magnitude of the outliers, as
seen in Figure 7. Despite LTE being a coarse precision ranging technology, it fills the lack
of ranging information to solve the WLS algorithm for location augmenting the coverage
area where location is provided. Therefore, taking advantage of the fact that several
technologies are already deployed in the measurement scenario (and also in many real-
world situations), the multi-technology fusion technique can be used to exploit different
deployments, improving accuracy, coverage, and reducing the cost of new deployments.

6.2. MLE Search Methods

Regarding the MLE algorithm, it does not improve the target location performance
overall when all the devices are in good visibility and propagation conditions (such as
Case 1), instead, it slightly worsens the positioning error, as seen in Table 2. This is because
MLE assigns a low initial score to the new sources. Nevertheless, the benefits of MLE
appear in more realistic scenarios where input data introduces outliers (Cases 2 and 3).
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In Case 2, the use of MLE, with the methods of Nelder–Mead, COBYLA or SLSPQ, improve
the location system performance in all the statistical metrics proposed in the Table 2 and
SLSQP has a very similar time resolution without using MLE. In Case 3, it is noticeable
that the MLE reduces the standard deviation error, although it increases the mean error.
This is expected due to MLE reducing the impact of data with higher variances. Thus,
despite reducing the impact of the standard deviation, the offsets introduced by multipath
predominate on the location estimation. Again, the SLSQP search method is very similar to
the non-weighted method. Hence, L-BSGS-B and TNC both show not to be suitable for
positioning. In contrast, SLSQP search method proves better than the rest of the methods
for improving the location performance against outliers or bad propagation conditions that
are very typical for indoors scenarios.

The positive results obtained with MLE can be further improved using techniques,
such as Kalman filters [24], or complementing the weight calculations with additional
contextual information, such as the knowledge of LOS/NLOS conditions (obtained, for in-
stance, with machine learning) [36].

7. Conclusions

In this work, the main objective is to present multi-technology fusion with MLE as
a weighting algorithm in a real scenario. Thanks to the fusion technique, the presence of
multiple technologies can be used to improve location in diverse ways: with a higher preci-
sion and with a higher availability. When the number of high-precision reference points is
high, fusion provides an over-determination that allows a higher precision. In cases where
the number of high-precision reference points is low (for instance, in the border of deploy-
ments, or in sparse deployments), multi-technology fusion allows using low-precision and
highly available technologies, such as LTE, to complement the reference points and do
trilateration to achieve a high availability on the localisation service.

Moreover, the proposed technique does not need any additional hardware apart from
the receivers for each technology that will be present in most mobile devices in the near
future. Thus, fusion allows to reduce costs in positioning infrastructure deployments due
to a lower density requirement of high-precision devices.

To validate the weighting technique with MLE, tests with real deployments were
completed in three different Cases. MLE is presented in this paper as a technique that
reduced the impact of outliers for precise positioning. Only in ideal cases with very good
condition deployments, the error slightly increases. SLSQP stands out as the best search
method for MLE in positioning problems.
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